
VIEW: Visual Imitation Learning with Waypoints

Ananth Jonnavittula · Sagar Parekh · Dylan P. Losey

Abstract Robots can use Visual Imitation Learning

(VIL) to learn everyday tasks from video demonstra-

tions. However, translating visual observations into ac-

tionable robot policies is challenging due to the high-

dimensional nature of video data. This challenge is fur-

ther exacerbated by the morphological differences be-

tween humans and robots, especially when the video

demonstrations feature humans performing tasks. To

address these problems we introduce Visual Imitation

lEarning with Waypoints (VIEW), an algorithm that

significantly enhances the sample efficiency of human-

to-robot VIL. VIEW achieves this efficiency using a

multi-pronged approach: extracting a condensed prior

trajectory that captures the demonstrator’s intent, em-

ploying an agent-agnostic reward function for feedback

on the robot’s actions, and utilizing an exploration algo-

rithm that efficiently samples around waypoints in the

extracted trajectory. VIEW also segments the human

trajectory into grasp and task phases to further acceler-

ate learning efficiency. Through comprehensive simula-

tions and real-world experiments, VIEW demonstrates

improved performance compared to current state-of-

the-art VIL methods. VIEW enables robots to learn

a diverse range of manipulation tasks involving multi-

ple objects from arbitrarily long video demonstrations.

Additionally, it can learn standard manipulation tasks

such as pushing or moving objects from a single video

demonstration in under 30 minutes, with fewer than

A. Jonnavittula
Mechanical Engineering Department, Virginia Tech
E-mail: ananth@vt.edu

S. Parekh
Mechanical Engineering Department, Virginia Tech
E-mail: sagarp@vt.edu

D. Losey
Mechanical Engineering Department, Virginia Tech
E-mail: losey@vt.edu

20 real-world rollouts. Code and videos here: https:

//collab.me.vt.edu/view/

Keywords Visual Imitation Learning, Deep Learning,

Few-shot Learning

1 Introduction

Imagine teaching a person to pick up a cup placed

on a table. The quickest method is often to physically

demonstrate this task. Through physical demonstra-

tion, the observer can discern which object to pick up

and how to manipulate that object. Humans efficiently

learn everyday tasks in this way, including moving items,

pouring tea, or stirring the contents of a pan.

Teaching robots these same tasks, however, proves

to be more cumbersome. Typically, robots employ ei-
ther Imitation Learning (IL) or Reinforcement Learning

(RL) methods. IL generally requires many demonstra-

tions from humans to obtain effective policies [15,21].

During this process, the human teacher often needs to

kinesthetically guide or teleoperate the robot to show it

exactly what actions it should take. On the other hand,

RL methods require a substantial number of rollouts

for robots to perform even simple tasks [30,45]. Addi-

tionally, defining appropriate reward functions for re-

inforcement learning poses a challenge, particularly in

unstructured everyday settings [13].

In this paper we therefore study how robots can

learn tasks by watching humans. The human provides

a demonstration directly in the environment (e.g., phys-

ically picking up a cup), and the robot collects an RGB-

D video of the human’s demonstration. Our objective

is for the robot to leverage this single video to learn the

task and correctly manipulate the same object. The pri-

mary issue here lies in the overload of information con-

veyed by video demonstrations. Each video is comprised

ar
X

iv
:s

ub
m

it/
55

62
09

8
 [

cs
.R

O
]

 2
7

A
pr

 2
02

4

https://collab.me.vt.edu/view/
https://collab.me.vt.edu/view/

2 Ananth Jonnavittula et al.

Fig. 1 Robot learning from visual demonstration. 1) A human demonstrates the task directly in the environment: here we
use the example of picking up a cup. Under our proposed approach, the robot processes a single video of that demonstration
to selectively focus on important features such as the human hand and the manipulated object. From these trajectories the
robot obtains waypoints that capture the critical parts of the task (e.g., grasping the cup). 2) These extracted waypoints serve
as a prior for the correct robot trajectory. 3) In practice, simply executing this prior rarely leads to task success due in part to
the morphological differences between human and robot (in this case, the robot misses the cup entirely). Therefore, the robot
must explore in a region around the initial waypoints to iteratively improve its trajectory. 4) After repetitively interacting
with the environment, the robot learns to successfully imitate the behavior demonstrated in the human video.

of thousands of image frames, and each frame contains

numerous pixels. These raw pixel values — when seen

in isolation — are not sufficient for the robot to de-

termine what actions it should take (i.e., how to move

the robot arm). Consequently, robots that learn from

video demonstrations must extract pertinent informa-

tion from a large amount of data.

To address this fundamental problem, our hypoth-

esis is that robots do not need to reason over all the

video data. Consider our motivating example of pick-

ing up a cup: when humans learn by watching other

humans, we do not focus on environmental clutter or

extraneous details. Instead, we just need to see where

the human grabs the cup and how they carry it. At a

high level, we can think about these critical parts of

the task as waypoints: the cup’s initial position, the

human’s hand configuration when grasping, key frames

along the cup’s motion, and where the human finally

places the cup. Robots that can learn these waypoints

from the human’s video demonstration will be able to

perform the overall task without having to reason over

every single aspect of every video frame.

We leverage this hypothesis to develop VIEW: Vi-

sual Imitation lEarning with Waypoints (see Figure 1).

Our approach starts with a video of the human per-

forming their desired manipulation task. We then pro-

cess that video to get an initial trajectory (e.g., a best

guess) of how the robot should complete the same task.

To obtain this initial guess we extract the human’s hand

trajectory, and then autonomously identify the critical

waypoints along that trajectory in visual and Cartesian

spaces. In an idealized scenario, the robot could directly

execute this initial trajectory and complete the task.

However, the initial trajectory almost always fails be-

cause of (a) the morphological differences between hu-

man demonstrator and robot learner and (b) the sensor

noise in the initial RGB-D video. Returning to our cup

example, we often find that — even though the video

shows the human picking up the cup — the robot’s ex-

tracted trajectory misses that cup entirely.

Accordingly, the second part of VIEW focuses on it-

eratively improving the robot’s prior and correctly com-

pleting the task. We develop sampling strategies so that

the robot can intelligently explore around its waypoints.

This includes waypoints where the robot needs to grasp

an object (e.g., pick up the cup) and waypoints where

the robot is manipulating that object (e.g., carrying

the cup to a goal location). Again, we rely on our hy-

pothesis: instead of reasoning about every aspect of the

video, we focus on the object’s location in the waypoint

frames. This leads to an iterative learning process where

the robot corrects its initial trajectory and eventually

VIEW: Visual Imitation Learning with Waypoints 3

completes the original task shown in the video. Overall,

VIEW enables robot arms to efficiently learn everyday

tasks such as picking, pushing, or moving objects, re-

quiring fewer than 20 real-world trials and less than

30 minutes from demonstration collection to successful

task execution. Additionally, our method enables robots

to learn from long horizon videos that involve a com-

bination of tasks — such as moving a cup and pouring

tea into it, or placing multiple objects in a pan — us-

ing no additional information besides the initial human

demonstration video.

Overall, we make the following contributions:

Condensed prior extraction. We present a new ap-

proach for distilling a prior from video demonstrations

that accurately reflects the human demonstrator’s in-

tent. We achieve this by extracting a concise set of way-

points that capture the human hand trajectory and its

interaction with objects.

Agent agnostic rewards. For sample efficient explo-

ration, the robot requires effective feedback when ex-

ploring around the waypoints in the extracted prior.

To provide this feedback, we propose an agent-agnostic

reward function. Our reward model only focuses on the

critical components of the task — i.e., movement of the

object — regardless of which agent performs the task.

Sample efficient exploration. Given morphological

disparities and noise introduced during prior extraction,

directly replicating the human trajectory is impractical.

We introduce an algorithm that segments the prior into

grasping and task phases, sequentially focusing on lo-

cating the object and replicating its movement.

Few shot adaptation. While our approach can bridge

the embodiment gap between human and robot through

efficient exploration around the human prior, each new

task requires starting from scratch. However, the robot

gains valuable insights into the morphological differ-

ences and camera noise with each solved task. By in-

tegrating a residual learner that leverages this insight

with our prior extraction, we demonstrate that the robot

can achieve few-shot learning on new tasks.

Comparing VIEW to baselines.We conduct a com-

parative analysis of our method against existing state-

of-the-art approaches in visual imitation learning. Ad-

ditionally, an ablation study is performed in a simulated

environment to underscore the significance of each com-

ponent within our framework. These comparative anal-

yses and ablation studies collectively demonstrate our

method’s efficacy in enabling robots to quickly imitate

a wide range of tasks based on video demonstrations.

2 Related Work

We study how robots can efficiently learn to replicate

a task based on a single video demonstration. Our ap-

proach builds upon existing learning from demonstra-

tion methods, particularly those that use videos, way-

points, and human activity recognition.

Learning from demonstrations (LfD). LfD is a

general learning framework [51,58] that is used across

domains such as autonomous driving [48,10], robotics

[25,26,27,42,53], and video games [2,59,60]. In robotics,

LfD has been employed to learn from teleoperated ex-

pert demonstrations [27,57,28,43], extended to include

imperfect demonstrations [25,5,4], and combined with

other modalities such as preferences [42,72] or language

[66,39,36]. A significant aspect of LfD in robotics in-

volves the sourcing of demonstrations, predominantly

obtained from human actions within the agent’s envi-

ronment. For example, in autonomous driving, demon-

strations encompass steering controls similar to those

the agent uses [48], while in robotic manipulation, demon-

strations are acquired via direct teleoperation [26] or

kinesthetic teaching [42]. This reliance on human pro-

vided demonstrations presents certain challenges, espe-

cially in robotics. Humans primarily use their hands

for manipulation, whereas robots utilize end-effectors

with distinct morphologies. This fundamental discrep-

ancy limits the feasibility and diversity of the training

data collected for robot learning.

To address the morphological disparities between

humans and robots, some researchers have advocated

for the use of tools such as reacher-grabbers that resem-

ble grippers commonly employed in robotics [49,62,71,

79], or utilizing camera angles that reduce the effects of

hand to gripper morphology [29,12]. These tools facili-

tate the recording of demonstrations that can be more

easily translated into actionable robot policies, without

the need for teleoperation. While these approaches have

proven effective, they do not ameliorate the underlying

limitation: the demonstrations are inherently restricted

in scope due to the specialized interface. In response to

this challenge, there has been a shift towards compiling

extensive robot demonstration datasets, like Open-X

[47], aiming to establish a foundational resource akin to

ImageNet for robot learning. But these datasets over-

look the vast reservoir of already existing human video

demonstrations, which could significantly expedite the

learning process for robots. VIEW builds upon prior

LfD works by learning from human demonstrations.

However, VIEW focuses on learning directly from hu-

man videos, and does not rely on kinesthetic demon-

strations, teleoperated inputs, or intermediary tools.

4 Ananth Jonnavittula et al.

Learning from video demonstrations. There has

been a parallel research focus on teaching robots with

videos of robots performing the desired task [8,52,77,

76]. In these methods a human teleoperates the robot in

the video demonstration (i.e., the video demonstration

is of the robot completing the task), and the robot learns

to imitate the resulting RGB-D video. These methods

tackle the challenges that arise from a lack of explicit

action information [8,77,76]. A significant aspect of this

research is the reduction of data complexity through

an emphasis on keyframes [77,76], aiming to simplify

robot learning by concentrating on achieving these spe-

cific frames. Nevertheless, these methods necessitate a

large number of trials with the robot [8], and do not

solve the key problem of obtaining generalized video

demonstrations from humans or other agents.

Alternatively, some researchers have explored learn-

ing from human video demonstrations directly, with

considerable effort dedicated to transforming human

videos into a format applicable to the robot’s domain

[69,35,78,64]. To facilitate this transformation, these

methods utilize cycle consistency networks [22] to trans-

late human videos into equivalent robot videos [78,64].

Once videos are translated, they extract key points from

the videos, which serve as the basis for learning [78,37].

However, a significant drawback of this approach is the

necessity for a vast collection of videos, showcasing both

humans and robots performing tasks. This requirement

poses a substantial limitation, adversely affecting the

scalability of such methods.

Several approaches closely align with our method,

focusing on human-to-robot imitation learning [33,23,

24,68,1,61,9,50,65,3]. These methods extract meaning-

ful representations of a task from videos [9] or use neu-

ral networks to learn reward functions from the videos

to facilitate reinforcement learning [61,1]. Despite the

promise shown by many of these methods, they share a

common challenge: the necessity for a substantial num-

ber of robot rollouts in real-world scenarios to learn

tasks effectively. One particularly similar approach here

is WHIRL [3], which mirrors our method but employs

a variational autoencoder-based exploration exploita-

tion strategy. As we will show, WHIRL requires a large

number of rollouts to converge, and struggles to scale

for long horizon tasks. Additionally, it relies on video in-

painting [34] that can be time-consuming. Our proposed

method VIEW aims to solve these challenges by seg-

menting the task and sequentially solving it: in our ex-

periments, we will directly compare VIEW and WHIRL

in terms of task success and training time.

