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A Modular Haptic Display with Reconfigurable Signals
for Personalized Information Transfer
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Abstract—We present a customizable soft haptic system that
integrates modular hardware with an information-theoretic algo-
rithm to personalize feedback for different users and tasks. Our
platform features modular, multi-degree-of-freedom pneumatic
displays, where different signal types — such as pressure, fre-
quency, and contact area — can be activated or combined using
fluidic logic circuits. These circuits simplify control by reducing
reliance on specialized electronics and enabling coordinated
actuation of multiple haptic elements through a compact set
of inputs. Our approach allows rapid reconfiguration of haptic
signal rendering through hardware-level logic switching, without
rewriting code. Personalization of the haptic interface is achieved
through the combination of modular hardware and software-
driven signal selection. To determine which display configurations
will be most effective, we model haptic communication as
a signal transmission problem, where an agent must convey
latent information to the user. We formulate the optimization
problem to identify the haptic hardware setup that maximizes the
information transfer between the intended message and the user’s
interpretation, accounting for individual differences in sensitivity,
preferences, and perceptual salience. We evaluate this framework
through user studies where participants interact with reconfig-
urable displays under different signal combinations. Our findings
support the role of modularity and personalization in creating
multimodal haptic interfaces and advance the development of
reconfigurable systems that adapt with users in dynamic human-
machine interaction contexts.

Index Terms—Haptic Interfaces, Information Theory, System
Design and Analysis, Re-configurable Devices, Tactile Devices

I. INTRODUCTION

Designing haptic interfaces that are expressive and inter-
pretable for different human users remains a key challenge
in human-computer and human-robot interaction [1]. Many
existing haptic systems rely on fixed feedback modalities or
predefined signal sets, limiting their ability to accommodate
different users, tasks, or environments [2]–[4]. Recent work
has shown that even modest changes in signal encoding
— such as directional resolution or complexity — can sig-
nificantly influence how users perceive, interpret, and act
upon haptic feedback [5]–[7]. These findings emphasize the
significance of personalization: the haptic signals that make
the most sense for a given user and task may be confusing
and inadequate for a different user or changed task.

Consider the setting shown in Figure 1. Here a haptic
display is trying to communicate the instructions for a recipe,
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with different signals conveying what ingredient type to grasp
and where to add it. Existing haptic systems rely on a fixed
display; e.g., the object to grasp is indicated by vibrations, and
the correct location to place it is conveyed by pressure. This
mapping may work well for several users — but falls short
when faced with a wearer who does not accurately discern
the differences in pressure (or notice the vibrations). More
generally, users may have different needs and preferences
based on experience with the task or sensory sensitivity to the
signals [8], [9]. Together, these needs have fueled a growing
interest in modular, reconfigurable feedback interfaces that
support task-driven and user-specific customization [10]–[13].

To address these challenges, we present a customizable
soft haptic system that supports hardware and signal recon-
figuration driven by algorithmic personalization. Our modular
hardware approach combines multi-degree-of-freedom (multi-
DoF) soft haptic displays with fluidic logic circuits, which use
air flow and passive elements to perform logic operations (see
Figure 1). Fluidic logic enables sequential or parallel actuation
patterns to be encoded directly into the pneumatic hardware,
reducing the reliance on electropneumatics to control the
system. While fluidic logic has been increasingly adopted in
soft robotics to produce complex sequential motions, such as
repeated walking patterns [14]–[17], its application to haptics
remains largely unexplored. We extend the use of fluidic logic
to the domain of haptics by showing how its scalability,
low power requirements, and mechanical robustness can be
leveraged to control and reconfigure multi-channel haptic
systems. In practice, users can manually switch the logic
circuits to reach haptic signal sets with varying levels of
pressure, frequency, and contact area (Fig. 1). This provides
a mechanically intelligent platform capable of rendering a
diverse library of haptic cues with minimal hardware overhead.