Waypoint-based learning. While the methods dis-

cussed so far primarily focus on learning action poli-

cies directly from demonstrations, a growing trend in

robotics is a shift towards teaching robots to reach des-

ignated waypoints. This approach is gaining traction,

particularly because it aligns well with the use of sep-

arate planning and control algorithms, allowing low-

level controllers to reach goals set by high-level plan-

ners. This concept has seen application in reinforce-

ment learning for tasks such as object pick-and-place

and door opening [41]. However, the success of these

algorithms hinges on the creation of meticulous reward

functions to guide learning. In the domain of imita-

tion learning, it has facilitated the learning of intricate

tasks, such as operating a coffee machine [67]. Never-

theless, similar to methods discussed on learning from

video demonstrations, Shi et al. [67] learn from a video

demonstration of the robot performing the task. This

distinction is crucial, as robot demonstrations bypass

the morphological differences encountered when learn-

ing from human videos. Our approach to prior compres-

sion bears similarities to these waypoint-focused meth-

ods. However, it differs in that VIEW learns directly

from a single human video, where the human physically

performs the task without a robot.

Human activity recognition. Many of the meth-

ods discussed above rely on human intent and activity

recognition for enabling robots to understand object af-

fordance. Within the realm of robot manipulation, nu-

merous studies have proposed methods for discerning

human actions and activities from video footage [14,

38,31,32]. Some works extend human posture tracking

to identify fine-grained activities within limited spa-

tial contexts [40]. However, merely detecting human

presence is insufficient to learn from human videos. To

bridge this gap, using annotated video datasets such as
SomethingSomething [19], YouCook [11], ActivityNet

[6], or the 100 Days of Hands (100DOH) [63] becomes

instrumental. The 100DOH dataset is particularly valu-

able due to its detailed object interaction annotations.

Building upon prior works, our approach utilizes the

100DOH framework to extract crucial data on hand

positioning and interactions with objects.

In contrast to the many of the methods discussed

here, VIEW distinguishes itself by focusing on sample-

efficient learning directly from human videos. Our ap-

proach aims to teach robots manipulation tasks — such

as picking or moving objects — with minimal human

supervision. The only interaction required from the hu-

man is providing a single video demonstration.

3 Problem Statement

We consider manipulation tasks in unstructured en-

vironments. First a human teacher physically demon-

VIEW: Visual Imitation Learning with Waypoints 5

strates their desired task within the robot’s workspace.

During this demonstration the robot is moved out of

the way (i.e., the human does not interact with the

robot) and the robot records the human’s behavior with

a stationary RGB-D camera. After the demonstration

is complete the video is provided to the robot, and

the robot must learn how to replicate the same task

based on this single video. We highlight that the hu-

man and robot have morphological differences — e.g.,

the human’s hand is different from the robot’s gripper

— and so the way the human performed the task may

not transfer directly to the robot arm.

Environment. We formulate the robot’s environment

as a Markov Decision Process without rewards: M =

⟨S,A, T ⟩. The robot’s end-effector position in Cartesian

space is its state s, and the robot’s workspace becomes

its state space S. In every state the robot can take an

action a ∈ A which is the end-effector velocity. This

action moves the robot to a new state s′ based on the

environment transition probability T (s′ | s, a). We as-

sume the environment remains unchanged between the

human demonstration and the robot’s learning activity;

that is, all objects maintain their positions. Addition-

ally, we only consider scenarios where the environment

is captured from a fixed camera perspective.

Video Demonstration. The robot learns from a sin-

gle video demonstration (Vi) of a human performing the

task (τi) captured using a stationary RGB-D camera.

The human does not interact with the robot beyond

providing this video. Although the human only provides

one video for task τi, they may provide demonstrations

for multiple tasks: e.g., the robot could receive a set of

n videos V1, . . . , Vn for n different tasks τ1, . . . , τn. The

robot’s objective is to map each video into a trajectory

that completes the demonstrated task.

4 VIEW

Our approach to imitation learning from video demon-

strations relies on our intuition that efficient learning

requires focusing on critical waypoints. Coming back to

our motivating example of teaching a robot how to pick

up a cup, the robot only needs to focus on the cup, how

the human grasps it, and its movement throughout the

video. The robot can complete the task by leveraging

this information to guide its interaction with the envi-

ronment. In this section we discuss our approach that

consists of three main parts: first, extracting which ob-

ject to pay attention to, how this object moves through-

out the task, and the human’s hand trajectory during

the task. Second, designing a robust reward signal that

compares the robot’s behavior to the human’s behav-

ior. Third, exploring around the extracted waypoints in

a sample-efficient manner. We refer to our method as

VIEW: Visual Imitation lEarning with Waypoints.

Refer to Figure 2 and Algorithm 1 for a summary.

Algorithm 1 VIEW

Input: Video of human interaction V

Residual network Φ

Dataset of previous corrections D
Output: Successful robot trajectory ξr

Updated Residual network Φ

1: ξh = ExtractHandTraj(V)

2: ξo, tag = ExtractObjectTraj(V , ξh)

3: ξhc = ξh + Φ(ξh)

4: ξhgrasp, ξ
h
task = DivideTraj(ξhc)

5: ξ∗grasp = GraspExplore(ξhtask, ξ
o, tag)

6: if ξ∗grasp is success then

7: ξ∗task = TaskExplore(ξhtask, ξ
∗
grasp, ξ

o, tag)

8: if ξ∗task is success then

9: ξ∗ = CombineTraj(ξ∗grasp, ξ
∗
task)

10: Add (ξh , ξ∗) to D
11: Retrain Φ on D
12: end if

13: end if

4.1 Prior Extraction

VIEW relies on three crucial pieces of information ex-

tracted from the human’s video demonstration: iden-

tification of the manipulated object, understanding of

the object’s movement within the video, and the hu-

man’s hand movements during the task. Consequently,

the prior extraction process can be divided into two

main subparts: one concerning the object and its mo-

tion in the video, and the other focusing on the hu-

man’s interactions with that object. Therefore, we sep-

arate our prior extraction approach into two distinct

components: Hand Trajectory Extraction and Object

Trajectory Extraction. A summary of our overall prior

extraction method can be found in Figure 3.

Hand Trajectory Extraction. Prior methods have

extensively addressed the extraction of hand trajecto-

ries from video demonstrations, often leveraging open-

source neural networks for this purpose [3,75,80]. In our

approach (see Figure 3), we analyze each frame (vt) in

a video (V) using the 100 Days of Hands (100DOH)

model [63]. This model helps us identify the hand’s lo-

cation and whether it is interacting with any objects via

6 Ananth Jonnavittula et al.

Fig. 2 Outline of VIEW, our proposed method for human-to-robot visual imitation learning. (Top Left) VIEW begins with
a single video demonstration of a task. (Bottom Left) From this video we extract the object of interest, its trajectory, and the
human’s human trajectory. (Middle) We then perform compression to obtain a trajectory prior — a sequence of waypoints the
robot arm should interpolate between to complete the task. Unfortunately, this initial trajectory is often imprecise due to the
differences between human hands and robot grippers, as well as noise in the extraction process. We therefore refine the prior
using a residual network, which is trained on previous tasks to de-noises the current data. (Right) The de-noised trajectory
is then segmented into two phases: grasp exploration and task exploration. (Top Right) During grasp exploration, the robot
determines how to pick up the object by modifying the pick point in its trajectory. (Bottom Right) Following a successful
grasp, the robot proceeds to task exploration, where is simultaneously corrects the remaining waypoints of the trajectory.
After completing exploration, the robot synthesizes a complete trajectory. (Middle) This solved trajectory, alongside the prior
trajectory, is used to further train the residual network, thus enhancing the performance of our method in future tasks.

bounding box coordinates (bhxt
, bhyt

) and contact infor-

mation (ct). A bounding box alone can be ambiguous

with respect to hand orientation and direction. To re-

solve this ambiguity, we further refine our coordinates

with the MANO hand model [55] to pinpoint the hu-

man’s wrist position (phxt
, phyt

). We convert the 2D im-

age coordinates into 3D world coordinates (xh
t , y

h
t , z

h
t)

using depth information (δt) from the camera.

So far our methodology bears a strong resemblance

to that used in WHIRL [3]. However, WHIRL overlooks

a significant issue: the abundance of points along the

extracted trajectory. For instance, a mere ten-second

demonstration recorded at 60 frames per second yields

a total of 600 frames. While this amount of visual and

trajectory data appears substantial, upon closer inspec-

tion, much of is redundant. Returning to our example

of picking up a cup, the video contains crucial way-

points such as the initial hand position and the cup’s

grasp position, but it also includes several redundant

frames that interpolate between these key waypoints.

This principle extends to various manipulation tasks;

for instance, pouring tea into a cup necessitates way-

points depicting the start location, teapot grasp, pour

location, and final orientation. All other intermediate

points can be discarded.

To take advantage of this redundancy, we augment

our extraction procedure with a trajectory compres-

sion algorithm. Numerous methods have been proposed

for this purpose, including iterative [46] and dynamic

programming approaches [67]. In our implementation

we use Spatial Quality Simplification Heuristic - Ex-
tended (SQUISHE), a method that provides provable

guarantees on trajectory error [46]. SQUISHE operates

by minimizing the synchronized Euclidean distance of

the trajectory. This metric calculates the distance be-

tween a waypoint in the trajectory and its interpolated

counterpart. The interpolated counterpart is estimated

using the position and velocity information from neigh-

boring waypoints. If a waypoint’s removal and inter-

polation result in an accurate estimation (i.e., we can

ignore that waypoint while still maintaining the same

trajectory shape), that point is pruned from the tra-

jectory. Revisiting our cup example, if a linear move-

ment exists between the hand’s initial position and the

cup grasp position, SQUISHE automatically removes

all frames in between these key waypoints. By integrat-

ing SQUISHE with the extracted trajectory, we obtain

a highly condensed and concise prior. This prior se-

lectively retains waypoints corresponding to significant

trajectory changes, including shifts in hand direction

or alterations in hand-object contact patterns. With

VIEW: Visual Imitation Learning with Waypoints 7

Fig. 3 An overview of our prior extraction method (Bottom Left in Figure 2). Utilizing the 100 Days of Hands (100DOH)
detector [63], we first identify the location of the hand and if it is in contact with any objects present in the frame. We
then refine the human’s hand trajectory using the MANO model [55] to capture wrist movements. Subsequently, to eliminate
redundancy, we apply the SQUISHE algorithm [46]. This produces an initial trajectory with key waypoints that the robot
should interpolate between. To pinpoint the object of interest amidst potential clutter, we analyze frames where hand-object
contact occurs, creating anchor boxes that — in conjunction with an object detector — reveal the object the human interacts
with most frequently. This identification enables us to construct an accurate object trajectory from the human’s video.

SQUISHE we often observe a substantial reduction in

trajectory length — e.g., from over 300 points to just

three or four waypoints.

Object Trajectory Extraction. Thus far, we have

focused on extracting a concise prior trajectory from

the human’s hand movements. However, merely mim-

icking human actions is not sufficient for the robot to

solve the task. In reality, the critical aspect of these

demonstrations lies in understanding how the human is

interacting with and moving objects. Revisiting our cup

example, the focus should not be on repeating the hu-

man’s hand movements; instead, the robot must learn

to move the cup to the correct location.

To extract the object trajectory we start by identi-

fying which object the human is manipulating. Here we

capitalize on the human’s hand interactions in the video

demonstration. From the hand trajectory extraction,

we know that the 100DOH model can indicate when

the human’s hand interacts with objects in a frame (ct).

Building on this insight, we initiate a process akin to

anchor boxes for region proposal networks [54] in im-

age detection algorithms. By generating anchor boxes

of varying sizes around the hand and detecting objects

within these boxes, we extract objects that are in close

proximity to the human’s hand at points of interaction.

While there may be frames where the human hand is

in proximity to multiple objects, we hypothesize that

the majority of the frames will solely contain the hu-

man’s intended object. Therefore, by finding the object

that most commonly appears in contact frames, we can

accurately identify the intended object (tag).

Once the object of interest is identified, we proceed

to generate its trajectory (ζoh) in the video demonstra-

tion. Utilizing our object detector, we generate bound-

ing boxes around the object’s location for all frames in

the video. With the object’s location obtained in pixel

coordinates (poxt
, poyt

), we apply the same de-projection

technique used in hand trajectory extraction and use

the depth information (δt) to translate two-dimensional

image frame coordinates into three-dimensional world

coordinates (xo
t , y

o
t , z

o
t). This process not only identifies

the manipulated object but also delineates its trajec-

tory throughout the video. Refer to Figure 3 and Algo-

rithm 2 for a summary.

Overall our extracted prior provides us with three

key pieces of information: a condensed trajectory rep-

resenting the human’s visited waypoints (ξh), a label

identifying the object of interest (tag), and a trajec-

tory indicating the object’s movement (ξoh).

8 Ananth Jonnavittula et al.

Algorithm 2 Object Trajectory Extraction

Input: Video of human interaction V

Depth information Dh

Human hand trajectory ξh

Object detection model OD

Set of Anchor boxes A

Camera intrinsic and extrinsic parameters Cc
r

Output: Object tag

Object trajectory in pixel space ζoh
Object trajectory in 3D space ξoh

1: Initialize OD

2: Initialize object count

3: for contact information ct in ξh if ct = True do

4: vt = ExtractVideoFrame(V, ct)

5: for Anchor box α in A do

6: objects = OD(α)

7: Update object count

8: end for

9: end for

10: tag = Max(object count)

11: ξoh, ζ
o
h = ExtractObjectTraj(V ,tag)

12: return ξoh, ζ
o
h, tag

13:

14: function ExtractObjectTraj(V , tag)

15: Initialize an empty lists ξh, ζh
16: for Video frame vt in V do

17: poxt
, poyt

= OD(vt, tag)

18: Append (poxt
, poyt

) to ζh
19: δot = Dh(poxt

, poyt
)

20: xo
t , y

o
t , z

o
t = Cc

r(p
o
xt
, poyt

, δot)

21: Append (xo
t , y

o
t , z

o
t) to ξoi

22: end for
23: return ξh, ζh
24: end function

4.2 Agent-Agnostic Rewards

After we get the human’s hand trajectory (ξh) from

the video demonstration, the robot executes this tra-

jectory in the environment to try and solve the task

(i.e., the human’s hand trajectory becomes the robot’s

initial trajectory). However, this trajectory almost al-

ways fails because of morphological differences and sen-

sor noise. In order to improve the initial trajectory over

repeated interactions, the robot explores around ξh to

find the correct waypoints that solve the task (see Fig-

ure 2). We will describe this exploration in detail in

Section 4.3. But before we get to the exploration, we

first need a feedback mechanism that allows the robot

to differentiate between “good” and “bad” waypoints.

More specifically, we design a reward model that com-

pares how the robot is manipulating the target object

to how the human manipulated the same object during

their video demonstration.

Our prior from Section 4.1 contains the tag identify-

ing the target object and its trajectory throughout the

demonstration video. Similarly, we can take videos of

the robot’s interactions in the environment and extract

the actual trajectory of the target object using the same

procedure. To compare the movement of the object for

the two agents, we take the mean square error (MSE)

between the corresponding waypoints in their respec-

tive trajectories. The negative of this distance serves as

our reward. For clarity, let the object trajectory from

the prior ξoh consist of waypoints (phxt
, phyt

) and the ob-

ject trajectory from the robot interaction ξor consist of

waypoints (prxt
, pryt

). Then, the reward corresponding to

each waypoint is given as:

rt = − || ωr
t − ωh

t || (1)

ωt = (pxt
, pyt

) (2)

We note that we measure the distance in pixels to mit-

igate any inaccuracies caused by transforming from the

camera coordinate frame to the robot coordinate frame.

Intuitively, our reward procedure is agent-agnostic be-

cause it does not matter who is manipulating the ob-

jects — either human or robot. We extract the object

trajectories across videos from both agents, and then

contrast those trajectories to quantify how similar the

robot’s behavior is to the human’s behavior.

4.3 Exploration for Iterative Improvement

Now that we have a metric for quantifying the robot’s

performance, we are ready to iteratively improve the

robot’s trajectory. Referring back to Figure 2, the robot

starts by executing its initial trajectory extracted from

the human’s hand movement, and then gradually im-

proves this trajectory by exploring around the trajec-

tory waypoints. A typical task entails grasping an ob-

ject and then manipulating that object in the same way

as the human. However, the robot cannot learn about

this manipulation until it has learned how to grasp the

object: the successful completion of the task is contin-

gent on the robot moving the correct object. In our run-

ning example of teaching the robot to pick up a cup, the

robot cannot succeed if it grabs the wrong object (e.g.,

picks up a plate), or if the robot does not grasp the

object securely (e.g., drops the cup). We therefore di-

vide the overall exploration into two parts: grasp, where

the robot finds the grasp location for the object, and

VIEW: Visual Imitation Learning with Waypoints 9

task, where the robot learns to imitate how the human

manipulates that object.

More formally, the initial trajectory extracted from

the human’s video consists of a set of n waypoints ξh =

{ωh
t | t ∈ [t1, t2, . . . , tn]} where each waypoint is a posi-

tion and contact tuple (x, y, z, c). Here x, y, z indicate

the 3D position of the hand and c indicates if the hand is

in contact with any objects. From this contact informa-

tion we can determine when the human grasps and re-

leases objects. For instance, let the waypoint where the

contact begins be ωh
grasp. We use this point to divide the

prior into two trajectories: ξhgrasp = {ωh
t1 , . . . , ω

h
grasp+1}

and ξhtask = {ωh
grasp+1, . . . , ω

h
tn}. Under VIEW, the robot

separately explores around these two trajectories to pick

up the object and then perform the task. Below we

discuss the robot’s exploration strategies for iteratively

improving grasp and task.

4.3.1 Correcting the Grasp Waypoint

In our first phase the robot explores around the prior

ξhgrasp = {ωh
t1 , . . . , ω

h
grasp, ω

h
grasp+1}. Although this prior

contains multiple waypoints, the primary one the robot

needs to focus on is ωh
grasp, the waypoint where it should

grasp the target object. How the robot arm reaches for

that object is irrelevant, so long as it is able to success-

fully pick up and hold the item. Accordingly, in VIEW

the robot uses the position where the human grasped

the object as a prior (i.e., ωh
grasp), and then the robot

intelligently explores around this prior to find a grasp

location that is effective for the robot arm and gripper.

Restricting the Exploration Space. We start by

defining a region around the waypoint of interest ωh
grasp

in terms of a bounding box B. This region will serve as

the area where the robot should explore. A naive ap-

proach to creating a bounding box would be to use a

limit ∆ and define the bounding box as ωh
grasp −∆ to

ωh
grasp +∆. More explicitly, we could define a range in

the robot’s coordinates with limits ∆: from (x−∆, y−
∆, z−∆) to (x+∆, y+∆, z+∆). This would create a

bounding box with the waypoint ωh
grasp at the center.

However, such a bounding box may be unnecessarily

large and span irrelevant parts of the robot workspace.

In our running example of learning to pick up a cup,

this bounding box could include part of the workspace

which is farther away from the cup, as shown Figure 4

(Top). Instead, we propose to leverage the object posi-

tion we extract from the video to bias our search space

towards that object. This leads to a more compact

bounding box and reduces the area where the robot

needs to explore. More specifically, we create a bound-

ing box B that circumscribes the waypoint ωh
grasp and

the object location ωo
grasp: the line segment between

Fig. 4 Generating a bounding box for exploring grasp lo-
cations. We define a region around the waypoint ωh

grasp =
(x, y, z) where the human first interacted with the object
in the video demonstration. (Top) A naive approach: the
bounding box is centered around ωh

grasp with limits ∆.
The principal diagonal of the bounding box is defined by
(x − ∆, y − ∆, z − ∆) and (x + ∆, y + ∆, z + ∆). (Bottom)
Our approach that leverages the estimated object location
ωo
grasp at the time of grasping to bias the search space. The

principal diagonal of the bounding box are ωh
grasp +∆ĵ and

ωo
grasp−∆ĵ, here ĵ is the unit vector parallel to the principal

diagonal and is calculated using Equation (3). This bound-
ing box is typically smaller and is more likely to include an
effective grasp location for the robot.

these two points becomes the primary diagonal of B. To
account for any sensor or model inaccuracy, we extend

the line segment on both ends by a limit ∆. Now B cir-

cumscribes the points (ωo
grasp−∆ĵ) and (ωh

grasp+∆ĵ),

where ĵ is a unit vector from ωo
grasp to ωh

grasp:

ĵ =
ωh
grasp − ωo

grasp

|| ωh
grasp − ωo

grasp ||
(3)

To see an example of this bounding box refer to Fig-

ure 4 (Bottom). Intuitively, this bounding box is a more

efficient search area because it is based on both the hu-

man’s hand position and the estimated object position.

Rewards for Grasp Exploration.Now that the robot

has an exploration region B, the robot can move to dif-

ferent waypoints inside that region to try and grasp

the object. However, when performing this exploration

a key question emerges: how can we determine if the

robot’s grasp was successful? Merely observing the ob-

ject’s location at the moment of grasping is not suffi-

10 Ananth Jonnavittula et al.

cient, as the object does not move from its initial loca-

tion until it has been both grasped and moved.

Therefore, to assess whether the robot has grasped

the desired item, we incorporate the subsequent way-

point (ωh
grasp+1) into our grasp exploration trajectory.

This allows the robot to execute a grasp at the cho-

sen location and then proceed to the next waypoint

along its initial trajectory. Throughout each round of

exploration in the environment the robot stores its end-

effector location, and we use the video camera to track

the tagged object using our detection model. Intuitively,

we can confirm that the robot has successfully grasped

the tagged object if the object is positioned close to the

robot’s end-effector at timestep grasp+1. This ensures

that the grasp’s effectiveness is measured not just by

proximity, but also by whether the robot can hold and

move the object.

Grasp Exploration. We have established where the

robot should search and how to determine if a proposed

waypoint has grasped the item. Our final step is de-

veloping a method for exploring the bounding box to

identify an optimal grasp location. This search problem

is complicated by two main challenges. First, for most

waypoints the robot does not move the object and the

rewards are constant. Put another way, we have sparse

rewards. Second, if the robot reaches a waypoint that is

close to the object it may accidentally knock the object

over or otherwise lower its measured rewards. Hence,

waypoints that are actually close to a successful grasp

could be penalized by the reward model.

Returning to our cup example, consider a scenario

where the robot receives a baseline reward of +10 at

waypoints that don’t involve moving the cup. If the cup

is supposed to be moved left as per the human’s video

demonstration, and the robot picks a point that hits the

cup and moves it to the right, the reward might drop

to +5. Conversely, moving the cup correctly to the left

might increase the reward to +15. In both cases, the

robot has gained valuable information: the chosen way-

point interacted with the object and may be near to

a successful grasp location. This variation in rewards

— regardless of whether the reward is increasing or

decreasing — helps to pinpoint the object’s location

within the search space B.
Put together, the sparse rewards at grasp locations

and locally varying rewards around those locations make

it difficult for the robot to efficiently optimize for suc-

cessful grasps. We therefore propose a quality-diversity

(QD) approach for intelligently searching the space B.
Our proposed QD algorithm is broken into a high-level

search — which divides B into regions of interest —

and a low-level search — which explores within those

regions to pinpoint a successful grasp location. We sum-

marize this overall method in Algorithm 3.

High-Level Grasp Exploration. We first discretize the

bounding box B into a set of regions for the robot

to explore. To obtain these regions we use Centroidal

Voronoi Tessellation (CVT) [74]: we numerically sam-

ple a large number of points inside B, and then use

k-means to group these sampled points into M clus-

ters. In practice, these clusters provide M regions that

are equally spread across the bounding box B. Within

our high-level exploration process the robot will deter-

mine which of these clusters are of interest — i.e., which

clusters could contain a successful grasp location — for

more targeted low-level optimization.

Let the centroids of the high-level clusters form a

discrete set of potential waypoints: Ωunvisited = {ω ∀i =
1, 2, . . .M}. With no additional information to differ-

entiate them, all centroids are considered equally likely

grasp locations. A straightforward method to select way-

points would be to uniformly sample from this set of

univisited centroids (Ωunvisited). However, random sam-

pling from a uniform distribution may lead to waypoints

that are close to previously tested centroids (see Fig-

ure 5 Top). We therefore propose a sampling strategy

for selecting waypoints from Ωunvisited that encourages

the robot to visit previously unexplored parts of the

bounding box B.
Under our approach the robot reasons over previ-

ously attempted centroids to select a new high-level

waypoint that is different from the ones it has already

tested. This can be achieved by choosing a waypoint

from the unvisited centroids (Ωunivisted) that maximizes

the distance from already visited waypoints (Ωvisited).

Mathematically, we optimize the selection of the next

waypoint as follows:

ωnext = argmax
ω∈Ωunvisited

D(ω,Ωvisited) (4)

D(ω,Ωvisited) =
1

k

∑
ωj∈Nk

i

|| ω − ωj || (5)

Here D(ω,Ωvisited) represents the mean distance be-

tween each unvisited waypoint in Ωunvisited and all the

waypoints in the visited set Ωvisited. To tractably han-

dle the potentially large number of centroids, we ap-

proximate this distance using the k-nearest neighbors

(Nk
i) of each unvisited waypoint ω.