While our hardware enables physical flexibility in signal
rendering, selecting which signals to present — particularly
in multi-DoF systems — requires a systematic evaluation of
both informativeness and interpretability. Our modular haptic
device enables a wide range of displays: but which ones will
be efficient for the current user and desired task? To ensure
that signals are interpretable and useful, the system must be
personalized — adapting which signals are presented and
how they are rendered to align with individual perceptual and
cognitive characteristics. To frame this tuning problem, we
adopt an information-theoretic perspective [6], [18], modeling
haptic interaction as a communication channel constrained
by human perceptual limitations. This information-theoretic
framing has also been applied to haptic interfaces, offering
tools to reason about how perceptual thresholds, signal com-
plexity, and cue distinctness affect the rate and clarity of
communication [6], [19], [20]. These insights suggest that
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Figure 1. Modular haptic display worn by a human user. The inflation pattern of the haptic display tells the user what the goal is (i.e., which objects to
grasp and where to place them). A user may be initially confused about a specific signal type, i.e. pressure. Our proposed approach provides a modular
hardware approach supported by an information-theoretic algorithm, so the user can identify a better signal modality, i.e. frequency, and quickly reconfigure
the hardware to change the signal type by adding an oscillator.

maximizing performance is not simply a matter of increasing
signal richness, but of selecting cues that are both salient and
easily interpretable.

Combining both the modular hardware with information-
theoretic software, we ultimately present an approach for
personalized haptic communication through two complemen-
tary layers of modularity. The mechanical layer enables the
rendering of varied signal combinations through reconfigurable
hardware; the algorithmic layer determines which of these
combinations best match an individual user’s perceptual abili-
ties, preferences, and task demands. This integrated framework
supports adaptive interactions by maximizing the flow of
task-relevant information from system to user. Importantly,
the integrated process accounts for individual differences in
perceptual salience, signal sensitivity, and user preference,
enabling real-time personalization of the interface.

This work contributes toward the broader goal of making
ubiquitous haptic systems that can be applied across multiple
users and tasks [21], [22]. In doing so, we aim to enable
richer, more efficient interactions between users and machines.
Overall, we make the following contributions:

Mechanical Customization. We develop pneumatic logic
circuits that can render a variety of multi-DoF haptic signals.
By disconnecting and reconnecting different tubes, users can
manually adjust to the types of haptic signals rendered by the
modular display. This approach inherently reduces complexity
and enables rapid reconfiguration by minimizing reliance on
electropneumatic controllers.

Algorithmic Personalization. Our modular hardware sets
the stage for a variety of deployments. To determine which
configuration is best suited for the current user and task, we
formulate a signal selection framework grounded in informa-
tion theory. Users input their personal preferences and the
task specifications, and the algorithm recommends a hardware

configuration that should maximize information transfer. This
approach enables the system to personalize the selection of
display configurations based on user preferences, perceptual
salience, and sensitivity.

Task-Informed and User-Specific Reconfiguration. We con-
duct user studies that validate our personalization framework,
integrating hardware and algorithmic customization to identify
optimal display configurations for specific users and tasks.
Results across n = 13 participants and two experimental
settings suggest that our modular systems convey information
in ways that cause humans to perform tasks more effectively.
Specifically, when we physically deploy the haptic display
recommended by our algorithm, users complete the tasks with
less error, and subjectively perceive the haptic feedback to be
more helpful.

Analyzing Hardware and Software Contributions. We per-
form follow-up tests to understand how each aspect of our
modular approach contributes to haptic success. In terms of
the hardware, we find that different users perform best with
different configurations; i.e., physically modifying the haptic
display is necessary to improve performance. In terms of the
software, we observe that the type of haptic display that users
prefer is not always the same haptic display that our algorithm
recommends; i.e., maximizing information transfer is not as
simple as just choosing signals that people like. These results
highlight that both mechanical modularity and algorithmic
personalization are needed to maximize the potential of cus-
tomizable haptic devices.