Unfortunately, only maximizing the mean distance

to all visited waypoints introduces a potential issue:

a waypoint might be very close to one visited way-

point but far from others, resulting in a high mean dis-

tance that does not truly reflect diversity (see Figure 5

Middle). To address this, we introduce a constraint to

VIEW: Visual Imitation Learning with Waypoints 11

Fig. 5 Comparison of different sampling methods in our high-level grasp exploration. We show an example task in a two-
dimensional space which is bounded around the prior (black triangle) and the object (green star). (Top) Each new high-level
waypoint point is uniformly randomly sampled from our set of unvisited waypoints. This method can eventually reach the
object with sufficient exploration. However, new samples my be close to previously tested points. (Middle) To quickly reduce
the uncertainty about the unknown object location, we can sample high-level waypoints that maximize the distance to all
previously visited waypoints. We expect that these waypoints will explore new regions of the search space. In practice, however,
the distance-based estimation from Equation (5) results in points that are clustered at the corners and center. (Bottom) Our
proposed solution is to add a regularizing term in Equation (6) to ensure that the next high-level waypoint is truly from an
unexplored region of workspace. Our experiments show that this approach finds the grasp location more rapidly.

our optimization criteria, ensuring that the new sam-

pled waypoint is equidistant from all the waypoints in

Ωvisited. This constraint acts as a regularizer in our ob-

jective. We now calculate the distances between each

unvisited waypoint and all visited waypoints:

Θi =|| ωi − ωj || ∀ωj ∈ Ωvisited

Θ = {Θi ∀ωi ∈ Ωunvisited}

We then compute the variance of these distances to

enforce equidistance:

ν(Θi) =
|| dji − d̄i ||

| Θi |
dji =|| ωi − ωj || ∀ωj ∈ Ωvisited & ωi ∈ Ωunvisited

ν(Θ) = {ν(Θi) ∀ωi ∈ Ωunvisited}

Our high-level exploration method, therefore, chooses

waypoints that optimize the following:

ωnext = argmax
ω∈Ωunvisited

D(ω,Ωvisited) +
1

ν(Θ)
(6)

This optimization ensures that the selected waypoint

from Ωunvisited maximizes distance from all waypoints

in the set while attempting to be equidistant with the

waypoints in Ωvisited (see Figure 5 Bottom). In practice,

the robot selects a high-level waypoint from Ωunvisited

using Equation (6), and then executes a trajectory in

the environment that attempts to grasp the object at

that waypoint. We use the reward model from Equa-

tion (1) to assess the performance of this grasp.

Low-Level Grasp Exploitation. So far we have estab-

lished a method for the robot to divide the bound-

ing box B into equally distributed waypoints. As the

robot iteratively executes trajectories that reach these

high-level waypoints, it obtains rewards using Equa-

tion (1). At visited waypoints where the measured re-

ward varies — either increasing or decreasing — the

robot may be close to an optimal grasp location. Ac-

cordingly, our next step is to employ a local, low-level

search algorithm to explore the regions around promis-

ing high-level waypoints, and fine-tune these waypoints

to eventually perform a successful grasp.

Our first step in this process is determining which

of the high-level waypoints the robot should explore

around. Intuitively, we are interested in waypoints where

the robot’s measured reward has varied, since at these

waypoints the robot must be interacting in some way

with the target object. We therefore sample from the

visited high-level waypoints in proportion to how much

the robot’s reward has varied at these waypoints. More

specifically, we sample a waypoint ωlocal from Ωvisited

with the probability distribution:

pi =
eγσi∑
eγσj

(7)

12 Ananth Jonnavittula et al.

Algorithm 3 Grasp Exploration

Input: Prior trajectory of grasping ξhgrasp
object location in robot coordinates ωo

1: Initialize δ, ϵ, pexplore
2: Initialize flag local = False

3: Initialize an empty list Ωr
visited

4: Get the point where human grasps the object ωh
grasp

from prior ξhgrasp
5: Calculate unit vector using Equation (3)

6: Define bounding box B that circumscribes the

points ωo
grasp −∆ĵ and ωh

grasp +∆ĵ

7: Sample random points from B and initialize the set

Ωr
unvisited = K-Means(points)

8: Initialize Bayesian optimizer BO

9:

10: function Ask

11: Generate p from uniform distribution [0, 1]

12: if p < pexplore then

13: Sample high-level waypoint ωr from

Ωr
unvisited using Equation (6)

14: Change flag local = False

15: return ωr

16: else

17: Sample high-level waypoint from Ωr
visited

with probability distribution from Equation (7)

18: Start low-level search by defining a bounding

box around this waypoint with limits ϵ

19: Query BO for ωr

20: Change flag local = True

21: return ωr

22: end if

23: end function

24:

25: function Tell(ωr
i , Ri)

26: if local then

27: Update BO with ωr
i , Ri

28: else

29: Remove ωr
i from Ωr

unvisited

30: Add (ωr
i , Ri) to Ωr

visited

31: end if

32: end function

33:

34: while grasp is not successful do

35: Sample a waypoint ωr = Ask

36: Execute trajectory ξr =

37: {ωr
t1 , ω

r
t2 , . . . ω

r, ωr
grasp+1}

38: Get the reward R using Equation (1)

39: Inform the explorer Tell(ωr, R)

40: end while

where the denominator is summed across all visited

waypoints, and σi is the normalized variation in reward

between the high-level waypoint i and the reward R0

from the initial trajectory:

σi =
|| Ri −R0 ||

maxj || Rj −R0 ||
(8)

In practice, using Equation (7) causes the robot to bias

its low-level search towards the high-level waypoints

that produced the largest changes in reward.

Once the high-level waypoint the robot wants to

explore is selected, our next step is leveraging a local

search procedure to identify the optimal grasp loca-

tion within the region around that waypoint. Note that

during the high-level search we are looking for regions

that cause changes in reward; by contrast, within this

low-level search we are purely trying to maximize the

robot’s reward. Here we can use existing optimization

algorithms such as Bayesian optimization (BO)1 [70].

We start by defining a smaller bounding box Blocal ⊂ B
around the sampled high-level waypoint ωlocal with dis-

tance ϵ. This bounding box covers the region of interest

around centroid ωlocal. BO then optimizes the reward

function within this region by sampling waypoints ωopt

from Blocal. If the sampled waypoint gets a higher re-

ward than ωlocal, we substitute ωopt into Ωvisited.

Trading-off Between High- and Low-Level Search. Our

overall exploration process for identifying a successful

grasp trades-off between testing new high-level way-

points from Ωunvisited and then exploiting the regions

around relevant waypoints from Ωvisited. We balance

this exploration of new regions and exploitation of sam-

pled regions using probability pexplore. Looking at Algo-

rithm 3, with probability pexplore we test an Ωunvisited

waypoint, and rollout a trajectory in the environment

that includes that waypoint. Similarly, with probability

1−pexplore the robot executes a trajectory that explores

the region around a waypoint from Ωvisited. This search

process ends once the robot identifies a waypoint that

successfully grasps the target item.

In summary, grasp exploration works in a hierar-

chical manner. First the robot conducts a broad search

across the bounding box B by dividing it into M evenly

distributed high-level waypoints. The robot then con-

ducts a more refined search in the vicinity of waypoints

that are potentially close to the object — i.e., way-

points that incur a high variation in reward. Overall,

our grasp exploration approach has similarities to the

QD algorithm CMA-ME [16]. The primary novelty of

1 VIEW is not tied to a specific local optimization algo-
rithm. While we use BO in our experiments, it can be replaced
with any other optimizer.

VIEW: Visual Imitation Learning with Waypoints 13

our approach as compared to [16] is the sampling tech-

nique used for selecting the high-level waypoints. While

CMA-ME relies on randomness to select a point from

Ωunvisited, we propose a regularized entropy metric for

selecting points that are evenly spaced across the search

space. In Figure 5 we show an example of why this high-

level sampling approach is important, and how our pro-

posed approach can more rapidly identify the grasp lo-

cation. We also test this difference in our experiments.

4.3.2 Correcting the Task Waypoints

Once the robot has grasped the target object, it can

now proceed to replicate how the human manipulated

that object in the demonstration video. This process is

more straightforward than identifying the correct grasp

because here the rewards are dense: any change in the

way the robot moves the object will lead to a change in

the object’s position, and therefore a change in the mea-

sured rewards from Equation (1). Accordingly, we can

use off-the-shelf optimization methods to iteratively im-

prove the waypoints along the initial trajectory ξhtask =

{ωh
grasp+1, . . . , ω

h
tn} after the robot has learned to suc-

cessfully grasp the target item.

Similar to our approach for grasp optimization, we

start by drawing bounding boxes B around each way-

point in ξhtask. Here it is important to remember that the

reward function from Equation (1) is the distance be-

tween the object position in the human’s video demon-

stration and the object position in the robot’s task ex-

ecution. Hence, the rewards associated with each way-

point are independent, and the robot can simultane-

ously explore and improve each task waypoint without

affecting the results across other task waypoints. We

therefore conduct n−grasp search processes in parallel,

one for each waypoint from ωh
grasp+1 to the final way-

point ωh
tn . Let us denote the robot’s updated trajectory

as ξrtask = {ωr
grasp+1, . . . , ω

r
tn}. To find an optimal way-

point ωr, the samples a point within the correspond-

ing bounding box and then rolls-out a trajectory that

moves through that point in the environment. Here we

use Bayesian optimization (although other methods are

possible): for each ωr
t ∈ ξrtask, a separate instance of BO

updates the robot’s waypoint to better match the video

demonstration. See Algorithm 4 for a summary.

4.4 Residual Network

The process we have described so far in Section 4 en-

ables the robot to learn a task from a single video. This

spans compressing the video to extract a prior trajec-

tory and reward function, as well as exploring those tra-

jectory waypoints to improve the object grasping and

Algorithm 4 Task Exploration

Input: Prior trajectory of task ξhtask
1: Define bounding box for each waypoint ωr ∈ ξrtask
2: Initialize a separate Bayesian optimizerBO for each

waypoint in task

3:

4: function Ask

5: Initialize an empty list ξrtask
6: for ωh

i ∈ ξhtask do

7: Query BO for ωr
i

8: Add ωr
i to ξrtask

9: end for

10: return ξrtask
11: end function

12:

13: function Tell(ξrtask, R)

14: for i = 1, . . . , n do

15: Update corresponding BO with ωr
i ∈

ξrtask, Ri ∈ R

16: end for

17: end function

18:

19: while task is not successful do

20: Sample trajectory ξrtask = Ask

21: Execute trajectory ξrtask in environment

22: Get the reward R for each waypoint in the tra-

jectory using Equation (1)

23: Inform the explorer Tell(ξrtask, R)

24: end while

manipulation. But when the robot gets a new video

demonstration for a different task, we are faced with

the question: does the robot need to restart VIEW from

scratch, or can the robot leverage what it has learned

on one task to accelerate learning on another task? Here

we return to our example of learning to pick up a cup.

Initially the robot is given a video of the human per-

forming the task, which the robot compresses to extract

an initial trajectory ξh. This trajectory is often wrong

(e.g., misses the cup), and so the robot iteratively im-

proves that trajectory during exploration to eventually

reach a successful trajectory ξ∗ (that grasps and lifts

the cup). At this point we can compare the initial tra-

jectory ξh to the final trajectory ξ∗ — instead of ex-

tracting ξh, an ideal robot should have extracted ξ∗.

We propose to use this error between initial and final

trajectories to improve the accuracy of the robot’s prior.

Our underlying hypothesis is that the sources of error

are constant between tasks: e.g., any sensor inaccura-

cies, model misalignment, or morphological differences

are approximately constant from one video demonstra-

tion to another. More formally, we treat these errors as

14 Ananth Jonnavittula et al.

Fig. 6 Task demonstrations used in our simulations. (Top) During Pick the robot is teleoperated to pick up a cup placed
on the table. (Middle) During Push the robot is teleoperated to grasp the cup and push it to a new specified location on the
table. (Bottom) During Move the robot picks up the cup and places it at a specified new location on the table. In our ablation
studies examining the effects of noise, trajectory compression, and exploration techniques, we utilize a single demonstration
that is then perturbed using Gaussian noise. For assessing the influence of residual learning in our final simulation, we uniformly
sample start and end points for each task and collect teleoperated demonstrations accordingly. These demonstrations are then
perturbed using a deterministic noise function. We compile a dataset of 50 demonstrations for each task, either by introducing
Gaussian noise to a single trajectory or by generating 50 distinct trajectories through uniform sampling.

an additive noise, so that the final trajectory ξ∗ is equal

to the initial trajectory plus this error: ξ∗ = ξh + η.

To de-noise the prior extraction process we propose

to train a residual network across the data from pre-

viously solved tasks. Given a dataset of k previously

solved tasks D = (ξhk , ξ
∗
k), we train a model to esti-

mate the noise η. More specifically, we train a residual

Φ(ξh) = η to minimize the loss ∥ξ∗−ξh+Φ(ξ)∥2 across

the dataset. The robot then deploys this residual when

it receives the k + 1 video demonstration. The robot

starts by compressing the new video using the steps

from Section 4.1 to get ξhk+1; we then add the residual

Φ(ξhk+1) to push this prior towards the correct trajec-

tory. In practice, we will show that the residual can im-

prove the accuracy of the prior and reduce the number

of iterations the robot needs to learn new tasks.

4.5 Incorporating Multi-Object Scenarios

Our discussions thus far have dealt with scenarios where

the human interacts with a single object. However, many

real-world manipulation tasks involve handling multi-

ple objects. For example, when making tea the human

might carry a cup to a specific location, and then pick

up and pour tea from a kettle into the cup.

The proposed method VIEW readily adapts to such

multi-object scenarios. Recall that our prior extraction

process outputs a hand trajectory, providing the wrist

location and contact information throughout the video.

VIEW: Visual Imitation Learning with Waypoints 15

We can use the changes in the contact information to

divide long trajectories — involving multiple objects

— into distinct sub-trajectories for each subtask. Each

subtask then involves interaction with only one object,

which we can solve using the algorithms described above.

Consider the example of making tea. By segmenting

the trajectory at points where contact changes, we can

create separate, manageable segments: one for moving

the cup and another for pouring the tea. Each subtask

is then solved separately using our algorithm, which in-

cludes dividing each individual subtask into grasp and

task phases and solving them using our methods in

Section 4.3.1 and Section 4.3.2. For example, we first

address the cup’s movement, and once complete, pro-

ceed to handle the kettle in a similar manner 2.Overall,

this modular strategy allows the robot to systemati-

cally learn long, multi-step tasks with visual imitation

learning by concentrating on one subtask at a time.

5 Simulations

We proposed VIEW, a waypoint-based algorithm that

can imitate humans by watching video demonstrations.

Our algorithm is comprised of three main parts: ex-

tracting a useful prior, exploring around this prior, and

learning a residual from previously solved tasks. We

hypothesize that each of these components will signifi-

cantly impact the overall success of the robot. To test

this hypothesis, in this section we conduct an ablation

study that investigates how each part of VIEW con-

tributes to the overall robot performance. We perform

these experiments using a simulated robot arm and a

simulated human demonstrator.

Experimental Setup. The simulations are conducted

in a Pybullet environment. To collect demonstrations,

we move a simulated FrankaEmika robot arm and record

frames at the rate of 20Hz. Demonstrations are col-

lected for three tasks: picking up an object (pick), push-

ing an object (push), and picking and placing an object

(move). A single object (a cup) is used for all evalua-

tions (See Figure 6). To condense trajectories for each

task, the robot executes the demonstration in the simu-

lated environment and then compresses the demonstra-

tion to extract an initial trajectory (see Section 4.1).

For the push and pick tasks, this initial trajectory has

three waypoints after compression, while the move task

yields four waypoints. To simulate real world condi-

tions, we distort these initial trajectories using either

Gaussian noise or a fixed noise matrix. The robot then

follows the exploration procedure laid out in Section 4.3

2 See https://collab.me.vt.edu/view/ for videos show-
casing VIEW learning these multi-object tasks.

Fig. 7 Simulation results demonstrating the impact of noise
on our algorithm. We test VIEW on three tasks — pick, push,
move. For each task we collect the true initial trajectory,
and then add Gaussian noise to distort that trajectory. This
captures scenarios where the robot’s prior is incorrect (e.g.,
misses the cup entirely), and the robot must explore around
this prior to imitate the demonstrated task. Our results are
shown across 50 trials. The shaded region in the top plot in-
dicates less than 20 minutes of learning time to successfully
imitate the task. The shaded region in the bottom plot indi-
cates more than 80% success rate. The bars indicate standard
error of the mean.

to explore around the distorted trajectory and tries

to solve the task. To understand our algorithm’s per-

formance in ideal conditions, no noise is injected into

the reward function. The success criteria vary slightly

between tasks: for pick, success means the robot has

picked up the cup; for push, it is successful if it pushes

the cup to the correct location; and for move, success

requires the robot to pick up the cup and place it at

the correct location on the table.

5.1 Impact of Noise

In our first simulation, we study how noise in the ex-

tracted prior influences our algorithm’s capability to

converge to the correct behavior. Here increasing noise

means that the robot’s extraction of the human’s hand

trajectory is farther from the actual trajectory that the

human followed in their video. Given the variable na-

ture of deviations between the prior and ground truth

— which can be significant and unpredictable depend-

https://collab.me.vt.edu/view/

16 Ananth Jonnavittula et al.

Fig. 8 Simulation results examining the impact of trajectory compression. Within VIEW we compress the prior trajectory to
minimize the number of waypoints while maximizing the accuracy of the compressed trajectory. We compare this method with
an alternative approach in which the prior is sampled at a lower frequency to limit the number of points in the trajectory. We
vary the sampling frequency of the prior trajectory to be 5Hz, 10Hz, or 20Hz. The plot on the left shows the average number
of rollouts it takes to learn each task over 50 trials, and the shaded region indicates less than 20 minutes of training time. The
plot on the right shows the success rate for each task across 50 trials, and the shaded region shows a success rate higher than
80%. The bars indicate standard error of the mean.

ing on the physical setup — we want to ensure that

our exploration strategy remains effective even in the

presence of an incorrect initial trajectory.

To simulate an incorrect prior, we distort the correct

initial trajectory by adding Gaussian noise. We analyze

the impact of this noise across all three tasks: pick,

push, and move. For each task we carry out a series

of 50 trials: at each trial, we apply distortions sampled

using Gaussian noise to the collected demonstration.

These distorted demonstrations then become the initial

trajectory ξh that our robot needs to correct to solve

the task. Since this simulation is designed to isolate the

impact of noise on our exploration scheme, we do not

include the residual network during these trials.

Our findings (refer to Figure 7) reveal that VIEW

can use exploration to overcome an incorrect prior. Specif-

ically, for noise variance between 0.05m and 0.15m, the

robot is able to successfully imitate the simulated hu-

man demonstration in almost 100% of the trials. How-

ever, as the prior is distorted farther away from the

correct trajectory, the performance of VIEW eventu-

ally decreases. At a noise variance of 0.2m we observed

a notable decrease in the success rate. This observation

aligns with our expectation that larger distortions lead

to longer search times, potentially resulting in time-

outs before solutions are found. This pattern is also

evident in the number of exploration rollouts required

for convergence: in general, the more noise in the prior

the more exploration rollouts the robot needed to cor-

rect its waypoints. Finally, we note that the number

of waypoints can impact performance: tasks involving

more waypoints (move) generally required more roll-

outs than tasks with fewer waypoints (pick and push).

In practice, this simulation suggests that VIEW’s ex-

ploration steps are critical to success, and the robot can

use exploration to overcome errors in its initial guess of

the correct trajectory.

5.2 Impact of Trajectory Compression

In our second simulation we assess the importance of

trajectory compression within our algorithm. In Sec-

tion 4.1 we outlined an optimization approach for iden-

tifying a small set of waypoints that capture the hu-

man’s demonstration. However, simpler methods for com-

pression are also possible: for instance, we could simply

sample the demonstration at a reduced rate, and use

the sampled points as the initial trajectory (e.g., down-

sample the video every 100 frames). Here we compare

the impact of this alternative method against our com-

pression algorithm.

To generate these alternative compressions, we first

distort the correct initial trajectory using a noise vari-

ance of 0.15m. We then resample this modified demon-

stration at a fixed sample rate. We tested sampling

rates from 20Hz to 5Hz. Our original demonstrations

comprised approximately 40 waypoints: hence, the com-

pression could range from 40 waypoints at the highest

sampling rate to 10 waypoints at the lowest sampling

rate. We did not sample lower than 10 waypoints using

a fixed sampling rate because this caused the trajectory

to skip critical waypoints, such as the pick point. Sim-

ilar to the previous subsection, we assessed the impact

VIEW: Visual Imitation Learning with Waypoints 17

Fig. 9 Simulation results examining how separating the waypoints into grasping and manipulation phases affects performance.
Under VIEW the robot autonomously splits the task into separate parts: first the robot learns to grasp the object, and then it
learns how to manipulate that object and complete the task. We compare this division against a unified approach that solves
the entire task simultaneously. We measure the average number of rollouts taken to solve the task (Left) and the success rate
(Right) over 50 trials. The shaded regions indicate less than 20 minutes of training time and over 80% success rate, respectively.
The bars indicate standard error of the mean.

of compression using the success rate and the number

of rollouts required for convergence across 50 trials.

Our results, depicted in Figure 8, provide two im-

portant outcomes. First, as the number of waypoints in

the robot’s trajectory increases (higher sampling rate),

the number of rollouts required for convergence also

rises. This suggests that compression is indeed impor-

tant — we can accelerated the robot’s visual imitation

learning by focusing on a smaller number of waypoints.

Second, using simplistic compression algorithms that

down-sample the demonstration at a fixed rate perform

worse than our VIEW approach. The key difference here

is that sampling at a fixed rate may cause the robot

to miss a critical point along the demonstration (such

as the frame where the human grasps the cup). Using

VIEW, the robot minimizes the number of waypoints,

while also ensuring that those waypoints retain critical

aspects of the demonstration.

5.3 Impact of our Exploration Approach

In our third simulation we delve into the choice of ex-

ploration strategies. In particular, we study whether

splitting the task into separate parts for grasping and

manipulation is necessary. In Section 4.3 we developed

separate exploration schemes for each of these phases,

with the rationale that the robot must first learn to

grasp the object before it can imitate the rest of the

human’s demonstration. While we discussed the rea-

sons behind this approach in Section 4.3, we now aim

to empirically assess its effectiveness.

As an alternative to our proposed method of task

segmentation, we examine the performance of a unified

optimization approach. This baseline does not separate

the task into grasp and manipulation phases; instead,

it performs Bayesian Optimization [70] to de-noise the

entire trajectory. We maintain the noise level at 0.15m,

and evaluate success rates and convergence rollouts for

all 50 trials, similar to our previous simulations.

The outcomes of this experiment are depicted in

Figure 9. As anticipated, we observe a substantial re-

duction in success rates when the waypoints are not

split into grasping and manipulation phases. The high-

est success rate achieved without splitting is approxi-

mately 70% for the push task, whereas our segmented

approach with VIEW achieves a minimum of 92% on

the same task. VIEW also decreases the number of en-

vironmental rollouts required for convergence. Finally,

we noticed that these results are impacted by the num-

ber of waypoints in the trajectory. For instance, in the

move task — which has four waypoints instead of the

three in pick and push — the success rate of the base-

line approaches zero. These results indicate that forgo-

ing waypoint segmentation during exploration not only

leads to inferior performance, but also fails to scale ef-

fectively with an increasing number of waypoints.

5.4 Impact of Residual

In our final simulation, we move beyond learning a sin-

gle task, and explore how VIEW performs across mul-

tiple tasks. Specifically, we test how the residual net-

work from Section 4.4 can accelerate the robot’s learn-

ing on one task given that the robot has previously

solved other tasks in the same environment. We con-

18 Ananth Jonnavittula et al.

Fig. 10 Simulation results for VIEW with and without the residual. We examine if the robot can utilize previous experiences
to more rapidly imitate new tasks. In this simulation we sample 50 random locations from the robot’s workspace and their
corresponding distortions from a noise matrix (Equation (9)). We then use these samples to train a residual network that de-
noises the distorted prior. The plots above compare the performance of our approach with and without the usingthis residual.
(Left) The number of rollouts taken to solve the task averaged over 50 trials. We also list the percentage decrease in rollouts
when the residual is present. (Right) The success rate for each task. The bars indicate standard error of the mean.

trast this to our previous simulations, where each new

task or demonstration was approached from scratch.

In the previous simulations we employed Gaussian

noise and sampled various distortions for a fixed cup lo-

cation. This is not feasible here because repeatedly sam-

pling from a Gaussian distribution would cause the en-

vironmental noise to be inconsistent. Put another way,

a given xyz coordinate could be distorted in different

ways between each task; this inconsistency would not

match realistic conditions. Instead, real-world noise fac-

tors — such as the de-projection inaccuracies and mor-

phological differences — impose a consistent offset at

each waypoint. To better simulate these real-world con-

ditions, we introduce a nonlinear noise matrix to distort

the robot’s entire workspace:

η = tanh
ξ − C
λ

(9)

We utilize tanh to introduce distortions into the trajec-

tory waypoints, adjusting their positions based on their

proximity to a centroid (C). The degree of distortion

is modulated by the regularizer λ. This noise is then

added to the demonstration to get a distorted initial

trajectory ξh. We adjust the location of C and the value

of λ to ensure that the distortions range from 4cm to

30cm across all waypoints. To mitigate against any bias,

we do not use a fixed cup location; instead, we sample

the cup’s location from a uniform distribution across

the table, and then collect demonstrations for each task:

pick, push, and move. We gather a total of 50 random

demonstrations from the environment, each distorted

via the noise matrix, to form our dataset. Specifically,

our dataset D for training the residual consists of 50

pairs of initial trajectories ξh and their corresponding

ground truths ξ∗. Our algorithm’s performance — with

and without the integration of the residual network —

is then evaluated across 50 new and unexplored cup

locations for each task.