II. RELATED WORKS

Our development of modular haptic interfaces connects
research on haptics, pneumatic logic architectures, and infor-
mation transfer. Below we summarize our intersection with
each of these areas.
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Modular and Adaptive Haptic Interfaces. Personalization
has become a key design principle in human-computer in-
teraction, with growing recognition that “one-size-fits-all”
interfaces fail to accommodate differences in user preferences,
capabilities, and strategies. Personalization in graphical user
interfaces is relatively mature, providing a proof of concept
that adapting layout, content, and controls can improve user
performance and reduce cognitive load [23], [24]. Compar-
atively, in haptic interfaces, user personalization has been
narrowly focused on tuning specific signal parameters such as
intensity, duration, and modality to better match user needs
and perceptual thresholds [25], [26]. To adapt instead to
changing tasks, prior work has demonstrated modular wearable
displays composed of soft composite materials [27], [28],
patch-based layouts for skin-conformal stimulation [29], room-
scale vibrotactile systems designed for spatial reconfiguration
and uniform feedback [30], and systems that permit geometric
or tactile customization through interchangeable elements [31],
[32]. These designs emphasize the practicality and versatility
of modular architectures, enabling reuse of core components
across tasks. However, we emphasize that the adaptability of
these systems is often limited, allowing a range of designs but
not on the fly reconfiguration: for example, actuator modules
that can be freely combined into designs but not easily
interchanged [10] or actuator attachments that allow arbitrary
placement for optimized signal discrimination [12]. Overall,
most existing systems rely on static mappings or handcrafted
designs; few integrate reconfigurability, let alone algorithmic
personalization [12], [33] — limiting their ability to adapt to
evolving behavior or task demands.

Fluidic Logic in Soft Robotics and Haptic Systems. Out-
side of haptics, fluidic (or pneumatic) logic has emerged
as a powerful control paradigm for soft robots and shape-
changing systems, enabling fully or partially electronics-free
architectures that are robust, lightweight, and mechanically
programmable. Foundational work has shown how pneumatic
logic gates can be composed into fluidic circuits for signal
processing, sequencing, and timing [14]–[16]. These systems
enable the autonomous control of soft actuators, often relying
solely on pneumatic sources and passive structures to execute
prescribed behaviors [34], [35]. Recent efforts have advanced
the design of programmable soft valves [36], bistable elements,
and soft ring oscillators [16] to support dynamic control tasks
without embedded microcontrollers. Sheet-based fluidic diodes
and pneumatic code blocks further expand the design space
for compact, programmable circuits of modular elements [37],
[38]. These innovations have been applied across domains,
from robot locomotion [39] to smart clothing [35] to fluidic
computing kits for shape-changing displays [40]. Despite this
progress, the application of fluidic logic in haptic systems
remains relatively underexplored [41], [42].

Our work leverages these advances to enable reconfiguration
and scalable control of haptic signal outputs, bridging the
strengths of pneumatic logic with the challenges of person-
alized interface design. In creating our system, we prioritized
accessibility and ease of replication — particularly for proto-
typing environments without access to specialized fabrication

tools. Towards this end, we selected a bistable soft valve
architecture most related to Preston et al. [16], which has been
validated extensively and can be fabricated using off-the-shelf
materials. By extending this design into haptic applications
we develop novel, modular haptic displays that can be rapidly
reconfigured and scaled; all without relying on embedded
microcontrollers or advanced manufacturing processes.

Information-Theoretic Approaches to Signal Design. Given
some physical interface, information theory offers a formal
framework for evaluating how that system transfers data to the
user. Prior works which apply information theory to haptics
have realized that effective communication has a human com-
ponent: human perceptual limitations (e.g., cognitive overload)
often constrain information transfer [6], [19], [32], [43]. In-
deed, variations in signal complexity — such as modulation of
frequency, actuator density, or multi-dimensional encoding —
affect perceptual discriminability and user performance [12],
[44]–[46]. Accordingly, we cannot just calculate the abilities
of a haptic display in isolation; its performance inherently
depends on the current user and task [20]. Recent approaches
have therefore shown that information theoretic metrics (such
as information gain) can be leveraged to account for the
human’s perspective. This includes selecting questions that are
easy for the human to answer [47], [48], or determining which
types of signal mappings are best suited for the user [3], [33].
We emphasize that finding the correct haptic display is not
a stationary problem. Because different users often interpret
the same signals differently, a given haptic display can show
inconsistent performance across individuals [49], [50]. In our
work, we accordingly apply information theory to quickly
determine the appropriate haptic configuration for the current
user by accounting for that specific user’s preferences and
perceptual salience.

III. HAPTIC DEVICE DESIGN AND CONTROL

A. The Haptic Displays

The haptic displays presented in this work are soft, wearable
actuators inspired by previous soft wrapped haptic displays
[5], [27], [42], [51], [52]. Designed as ring-shaped interfaces
worn on fingers, these devices provide tactile feedback through
pneumatic actuation, delivering compression-based haptic sen-
sations similar to a squeeze [53].