Our results are illustrated in Figure 10. Across all

tasks, VIEW with the residual demonstrated the abil-

ity to few-shot learn new object locations. We observed

a reduction of over 40% in the number of rollouts re-

quired for the robot to learn each task. Indeed, VIEW

with the residual network needed fewer than 10 trials

on average to learn the correct behavior from distorted

input trajectories. These results suggest that VIEW is

not only effective when learning from scratch; we can

also leverage the tasks that VIEW learned across pre-

vious video demonstrations to accelerate learning on a

new video demonstration in the same workspace.

6 Experiments

In the previous section we explored the components of

VIEW through an ablation study in a simulated envi-

ronment. In this section we now test our overall method

in the real-world with human video demonstrations.

We start by collecting video demonstrations for vari-

ous tasks such as picking up a cup or moving a basket.

We then apply VIEW to extract the human hand and

object priors from these videos (see Figure 12), and ex-

plore waypoints around these priors while repeatedly in-

teracting with the environment until the robot success-

fully imitates the task. To see videos of these demon-

strations and VIEW’s learning process, visit: https:

//collab.me.vt.edu/view/

https://collab.me.vt.edu/view/
https://collab.me.vt.edu/view/

VIEW: Visual Imitation Learning with Waypoints 19

Grasp Task

P
u

sh
P

ic
k

M
o

v
e

tag: Mug

tag: Apple

tag: Bleach

Fig. 11 Manipulation tasks from our experiments. People (including the authors and external participants) provided video
demonstrations of three fundamental skills necessary for more complex tasks [47]: push, pick, move. Here we show examples
frames where VIEW detected the human hand and the intended object, i.e., the object human is interacting with. VIEW used
these frames to extract a prior trajectory for the human hand and object (also see Figure 12).

Tasks. Our real-world tasks span different skills and

objects. We focus on three primitive skills — push, pick,

move — since these primitive skills are fundamental

across manipulation tasks [47]. A full list of the ob-

jects used in our experiments is found in the Appendix:

these objects include household items such as foods,

cups, and containers. We start with simple tasks where

the robot must learn to push, pick, and move objects

in Uncluttered environments where no other items are

present. Next, we provide video demonstrations in Clut-

tered settings with multiple objects, and the robot must

learn to imitate the demonstrated task despite this en-

vironmental clutter.

In Uncluttered tasks we test the three fundamental

skills. Push: the robot must reach for the object and

push it to a randomly assigned goal position; Pick: the

robot must learn how to pick up an object; and Move:

the robot must reach for an object, pick it up, and place

it at a randomly assigned goal location. Figure 11 shows

a demonstration for each skill.

In Cluttered tasks we test only the Move skill: here

the robot must reach for and move the correct object

while avoiding and ignoring the environmental clutter.

Different objects may be placed close together in the

environment to visually saturate the robot’s camera or

constrain the grasp locations for the target item.

Our method can scale to arbitrarily long tasks that

involve manipulating multiple objects, as shown in our

supplemental videos. However, for the purposes of this

experiment, we only focus on single object manipula-

tion tasks. Our primary aim is to test VIEW’s abil-

ity to imitate manipulation tasks from a single video

demonstration, and to compare VIEW to relevant base-

lines. As discussed in Section 4.5, we can use changes

in the contact information to segment a demonstration

that involves handling multiple objects into a sequence

20 Ananth Jonnavittula et al.

of single object manipulation tasks. Hence, by explor-

ing VIEW’s performance on single object manipulation

tasks, we obtain fundamental knowledge about the ef-

fectiveness of our proposed method.

Baselines. The primary baseline in our experiments is

WHIRL [3], a state-of-the-art method for visual imi-

tation learning from human demonstrations. However,

the version of WHIRL implemented in our experiments

differs in one way from the method described by [3].

Within the original work, WHIRL calculates rewards

by comparing agent-agnostic representations of the hu-

man demonstration and robot interaction (similar to

VIEW). WHIRL finds this agent-agnostic representa-

tion by inpainting the human and the robot from the

videos using Copy-Paste Networks [34], and then using

the action-recognition model of [44] to calculate its rep-

resentation. But in our experiments we found that the

Copy-Paste networks could not successfully inpaint the

robot, despite careful fine-tuning on a custom dataset
3. Accordingly, to create a fair comparison, we replaced

the original reward model in WHIRL with our object-

centric reward model from Section 4.2. We believe this

is a reasonable change because our reward model ac-

tually provides more explicit feedback: it directly com-

pares the movement of the target object across videos,

rather than comparing a high-dimensional action rep-

resentation as done in [3]. The rest of the WHIRL al-

gorithm matches the original manuscript.

Our other experimental baselines are ablations of

our approach. At one extreme we have Prior, a method

that extracts the human hand trajectory from the video

demonstration and then replays that trajectory on the

robot arm. This corresponds to VIEW without any ex-

ploration or residual. In practice, Prior will only suc-

ceed if the initial trajectory the robot extracts is suffi-

cient to successfully imitate the task. At the other ex-

treme we tested ours-BO, an ablation of VIEW that

leverages a different exploration scheme. Recall from

Section 4.3 that VIEW divides exploration into two

phases: learning to grasp and then matching the hu-

man’s behavior. When learning to grasp we proposed

a QD algorithm with high-level and low-level searches.

ours-BO is a variant of VIEW that does not use this

QD algorithm: instead, the robot employs Bayesian Op-

timization to separately identify the grasp and match

the human’s behavior. Finally, when the robot is learn-

ing multiple tasks, we also test ours-residual. This

is our full VIEW algorithm that leverages previously

solved tasks to improve its prior extraction.

Experimental Setup and Procedure. Experiments

were conducted on a Universal Robots UR10 manip-

3 See the Appendix for more detailed analysis

Push

ξh hand trajectory) ξoh object trajectory

Pick Move

Fig. 12 Examples of the prior extracted from the human
video demonstrations. Our method outputs how the human
hand moves (ξh) and how the object moves (ξoh) throughout
the video. Each trajectory is compressed such that it only
consists of waypoints that mark significant changes in the
motion (like change in direction, change in contact, etc.).

ulator with 6 Degrees-of-Freedom. The human’s video

demonstrations were recorded with a RealSense D435

RGB-D camera at 60 frames per second. We also recorded

the robot’s interactions with the environment as it it-

eratively tried to imitate the demonstrated behavior.

Note that we used the same camera angle for recording

the human demonstrations and the robot interactions.

We recorded a single human video demonstration

per task. Overall, we collected 13 video demonstrations,

where 9 were in Uncluttered environments and 4 were in

Cluttered environments. For the Uncluttered tasks the 9

total demonstrations were divided into 3 videos for each

skill — move-uncluttered, pick-uncluttered, and push-

uncluttered. The 4 videos in four different Cluttered en-

vironments all demonstrated the same skillmove-cluttered.

We conducted three trials on the robot for every demon-

stration, totalling 39 trials per method.

Between each trial Prior, WHIRL, and ours all

reset and then learned the new task entirely from scratch.

Put another way, even if the robot had learned to pick

up a cup in the previous trial, the robot discarded that

successful trajectory when starting the next trial. Here

ours-residual was the exception: after we trained ours

on the Uncluttered tasks, we used the data from these

solved tasks to train our residual policy. We then tested

ours-residual on the four Cluttered tasks and com-

pared its performance to ours (i.e., our VIEW algo-

rithm without including the residual).

6.1 Results

Uncluttered Tasks. The results from our experiments

on Uncluttered tasks are shown in Figure 13. These

plots display the results across the two phases of each

task: the success rate for learning to grasp the object,

and the success rate for learning to correctly manipu-

VIEW: Visual Imitation Learning with Waypoints 21

Fig. 13 Experiment results for Uncluttered tasks. (Left) How frequently the robot grasped the object from the human’s video
demonstration. (Right) How frequently the robot learned to imitate the human’s video demonstration. Results are calculated
across 9 separate video demonstrations and 3 trials per video demonstration. Note that the results for pick are the same in
both grasping and task exploration, since here the objective is just to pick up (i.e., grasp) an item.

late that object. The robot is said to have “succeeded”

if it was able to pick up the object and approximately

imitate the human. For instance, in a moving task a

successful grasp would mean that the robot held the

object without dropping it. The definition of successful

task completion varied between the different tasks: for

move-uncluttered, the task was considered a success if

the robot placed the object close to the same location

as the human. In Pick-uncluttered, the robot was suc-

cessful it if grasped the target object and lifted it off the

table, while in push-uncluttered, the robot successfully

completed the task if it pushed the item to the human’s

demonstrated location.

We notice that simply replaying the trajectory that

the robot extracted from the human’s video demonstra-

tion was never successful. Across all tasks, Prior was

not able to either grasp or manipulate the target ob-

ject. The state-of-the-art visual imitation learning base-

line WHIRL was more effective, particularly in learn-

ing to grasp the target item. But our proposed VIEW

algorithm surpassed this baseline, reaching more than

twice the success rate of WHIRL for the push task and

achieving a 100% success percentage in the pick task.

For push-uncluttered and move-uncluttered, WHIRL

was able to grasp the target object in some trials, but it

did not learn to correctly manipulate that object within

the limit of 100 rollouts in the environment (roughly 45

minutes). For these same tasks our VIEW algorithm

reached an 80% success rate, learning to replicate the

human’s video demonstrations in less than 30 minutes4.

Finally, we compared the performance of ours-BO

and ours. Across the board, we found that ours-BO

is less effective at visual imitation learning than our

full VIEW algorithm, and in the pick-uncluttered envi-

ronment this baseline performs significantly worse than

WHIRL. These results highlight the importance of our

high-level and low-level QD search algorithms for ex-

ploring how to grasp the object: without the ability to

learn effective grasps, ours-BO struggles to imitate the

rest of the manipulation task.

Cluttered Tasks. We present the results for the Clut-

tered task trials in Figure 14. As before, the plot on

the left shows the grasp success rate, and the plot on

the right shows the full task success rate. The key dif-

ference between these Cluttered experiments and the

previous results was that — in this case — there were

multiple objects on the table, and the robot had to de-

termine which of these objects the human manipulated

in order to accurately match their video demonstration.

Our results followed the same trends as in Uncluttered

tasks. Directly executing the extracted prior never led

to success for either grasping or manipulation. Again,

this suggests that the robot must refine its estimate of

the human’s hand trajectory to successfully replicate

4 WHIRL was shown to work for similar tasks in the orig-
inal paper [3]. However, we were unable to reproduce these
results. We acknowledge that we replaced WHIRL’s original
reward model with our own agent-agnostic reward. However,
this new reward provides more explicit feedback about the
task and exploration. See Appendix for more details.

22 Ananth Jonnavittula et al.

Fig. 14 Experiment results for Cluttered tasks. Here the en-
vironment contained multiple extraneous items in addition
to the target object the human manipulated. (Left) How fre-
quently the robot learned to grasp the correct item. (Right)
How frequently the robot correctly imitated the entire video
demonstration. These results were taken across 4 separate
video demonstrations and 3 trials per video demonstration
(for a total of 12 datapoints).

their object interactions. The baselines WHIRL and

ours-BO were roughly similar, reaching success per-

centages of less than 50% across a maximum of 100

real-world rollouts (roughly 45 minutes). We were not

surprised that WHIRL struggled with cluttered envi-

ronments: it does not split the exploration into sepa-

rate parts for grasping and manipulation; even if the

robot grasps the object in an interaction, it can fail to

grasp it again in the subsequent repetitions5. Overall,

our VIEW method was effective across the cluttered

settings, grasping and manipulating the correct object

to match the human’s video demonstration in almost

100% of the trials. VIEW solved each task in less than

30 minutes.

Learning from Multiple Tasks. In Figure 15 we

summarize the results from our final experiment. This

experiment focused on how VIEW can leverage the

tasks it has previously solved to improve its prior and

accelerate its learning on new tasks. To quantify this ac-

celeration, we measured the number of rollouts it took

for the robot to successfully imitate a video demonstra-

tion in the Cluttered environment. Both ours and ours-

residual used VIEW, but ours-residual included the

full VIEW algorithm with the residual component. We

5 It is important to note that our reward model provides
explicit feedback about the tagged object: the rewards do not
change if WHIRL moves any object other than the tagged ob-
ject. In contrast, the original reward model in WHIRL com-
pares the agent-agnostic action embeddings. This would pose
a significant challenge in a cluttered environment since the
robot would still be executing the right behavior, but main-
pulating the wrong object. For instance, if the robot were
to move the kettle instead of the cup, it performs the same
action — moving — and would receive a high reward even
though it actually fails to complete the task.