The displays are fabricated using two layers of thin,
heat-sealable thermoplastic polyurethane (TPU) film (HM65
0.15 mm 78A40”, Perfectex). The elasticity of the TPU film
used in these displays provides pronounced tactile sensations
under inflation pressures, producing more effective feedback
compared to displays made of non-stretchable films. Unlike
earlier iterations of soft wrapped haptic displays fabricated
with a linear heat sealer [51], these displays are patterned, cut,
and sealed using a 100 W CO2 laser cutter (Epilog Fusion Pro
36), allowing for high precision fabrication.

We begin the fabrication process by cleaning the TPU sheets
with isopropyl alcohol (IPA), layering them one on top of
the other, and laminating them together with a heated roller
laminator. This preparation process will temporarily adhere the
TPU layers so they will remain attached during the sealing and
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Figure 2. The haptic displays are made of layered TPU film, laser cut and
sealed following the patterns shown in (a) for the single chamber and (b)
multi-chamber versions. In (c), we show the two display models actuated.

cutting process. An acrylic plate with double-sided masking
tape is then used as a substrate to hold the laminated TPU
films and the plate is placed in the laser cutter. Depending on
the speed and power of the laser cutter as it traces out the
patterns it will either permanently seal the layers together or
both seal and cut. Laser settings for sealing were 100% speed,
9% power, and 100% frequency, and for cutting they were 75%
speed, 17% power, 50% frequency. Figure 2 shows the flat
patterns used for each display with specification of which lines
were sealed and cut. After laser processing, the sealed shape
is removed from the substrate. The sealed inlet -— designed
with a trumpet-like geometry to facilitate tube insertion -— is
carefully opened with a blade to allow insertion of clear, soft
PVC tubing (1/8” OD, Masterkleer). The tubing is secured in
place using a strip of double-sided viscoelastic adhesive tape
(MD-9000, Marker Tape) with one side laminated to a TPU
film (to create a single-sided tape). Finally, to assemble the
display into its ring shape, the end tabs of the cut structure
are joined using plain double-sided viscoelastic tape, forming
a closed loop that wraps around the finger.

We developed two configurations: a 1-DoF display com-
posed of a single pouch (Figure 2(a)), and a 3-DoF display
with three independently actuated pouches (Figure 2(b)). The
multi-DoF version was designed to explore more complex

tactile cues, specifically the contact area-based modality de-
scribed in later sections. The displays were fabricated in
varying circumferences (L = 65–90 mm) to accommodate
different finger sizes. These displays can each accommodate
approximately 3.75 mL of internal volume when inflated to
27.58 kPa, based on geometric measurements taken at full
inflation, assuming an elliptic torus with semi-axes of 5 mm
and 12.72 mm. All displays safely operate at pressures up to
34.47 kPa.

B. Fluidic Logic Control
1) Soft Valve Design and Characterization: The haptic dis-

plays are controlled using soft fluidic logic circuits made up of
elastomeric valves with two states, inspired by the soft valves
demonstrated by Preston et al. in their soft ring oscillator
[16]. Although originally implemented as pneumatic invert-
ing Schmitt triggers, here we exploit their general bistable
behavior – switching reliably between two distinct states
using pneumatic inputs – to control airflow pathways. After
surveying the range of design for fluidic logic in literature,
these soft valves stood out due to their widespread validation,
accessible fabrication process, use of readily available ma-
terials, detailed supplementary documentation that facilitated
replication, and compatibility with the working pressure range
of our soft haptic displays. We made slight modifications to
the original valve design to simplify the fabrication process
while maintaining functional performance.

The original STL files for the mold of the soft valves used
for the inverter [16] were obtained from the supplementary
materials of that paper. In the original implementation, the
internal channels were molded. Instead, we modified the valve
to use stock silicone tubing (1/16” ID X 1/8” OD, shore
hardness 35A, McMaster-Carr) for the internal channels by
expanding the junction between the tubes to accommodate for
the larger tubing diameter and thickening the top and bottom
flat face molds to account for the increased stiffness. The fabri-
cation process for assembling the internal tubing followed the
approach in [16]. Smooth-On: Dragon Skin 10 NV (Smooth-
On) was used for molding the flat faces and cylindrical wall-
membrane assembly, and Smooth-Sil 950 (Smooth-On) was
used for the junction and end cap of the internal tubing. For
bonding the parts together, we used silicone epoxy (Silpoxy,
Smooth-On), which cures faster than uncured elastomer.