Fig. 15 Experiment results for learning from multiple tasks.
Here the robot has previously solved the Uncluttered tasks,
and it is now trying to learn a new Cluttered task. We com-
pare our VIEW algorithm without the residual (ours) to our
full VIEW algorithm with the residual (ours-residual). There
are a total of four video demonstration for different Clut-
tered tasks. We plot the average number of rollouts needed
for VIEW to solve each of these tasks. ∆ is the percentage
change in the number of rollouts with and without the resid-
ual. The bars indicate standard error of the mean.

found that for 3 out of the 4 Cluttered demonstrations,

applying the residual significantly reduced the number

of interactions needed to learn the task (roughly 25%

fewer rollouts). Interestingly, for the fourth demonstra-

tion the residual actually had the opposite effect, and

slowed down the robot’s learning. On further examina-

tion, we think this decrease in performance likely oc-

curred because the initial hand trajectory ξh lied out-

side the distribution of the data used to train the resid-

ual. Since the residual had not seen a demonstration
that operated in the same part of the workspace as

this video, it was not able to de-noise the prior and

accelerate the robot’s learning. This suggests that —

while the residual can be useful — it should be care-

fully applied. Learning a robust residual necessitates an

expansive dataset that includes waypoints spanning the

workspace. Any waypoint in the regions not covered by

the training data cannot be reliably de-noised by the

model, and thus designers may only want to apply the

residual when the human is performing a demonstration

that is spatially similar to a previously solved task.

7 Conclusion

State-of-the-art visual imitation learning methods rely

on intricate architectures to manage the complexities

present in video demonstrations. This paper introduces

an alternative framework designed to streamline the

learning process by compressing video data and hon-

VIEW: Visual Imitation Learning with Waypoints 23

ing in on crucial features and waypoints. We show that

by concentrating on these essential aspects, robots can

more rapidly learn tasks from human video demonstra-

tions. Our method, VIEW, incorporates distinct mod-

ules for (a) generating a condensed prior that captures

the key aspects of the human demonstrator’s intent, (b)

facilitating targeted exploration around the waypoints

in the prior through a division into grasp and task ex-

ecution phases, and (c) employing a residual model to

enhance learning efficiency by drawing on insights from

previously completed tasks.

Through an ablation study in a simulated environ-

ment, we examine the contribution of each module to

VIEW’s overall efficacy. Subsequent real-world experi-

ments, utilizing videos of human demonstrations, fur-

ther validate our method’s capability to effectively learn

from such demonstrations. The combined results from

our simulation studies and real-world testing indicate

that VIEW can efficiently learn tasks demonstrated us-

ing a single video, typically requiring under 30 minutes

and fewer than 20 real-world trials. Additionally, we

advance the capabilities of human-to-robot visual imi-

tation learning by showing that VIEW can learn from

arbitrarily long video demonstrations involving multi-

ple object interactions. These findings are illustrated

in our supplemental videos, available here: https://

collab.me.vt.edu/view/

Limitations. Our method has demonstrated the ca-

pability to expedite the learning process from human

demonstrations, significantly reducing the required time

from several hours [3] to less than 30 minutes. However,

achieving this level of success comes with its own set of

constraints. A primary limitation is the necessity for

the learning environment to mirror the setup used in

the human demonstrations, including the identical po-

sitioning of objects. This requirement stems from the

specific mechanics of our prior extraction and reward

computation processes.

Additionally, our approach is tied to a specific demon-

stration. For example, if a video shows a human pick-

ing up a cup from a certain location, the robot will

learn to pick up the cup from that same location. If the

location of the cup changes, the robot cannot adapt

to perform the task at the new location. To overcome

this limitation, we can integrate our method with be-

havior cloning [51] or another policy learning frame-

work. This integration would allow the robot to con-

vert human demonstrations into robot demonstrations

that include state-action pairs. Using behavior cloning,

the robot could then learn a more generalized policy

capable of adapting to changes in the world state. This

approach effectively positions our method as an inter-

mediary layer, translating human demonstrations into

a format suitable for imitation learning policies that

depend on state-action pairs for training.

8 Declarations

Funding. This research was supported in part by the

USDA National Institute of Food and Agriculture, Grant

2022-67021-37868.

Conflict of Interest. The authors declare that they

have no conflicts of interest.

Ethical Statement. All physical experiments that re-

lied on interactions with humans were conducted under

university guidelines and followed the protocol of Vir-

ginia Tech IRB #20-755.

Author Contribution. A.J. led the algorithm devel-

opment for prior extraction and agent agnostic reward

computation. S.P. led the development for exploration.

A.J. and S.P. wrote the first manuscript draft. A.J. ran

the simulations and S.P. conducted the physical exper-

iments. D.L. supervised the project, helped develop the

method, and edited the manuscript.

Acknowledgements. We thank Heramb Nemlekar for

his valuable feedback on our manuscript.

References

1. Alakuijala, M., Dulac-Arnold, G., Mairal, J., Ponce, J.,
Schmid, C.: Learning reward functions for robotic ma-
nipulation by observing humans. In: IEEE International
Conference on Robotics and Automation (2023)

2. Amiranashvili, A., Dorka, N., Burgard, W., Koltun, V.,
Brox, T.: Scaling imitation learning in minecraft. arXiv
preprint arXiv:2007.02701 (2020)

3. Bahl, S., Gupta, A., Pathak, D.: Human-to-robot imi-
tation in the wild. In: Robotics: Science and Systems
(2022)

4. Brown, D., Goo, W., Nagarajan, P., Niekum, S.: Extrap-
olating beyond suboptimal demonstrations via inverse re-
inforcement learning from observations. In: International
Conference on Machine Learning (2019)

5. Brown, D.S., Goo, W., Niekum, S.: Better-than-
demonstrator imitation learning via automatically-
ranked demonstrations. In: Conference on Robot Learn-
ing (2020)

6. Caba Heilbron, F., Escorcia, V., Ghanem, B., Car-
los Niebles, J.: Activitynet: A large-scale video bench-
mark for human activity understanding. In: IEEE Con-
ference on Computer Vision and Pattern Recognition
(2015)

7. Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige,
K., Srinivasa, S., Abbeel, P., Dollar, A.M.: Yale-CMU-
Berkeley dataset for robotic manipulation research. The
International Journal of Robotics Research (2017)

8. Cetin, E., Celiktutan, O.: Domain-robust visual imitation
learning with mutual information constraints. In: Inter-
national Conference on Learning Representations (2021)

https://collab.me.vt.edu/view/
https://collab.me.vt.edu/view/

24 Ananth Jonnavittula et al.

9. Chane-Sane, E., Schmid, C., Laptev, I.: Learning video-
conditioned policies for unseen manipulation tasks. In:
International Conference on Robotics and Automation
(2023)

10. Chen, J., Yuan, B., Tomizuka, M.: Deep imitation learn-
ing for autonomous driving in generic urban scenarios
with enhanced safety. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (2019)

11. Das, P., Xu, C., Doell, R.F., Corso, J.J.: A thou-
sand frames in just a few words: Lingual description of
videos through latent topics and sparse object stitching.
In: IEEE Conference on Computer Vision and Pattern
Recognition (2013)

12. Duan, J., Wang, Y.R., Shridhar, M., Fox, D., Krishna, R.:
Ar2-d2: Training a robot without a robot. arXiv preprint
arXiv:2306.13818 (2023)

13. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J.,
Paduraru, C., Gowal, S., Hester, T.: Challenges of real-
world reinforcement learning: definitions, benchmarks
and analysis. Machine Learning (2021)

14. Eze, C., Crick, C.: Learning by watching: A review of
video-based learning approaches for robot manipulation.
arXiv preprint arXiv:2402.07127 (2024)

15. Fang, B., Jia, S., Guo, D., Xu, M., Wen, S., Sun, F.: Sur-
vey of imitation learning for robotic manipulation. Inter-
national Journal of Intelligent Robotics and Applications
(2019)

16. Fontaine, M.C., Togelius, J., Nikolaidis, S., Hoover, A.K.:
Covariance matrix adaptation for the rapid illumination
of behavior space. In: Genetic and Evolutionary Compu-
tation Conference (2020)

17. Gouda, A., Ghanem, A., Reining, C.: DoPose-6D dataset
for object segmentation and 6D pose estimation. In:
IEEE International Conference on Machine Learning and
Applications (2022)

18. Gouda, A., Roidl, M.: Dounseen: Zero-shot object
detection for robotic grasping. arXiv preprint
arXiv:2304.02833 (2023)

19. Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzyn-
ska, J., Westphal, S., Kim, H., Haenel, V., Fruend, I.,
Yianilos, P., Mueller-Freitag, M.: The” something some-
thing” video database for learning and evaluating visual
common sense. In: IEEE International Conference on
Computer Vision (2017)

20. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-
CNN. In: IEEE international Conference on Computer
Vision (2017)

21. Hussein, A., Gaber, M.M., Elyan, E., Jayne, C.: Imitation
learning: A survey of learning methods. ACM Computing
Surveys (2017)

22. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-
image translation with conditional adversarial networks.
In: IEEE Conference on Computer Vision and Pattern
Recognition (2017)

23. Jain, V., Attarian, M., Joshi, N.J., Wahid, A., Driess, D.,
Vuong, Q., Sanketi, P.R., Sermanet, P., Welker, S., Chan,
C., et al.: Vid2robot: End-to-end video-conditioned pol-
icy learning with cross-attention transformers. arXiv
preprint arXiv:2403.12943 (2024)

24. Jin, J., Petrich, L., Dehghan, M., Jagersand, M.:
A geometric perspective on visual imitation learning.
In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (2020)

25. Jonnavittula, A., Losey, D.P.: I know what you meant:
Learning human objectives by (under) estimating their
choice set. In: IEEE International Conference on
Robotics and Automation (2021)

26. Jonnavittula, A., Losey, D.P.: Learning to share auton-
omy across repeated interaction. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(2021)

27. Jonnavittula, A., Mehta, S.A., Losey, D.P.: SARI: Shared
autonomy across repeated interaction. ACM Transac-
tions on Human-Robot Interaction (2024)

28. Kelly, M., Sidrane, C., Driggs-Campbell, K., Kochender-
fer, M.J.: HG-DAgger: Interactive imitation learning with
human experts. In: IEEE International Conference on
Robotics and Automation (2019)

29. Kim, M.J., Wu, J., Finn, C.: Giving robots a hand: Learn-
ing generalizable manipulation with eye-in-hand human
video demonstrations. arXiv preprint arXiv:2307.05959
(2023)

30. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learn-
ing in robotics: A survey. The International Journal of
Robotics Research (2013)

31. Koppula, H.S., Gupta, R., Saxena, A.: Learning human
activities and object affordances from rgb-d videos. The
International Journal of Robotics Research (2013)

32. Koppula, H.S., Saxena, A.: Anticipating human activi-
ties using object affordances for reactive robotic response.
IEEE Transactions on Pattern Analysis and Machine In-
telligence (2015)

33. Lee, R., Abou-Chakra, J., Zhang, F., Corke, P.: Learning
fabric manipulation in the real world with human videos.
arXiv preprint arXiv:2211.02832 (2022)

34. Lee, S., Oh, S.W., Won, D., Kim, S.J.: Copy-and-paste
networks for deep video inpainting. In: IEEE/CVF In-
ternational Conference on Computer Vision (2019)

35. Li, J., Lu, T., Cao, X., Cai, Y., Wang, S.: Meta-imitation
learning by watching video demonstrations. In: Interna-
tional Conference on Learning Representations (2021)

36. Liu, P., Orru, Y., Paxton, C., Shafiullah, N.M.M.,
Pinto, L.: Ok-robot: What really matters in integrat-
ing open-knowledge models for robotics. arXiv preprint
arXiv:2401.12202 (2024)

37. Liu, Y., Gupta, A., Abbeel, P., Levine, S.: Imitation
from observation: Learning to imitate behaviors from raw
video via context translation. In: IEEE International
Conference on Robotics and Automation (2018)

38. Luo, H., Zhai, W., Zhang, J., Cao, Y., Tao, D.: Learning
visual affordance grounding from demonstration videos.
IEEE Transactions on Neural Networks and Learning
Systems (2023)

39. Lynch, C., Sermanet, P.: Language conditioned imitation
learning over unstructured data. In: Robotics: Science
and Systems (2020)

40. Ma, M., Marturi, N., Li, Y., Leonardis, A., Stolkin, R.:
Region-sequence based six-stream CNN features for gen-
eral and fine-grained human action recognition in videos.
Pattern Recognition (2018)

41. Mehta, S.A., Habibian, S., Losey, D.P.: Waypoint-based
reinforcement learning for robot manipulation tasks.
arXiv preprint arXiv:2403.13281 (2024)

42. Mehta, S.A., Losey, D.P.: Unified learning from demon-
strations, corrections, and preferences during physical
human-robot interaction. ACM Transactions on Human-
Robot Interaction (2023)

43. Menda, K., Driggs-Campbell, K., Kochenderfer, M.J.:
EnsembleDAgger: A bayesian approach to safe imitation
learning. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (2019)

44. Monfort, M., Pan, B., Ramakrishnan, K., Andonian, A.,
McNamara, B.A., Lascelles, A., Fan, Q., Gutfreund, D.,
Feris, R.S., Oliva, A.: Multi-moments in time: Learning

VIEW: Visual Imitation Learning with Waypoints 25

and interpreting models for multi-action video under-
standing. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2021)

45. Morales, E.F., Murrieta-Cid, R., Becerra, I., Esquivel-
Basaldua, M.A.: A survey on deep learning and deep rein-
forcement learning in robotics with a tutorial on deep re-
inforcement learning. Intelligent Service Robotics (2021)