Valve characterization confirmed consistent snap-through
pressures, actuation speeds, and airflow capabilities. Using a
pressure sensor (015PGAA5, Honeywell Sensing) connected
to the inlet of the upper chamber of the valve, the mean snap-
through pressure was measured at 11.44 ± 2.29 kPa across
5 different valves. To ensure robust performance throughout
the system and to compensate for tubing losses, all logic
operations in the code logic stage were conducted at 20.68 kPa,
well above the snap-through threshold, turned on and off using
solenoids (ET-3-6, Clippard). The average airflow through the
open valve channels was 2.76± 0.28 slm (standard liters per
minute), measured after snap-through across 5 different valves
using an airflow sensor (PFLOW3008, Angst+Pfister). The rise
time of this flow was approximately 0.51 seconds from initial
pressurization measured to a downstream valve.
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Figure 3. Fluidic logic control architecture for reconfigurable haptic displays. The system is divided into two stages: code logic (left) and output logic (right).
The code logic functions as a pneumatic demultiplexer, converting a three-bit input (A, B, C) and a constant logic-high pressure source PZ into up to eight
distinct output states via soft valves operating as logic gates, enabling selective pressure routing of an actuation source Pi. The output logic stage implements
three actuation modes: (1) pressure signals via direct inflation of a single output, (2) frequency signals using a soft oscillator composed of valve pairs, and
(3) area signals achieved through cascaded inflation of multiple chambers. For the area signal, the dotted boxes indicate that additional stages of valves and
displays can be added to extend the cascade, allowing for larger or more spatially distributed tactile patterns.

2) Fluidic Control Architecture: Our fluidic control archi-
tecture consists of two primary stages: the code logic and
the output logic. The code logic functions as a pneumatic
demultiplexer, translating a three-bit input into eight possible
output states, allowing control of up to seven discrete signals
with one reserved state for no actuation. Logic gates (NOT,
AND, OR) are constructed from these soft valves [15], [17],
processing binary pressure inputs (A, B, C) and a constant
logic-high pressure source (Pz) to selectively route actuation
pressure (P0, P1, ..., PN ) provided by hand pressure regulators
(6763K82, McMaster-Carr) to the output logic stage. Addi-
tional details of the logic designs used to accomplish the
demultiplexing are included in Appendix A. Depending on the
amount of individual signals that are wanted, the code logic
can be adjusted down to a 2 input - 4 output setup, or up to
a 4 input - 16 output system.

The output logic stage provides three different actuation
methods for specific tactile feedback scenarios: (1) individual
addressing, using single valves to independently turn on or
off airflow from pressure sources; (2) oscillator, combining
valves to create oscillating inflation with pressure dependent
frequency; and (3) cascaded inflation, employing sequential
valve activation to inflate multiple chambers in a controlled or-
der. These diverse configurations, shown in Figure 3, enhance
the versatility of the haptic feedback qualities delivered by
our reconfigurable, modular system. This architecture enables
rapid modification of tactile signal features to match interac-
tion scenarios -— for example, adding cascaded inflation to
map to the needed quantity of a target ingredient in a recipe
guidance task.

C. Haptic Display Operational Modalities

In this work, the haptic displays operate using three distinct
tactile feedback modalities: pressure, frequency, and area
of contact. Each modality is enabled by a specific output

logic: pressure signals are controlled via individual address-
ing, frequency signals through the pneumatic oscillators, and
area signals through cascaded inflation. While more complex
modalities may be achievable by combining output logic
stages, these tactile modalities represent those commonly seen
in haptic displays.

To characterize the behavior of each of these tactile feed-
back modalities, we conducted experiments measuring their
dynamic response. For the pressure modality, the previously
described valve characterization (Section III-B) shows that
with an inlet pressure of 20.68 kPa, the valves opens with
a flow rate of 2.76 slm with a rise time of 0.51 seconds from
the time the chamber starts being pressurized.

For the frequency modality, oscillator characterization was
conducted by connecting the oscillator circuit to a haptic
display and recording input/output pressures using pressure
sensors (015PGAA5, Honeywell Sensing) and an outlet flow
using a flow sensor (PFLOW3008, Angst+Pfister). The acti-
vation signal pressure S was set to 20.68 kPa, and the input
pressure P was increased from 0 kPa until oscillations ceased
(75.84 kPa) using a hand pressure regulator. Oscillations
began at P = 22.41 kPa, producing a frequency of 1.8 Hz.
A maximum stable frequency of 7.41 Hz was reached at
P = 75.84 kPa, beyond which oscillations would slow and
stop. Due to the rapid cycle time, outlet pressure and flow
did not reach zero, resulting in pressure oscillations between
approximately 3.48 and 13.79 kPa.

For the area of contact modality, which relies on cascaded
inflation of valves, we can estimate the inflation delay using
the earlier characterized valve flow rate. Assuming a valve
chamber volume of 8.58 mL at rest, an additional 1.75 mL
of air is needed to reach the snap-through pressure from
atmospheric conditions. Adding the display pouch volume of
1.25 mL (one of the pouches in the 3-DoF haptic display,
estimated as 1/3 of 3.75 mL), the expected delay in cascading
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inflation would be 0.065 seconds given the 2.76 slm output
flow of a valve. In practice, when measured using a flow
sensor, delays were closer to 0.25 seconds. The difference in
between estimated and actual delay is likely due to pressure
losses in the system and the time it takes to snap the first
valve’s chamber. As well, while we did not explicitly vary
intermediate volumes to tune delay in this study, preliminary
experiments suggest that increasing the volume of downstream
elements (e.g., using a larger volume display for a wrist versus
a finger) would lead to longer delays, an aspect which could
be leveraged in future designs.

The control architecture described in Figure 3 supports
flexible reconfiguration of these output modalities through
simple hardware swaps, without modifying the underlying
software. While the configurations used in our user study
were chosen for consistency between subjects, the system
can scale to different code-to-output mappings by adjusting
the logic inputs and signal blocks. Consider again the recipe
guidance scenario: a haptic display for a user could signal the
ingredient type with pressure, quantity with area, and correct
placement with a high frequency buzz. Depending on the task
demands or user preferences, the mapping can be reconfigured:
more signals for ingredients can be added on the fly or
the quantity signal could be removed completely for a more
experienced user. Our modular fluidic logic system supports
such personalized remapping without software changes.

A key advantage of our approach is the hardware mod-
ularity and ease of physical reconfiguration. All pneumatic
connections between valves, displays, and pressure sources are
made using standard Luer-lock barbed fittings, which enable
quick and tool-free swapping of components. This plug-and-
play design allows users to adapt the system layout relatively
fast. This level of signal flexibility is further made possible by
treating the output logic as modular signal blocks: if the soft
valve assemblies show in Figure 3 are pre-built, reconfiguring
the haptic signals or swapping displays becomes a trivial
task (see Supplemental Movie 2). While producing the soft
valves requires some upfront effort, the long-term payoff is
substantial: all logic components can be used in both code
logic and output logic blocks and have shown little to no
decline in performance over months of use.

IV. ALGORITHMIC PERSONALIZATION

We have developed a modular haptic system that can be
reconfigured to display a variety of signals. But how do we
determine which configuration of the system is best for the
current user? In this section we present the second piece of our
modular approach: an algorithm that recommends mechanical
deployments based on their potential to transfer information
for a given user and task. Our modular software approach
considers both the task’s perspective (i.e., the resolution of a
signal) and the human’s perspective (i.e., the user’s preference
for that signal). We first formulate the problem setting, and
then develop the information transfer approach. We conclude
this section with our human model, which enables users to
provide their input on the types of signals they find most
informative and interpretable.

Problem Setting. The device’s objective is to convey task-
relevant information θ ∈ Θ to the human. Returning to our
running example from Figure 1, θ could be the next step in
the recipe. This information θ ∼ ρ(·) is sampled from the
task’s prior distribution ρ(θ), which encodes knowledge of the
potential task-relevant information, i.e., the device can render
an ingredient and a location but not two locations. The device
then displays a signal s ∈ S (e.g., a change in pressure or
a pulsating frequency). The human perceives this signal and
attempts to complete the task based on their interpretation of
the haptic feedback. For clarity, let signal s have d dimensions,
where each dimension corresponds to a different potential axis
of variation for the signal (e.g., pressure, area, frequency).