46. Muckell, J., Olsen, P.W., Hwang, J.H., Lawson, C.T.,
Ravi, S.: Compression of trajectory data: A comprehen-
sive evaluation and new approach. GeoInformatica (2014)

47. Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog,
A., Irpan, A., Khazatsky, A., Rai, A., Singh, A., Brohan,
A., et al.: Open x-embodiment: Robotic learning datasets
and rt-x models. arXiv preprint arXiv:2310.08864 (2023)

48. Pan, Y., Cheng, C.A., Saigol, K., Lee, K., Yan, X.,
Theodorou, E.A., Boots, B.: Imitation learning for ag-
ile autonomous driving. The International Journal of
Robotics Research (2020)

49. Pari, J., Shafiullah, N.M., Arunachalam, S.P., Pinto, L.:
The surprising effectiveness of representation learning
for visual imitation. In: Robotics: Science and Systems
(2021)

50. Patel, A., Wang, A., Radosavovic, I., Malik, J.: Learning
to imitate object interactions from internet videos. arXiv
preprint arXiv:2211.13225 (2022)

51. Pomerleau, D.A.: Efficient training of artificial neural
networks for autonomous navigation. Neural Computa-
tion (1991)

52. Rafailov, R., Yu, T., Rajeswaran, A., Finn, C.: Visual ad-
versarial imitation learning using variational models. Ad-
vances in Neural Information Processing Systems (2021)

53. Ratliff, N., Bagnell, J.A., Srinivasa, S.S.: Imitation learn-
ing for locomotion and manipulation. In: IEEE-RAS In-
ternational Conference on Humanoid Robots (2007)

54. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN:
Towards real-time object detection with region proposal
networks. In: Advances in Neural Information Processing
Systems (2015)

55. Romero, J., Tzionas, D., Black, M.J.: Embodied hands:
Modeling and capturing hands and bodies together.
ACM Transactions on Graphics (2017)

56. Rong, Y., Shiratori, T., Joo, H.: Frankmocap: A monocu-
lar 3d whole-body pose estimation system via regression
and integration. In: IEEE International Conference on
Computer Vision Workshops (2021)

57. Ross, S., Gordon, G., Bagnell, D.: A reduction of imita-
tion learning and structured prediction to no-regret on-
line learning. In: International Conference on Artificial
Intelligence and Statistics (2011)

58. Schaal, S.: Learning from demonstration. In: Advances
in Neural Information Processing Systems (1996)

59. Schäfer, L., Jones, L., Kanervisto, A., Cao, Y., Rashid,
T., Georgescu, R., Bignell, D., Sen, S., Gavito, A.T.,
Devlin, S.: Visual encoders for data-efficient imita-
tion learning in modern video games. arXiv preprint
arXiv:2312.02312 (2023)

60. Scheller, C., Schraner, Y., Vogel, M.: Sample efficient re-
inforcement learning through learning from demonstra-
tions in minecraft. In: NeurIPS Competition and Demon-
stration Track (2020)

61. Sermanet, P., Xu, K., Levine, S.: Unsupervised percep-
tual rewards for imitation learning. In: Robotics: Science
and Systems (2017)

62. Shafiullah, N.M.M., Rai, A., Etukuru, H., Liu, Y., Misra,
I., Chintala, S., Pinto, L.: On bringing robots home.
arXiv preprint arXiv:2311.16098 (2023)

63. Shan, D., Geng, J., Shu, M., Fouhey, D.F.: Understanding
human hands in contact at internet scale. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(2020)

64. Sharma, P., Pathak, D., Gupta, A.: Third-person visual
imitation learning via decoupled hierarchical controller.
In: Advances in Neural Information Processing Systems
(2019)

65. Shaw, K., Bahl, S., Sivakumar, A., Kannan, A., Pathak,
D.: Learning dexterity from human hand motion in in-
ternet videos. The International Journal of Robotics Re-
search (2024)

66. Shi, L.X., Hu, Z., Zhao, T.Z., Sharma, A., Pertsch, K.,
Luo, J., Levine, S., Finn, C.: Yell at your robot: Improv-
ing on-the-fly from language corrections. arXiv preprint
arXiv:2403.12910 (2024)

67. Shi, L.X., Sharma, A., Zhao, T.Z., Finn, C.: Waypoint-
based imitation learning for robotic manipulation. In:
Conference on Robot Learning (2023)

68. Sieb, M., Xian, Z., Huang, A., Kroemer, O., Fragkiadaki,
K.: Graph-structured visual imitation. In: Conference on
Robot Learning (2020)

69. Smith, L., Dhawan, N., Zhang, M., Abbeel, P., Levine, S.:
AVID: Learning multi-stage tasks via pixel-level transla-
tion of human videos. In: Robotics: Science and Systems
(2020)

70. Snoek, J., Larochelle, H., Adams, R.P.: Practical
bayesian optimization of machine learning algorithms.
In: Advances in Neural Information Processing Systems
(2012)

71. Song, S., Zeng, A., Lee, J., Funkhouser, T.: Grasping in
the wild: Learning 6dof closed-loop grasping from low-
cost demonstrations. IEEE Robotics and Automation
Letters (2020)

72. Taranovic, A., Kupcsik, A.G., Freymuth, N., Neumann,
G.: Adversarial imitation learning with preferences. In:
International Conference on Learning Representations
(2022)

73. Tremblay, J., To, T., Birchfield, S.: Falling things: A syn-
thetic dataset for 3d object detection and pose estima-
tion. In: IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (2018)

74. Vassiliades, V., Chatzilygeroudis, K., Mouret, J.B.: Us-
ing centroidal voronoi tessellations to scale up the multi-
dimensional archive of phenotypic elites algorithm. IEEE
Transactions on Evolutionary Computation (2017)

75. Wang, J., Mueller, F., Bernard, F., Sorli, S., Sotnychenko,
O., Qian, N., Otaduy, M.A., Casas, D., Theobalt, C.:
Rgb2hands: Real-time tracking of 3d hand interactions
from monocular rgb video. ACM Transactions on Graph-
ics (2020)

76. Wen, B., Lian, W., Bekris, K., Schaal, S.: You only
demonstrate once: Category-level manipulation from sin-
gle visual demonstration. In: Robotics: Science and Sys-
tems (2022)

77. Wen, C., Lin, J., Qian, J., Gao, Y., Jayaraman, D.:
Keyframe-focused visual imitation learning. In: Inter-
national Conference on Machine Learning (2021)

78. Xiong, H., Li, Q., Chen, Y.C., Bharadhwaj, H., Sinha,
S., Garg, A.: Learning by watching: Physical imitation of
manipulation skills from human videos. In: IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (2021)

79. Young, S., Gandhi, D., Tulsiani, S., Gupta, A., Abbeel,
P., Pinto, L.: Visual imitation made easy. In: Conference
on Robot Learning (2021)

26 Ananth Jonnavittula et al.

80. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka,
A., Sung, G., Chang, C.L., Grundmann, M.: Mediapipe
hands: On-device real-time hand tracking. In: CVPR
Workshop on Computer Vision for Augmented and Vir-
tual Reality (2020)

A Appendix

A.1 Implementation Details

A public repository of our code can be found here:
https://github.com/VT-Collab/view

Hand trajectory extraction. In line with the methodol-
ogy described in WHIRL [3], we utilize the 100 Days of Hands
(100DOH) detector from https://github.com/ddshan/hand_

detector.d2 for identifying hand-object contact points. For
wrist detection, we integrate this with FrankMocap, as doc-
umented in Rong et al. [56], without any model fine-tuning.
The implementation for FrankMocap can be found here: https:
//github.com/facebookresearch/frankmocap. To obtain com-
pressed trajectories, we combine the output of the FrankMo-
cap model with SQUISHE. We develop our own version of
SQUISHE based on the description provided in [46]. Our im-
plementation can be accessed in the code repository.

Object trajectory extraction. To identify objects within
the scene, we use Mask R-CNN, as detailed by He et al. [20],
through its implementation in Detectron2 (https://github.
com/facebookresearch/detectron2). Following the method-
ologies outlined in [18], we initially pretrain our model using
the Nvidia Falling Things dataset [73] and the DoPose-6D
dataset [17]. We then finetune the model on a custom dataset
containing 21 objects, with a subset of 7 being directly rele-
vant to our final evaluations. This subset includes standard
objects from the YCB object dataset [7] and others that are
commonly found in kitchen environments. The complete list
of objects used in our evaluation is shown in Figure 16.

Residual network. For our residual network, we employ a
fully connected multi-layer perceptron with two hidden layers,
utilizing ReLU as the activation function and mean squared
error (MSE) for loss calculation. We use the Adam optimizer
and train the network for 100 epochs. The initial learning rate
is set at 0.1, with a decay factor of 0.15. For more detailed
information on our training parameters, please refer to our
code repository.

A.2 Challenges with WHIRL

Because of the lack of publicly available implementations of
WHIRL, we developed our version based on the algorithms
provided in WHIRL’s publication [3]. As described, we used
a four-layer MLP, implemented as a Variational Autoencoder
and optimized via KL divergence loss. Initially — consistent
with the guidelines in WHIRL’s manuscript — we employed
Copy-Paste Networks for inpainting [34] and the moment
model from Monfort et al. [44] for calculating rewards.

However, during our experiments, we encountered two
major challenges with WHIRL (see Figure 17). The first issue
was the inconsistency observed in the video inpainting perfor-
mance, where the Copy-Paste Network failed to fully remove
the robot from several frames (See Figure 17 Top). This in-
consistency persisted even after we fine-tuned the model on

Fig. 16 Objects manipulated in our real-world experiments.
(From left to right) We use a bottle of bleach, a kettle, a
mug, a banana, an apple, a bottle of mustard, and a basket.
These seven distinct items were systematically selected for
assessment based on their varying shapes, sizes, and colors to
provide a comprehensive evaluation of our algorithm.

400 custom images of our robot. Having consistent images
with the human and the robot removed are particularly crit-
ical because WHIRL’s exploration strategy relies heavily on
comparing embeddings across frames. Due to the erratic in-
painting results, the robot often converged to suboptimal po-
sitions, distant from the target object (See Figure 17 Bottom
Left). The second issue pertained to the rewards linked with
task completion. There was a marked lack of differentiation
in rewards between trajectories where the robot only grasped
the object and those where it successfully completed the task
(see Figure 17 Bottom Right). This similarity in rewards of-
ten caused the robot to become stuck in a local minimum,
proficient at object pickup but failing to complete the rest of
the manipulation task.

In response to these issues, we replaced the reward model
from WHIRL with the reward model described in Section 4.2.
While WHIRL calculates exploration rewards based on the
variance in frame embeddings and task rewards through the
difference in video embeddings, our method takes a different
approach. We explicitly compute exploration rewards using
changes in the object’s position and gauge task completion
by measuring the object’s proximity to the demonstrated tra-
jectory. Our reward structure therefore capitalizes on direct
and pertinent information (i.e., the location of the target ob-
ject) rather than an indeterminate high-dimensional represen-
tation. We conducted a limited set of experiments to ensure
that reward responses from our model were comparable to
those from the original moment model. We believe that this
modification does not fundamentally alter the functionality
of WHIRL, and is a reasonable baseline for comparison.

https://github.com/VT-Collab/view
https://github.com/ddshan/hand_detector.d2
https://github.com/ddshan/hand_detector.d2
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

VIEW: Visual Imitation Learning with Waypoints 27

Fig. 17 Challenges with WHIRL Evaluation. (Top) As described in [3], we utilized Copy-Paste Networks [34] for the purpose
of video inpainting, with the aim of removing both the human demonstrator and the robot arm from the video frames. This
process is critical for enabling the comparison of frames through moment models [44], which in turn facilitates the computation
of agent-agnostic rewards. However, in our evaluations we encountered consistency issues with the inpainted images, leading
to highly variable reward signals. (Bottom Left) The inconsistency in reward signals led to scenarios where the robot received
high exploration rewards without actually moving the object. This is problematic because the robot relies on these rewards
to identify waypoints that are near the object, which are necessary for successful grasping. In contrast, WHIRL with our
reward model produces low exploration rewards when there is no object movement, and rewards increase significantly only
when the object is displaced. This variability in the WHIRL reward model often caused the robot’s learning trajectory to
converge prematurely at a suboptimal point, usually far from the target object. (Bottom Right) When the robot managed to
overcome the variability in exploration rewards and successfully grasped the object, we observed that the reward difference
between just grasping the object and completing the entire task was minimal. WHIRL with our reward model provided a
clearer distinction between these different phases of the task. The lack of clear reward differentiation in WHIRL’s reward
model frequently hindered the robot’s ability to fully learn the task, often resulting in the robot only learning to pick up the
object without completing subsequent steps. Based on these results, in our experiments from Section 6 we used WHIRL with
our proposed reward model instead of WHIRL with its original reward model.

	Introduction
	Related Work
	Problem Statement
	VIEW
	Simulations
	Experiments
	Conclusion
	Declarations
	Appendix