Our modular haptic device can be physically reconfigured to
render a variety of different signals with different or the same
dimensions. More formally, let there be N interface config-
urations S = {S1, . . . , SN} we are interested in comparing.
Each configuration represents a different modular deployment
that delivers its own range of haptic signals: S1 may be a 1-
DoF display that renders pressure, and S2 may be a 2-DoF
display that displays pressure and area. Within our running
example, when the fluidic logic is modified in Figure 1,
the haptic system in the new configuration Si now includes
frequency in the signal dimension instead of pressure. The
purpose of our algorithmic personalization is to select the
optimal configuration S from the set of options S.

Information Transfer. We emphasize that this optimal con-
figuration is task- and user-dependent. Some configurations
may not have enough degrees of freedom to describe θ, while
another may be a better fit for the prior ρ(θ). Additionally,
certain users may find some signals salient and interpretable,
while other users may find these same signals confusing,
unintuitive, or otherwise distasteful [54], [55]. In order to
determine the configuration that will be most effective for
the current task and user, we turn to information theory [56].
Information theory provides a principled way to assess how
data is transferred; more specifically, we can use information
theory to quantify how a given deployment of our modular
haptic system will convey data to the human. The information-
theoretically optimal configuration satisfies:

S⋆ = argmax
S∈S

I (θ ; s | S, ρ) (1)

Here, I is mutual information [56]. Intuitively, Equation (1)
expresses how much information the human gains about θ
after observing the signal s, given the current configuration S
and the task prior ρ. The configuration S⋆ that maximizes this
mutual information will — for any given data θ ∼ ρ(·) —
be most capable of selecting signals which convey the desired
data to the human user.

In what follows, we will formally show how Equation (1)
considers both task-specific details (i.e., the robot’s perspec-
tive) and user-specific saliency (i.e., the human’s perspective).
By definition, mutual information in our setting can be sepa-
rated into two components:

I (s ; θ | S, ρ) = H (s | S, ρ)−H (s | θ, S, ρ) (2)

where H is Shannon Entropy [56]. To explain these compo-
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nents, we highlight that H(x | y) captures the uncertainty of
variable x given variable y. If y fully captures x, then the
entropy H(x | y) is zero. On the other hand, if y provides
very little information about x, then H(x | y) is high.

With this understanding in mind, the first term of Equa-
tion (2) is absent of any user-specific personalization. Instead,
it is a function of the probability of the signal occurring given
the interface configuration and the task prior:

H (s | S, ρ) = −
∑

p (s, S, ρ) log p (s | S, ρ) (3)

Assuming that ρ is independent of interface design, this
reduces to a constant:

H (s | S, ρ) ∝ log (|s| × |S|) (4)

All else being held equal, an interface configuration with more
signals that are highly descriptive (i.e., higher dimension) will
have greater mutual information than a smaller interface with
fewer signals. This is sensible: to convey data to the human, we
should select deployments where the haptic system can display
as much information as possible. Accordingly, Equation (4)
captures the robot’s side of information transfer — selecting
configurations that can render high-resolution signals.

The second term of Equation (1) takes the human’s perspec-
tive into account, including aspects such as their preferences,
their ability to parse signals, and their perception error:

H (s | θ, S, ρ) = −
∑

p (s, θ, S, ρ) log p (s | θ, S, ρ) (5)

If the user decodes θ from s without error, then Equation (5)
is 0. If they cannot determine θ based on the robot’s signal s,
then H (s | θ, S, ρ) approaches log (|s| × |S|) and the mutual
information from Equation (1) becomes 0. Intuitively put:
if a given haptic display is able to render many different
signals — but the human cannot interpret any of them —
that configuration is useless in practice. This mathematically
highlights the importance of humans in information transfer;
understanding how humans perceive different haptic signals is
necessary to determine appropriate configurations.

Human Preferences. We encode the human’s perception of a
given haptic signal by modeling how people connect signals
s to data θ. Put another way, if the robot can convey a set of
signals S, and the robot is trying to communicate the specific
data θ, what signal s does the human expect the robot to
display? We write this relationship as the probability term
p(s | θ, S, ρ) on the right side of Equation (5). To instantiate
this probability, we consider user-specific saliency within the
principle of maximum entropy [57]:

p(s | θ, S, ρ) ∝ exp
(
−β · ∥h(θ)− s∥2W

)
(6)

where h : Θ 7→ S is a function representing the signal that
the human expects for each θ: i.e., this is how the human
thinks they should interpret signals. Within Equation (6) there
are two parameters that specify the human’s perception of
the haptic signal. First, constant β ≥ 0 captures the overall
sensitivity of the user; second, matrix W ∈ Rd×d encodes how
preferable the user finds each axis of the signal. Putting each
term together, Equation (6) says that humans find it easier to
discern and interpret signals when they are sensitive to those

signals (higher β) and when they prefer receiving those signals
(larger W ). Of course, we recognize that this model is limited
— it does not explicitly account for affective or cognitive
responses to feedback. Future works can leverage our over-
arching modular framework and simply replace Equation (6)
with other human models. For our experiments, Equation (6)
provides a way to quickly formulate user-specific preferences
and represent the human’s perspective of the haptic system.

By combining Equations (4), (5) and (6) we ultimately
reach information theoretic interfaces that balance utility and
interpretability. If a given configuration does not have a
sufficient range of signals to convey the desired task (e.g., the
display can only show two different signals, but there are five
unique goals), then the first term in Equation (2) decreases
and the information transfer falls. Alternatively, if a given
configuration renders signals that the human does not like or
struggles to perceive (e.g., the haptic display can only apply
different pressures, but the human cannot tell these pressures
apart), then the second term in Equation (2) becomes more
negative and again we fail to maximize information transfer.
The configuration S∗ that maximizes information transfer
(a) provides sufficient signals to convey the task, while (b)
aligning those signals with the human’s preferences and per-
ception. We emphasize that the configuration that maximizes
Equation (1) is not simply the one that the user prefers. As
we show in our experiments, the optimal configuration must
balance the user preferences with its inherent ability to convey
data.

Implementation. Equation (1) formally accomplishes this
trade-off. When applying Equation (1), we first record which
signal types a given human prefers, and by how much, along
a α-1 scale, and then use their preferences to complete the
matrix W . Here higher values indicate increased preference.
Based on these results we can then compute the information
gain for each possible haptic configuration S ∈ S , and rank
those configuration from most recommended to least recom-
mended. The configuration S∗ which maximizes Equation (1)
is then recommended to the user. At this point the human can
physically reconfigure the fluidic logic — i.e., unplugging and
plugging-in tubes — to reach the recommended configuration
and render signals that are both informative and intuitive.

V. USER STUDY

We evaluate our modular haptic system from Section III and
our personalization algorithm from Section IV in a two-part
user study with n = 13 members of the Purdue University
community. In this study, we considered three modalities:
pressure, area, and frequency (Section III-C). To facilitate ex-
perimental design, enhance tractability, and support controlled
comparison, we intentionally limited the number of discrete
levels per modality. These constraints were also informed
by practical considerations. Pressure signals were assigned
four discrete levels (6.89, 13.79, 20.68 and 27.58 kPa) due to
the ease of implementing scalable valve configuration; area
of contact signals use three discrete levels, reflecting the
maximum number of independently controlled pouches in our
3-DoF display; and frequency signals were limited to two
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Figure 4. (Left) Our method for selecting ranking interface configurations. The algorithm ranks three interface configurations according to the user’s preferences
and task-specific parameters. This process is outlined in Section IV. (Middle) A participant interacts with our modular haptic device in the Search environment.
The haptic device is highlighted in green, and the task-relevant information is highlighted in orange. (Right) A participant interacts with our modular haptic
device in the Assembly environment. The task-relevant information is highlighted in orange.

levels (4 and 7 Hz), based on the range of stable frequencies
of the pneumatic oscillators. In each of two tasks, the user
interacts with three combinations of these modalities: pressure-
area (PA), pressure-frequency (PF), and area-frequency (AF).

All three configurations used a distinct combination of code
logic and output logic circuits. For each configuration, the user
interacted with two separate ring displays — one for each
modality in the pair. The pressure and frequency modalities
used the 1-DoF displays, while the area modality used the
3-DoF display. This setup allowed us to isolate the effect of
each modality pairing while maintaining system consistency
and modular integrity.

Experimental Setup. Participants performed two tasks in-
volving physically guiding a Franka Research 3 manipulator
with the feedback provided by our modular haptic device.
Before beginning, we showed all the modalities and their
respective levels to users. Participants indicated their modality
preferences using a sliding scale interface (see Figure 4).
These preferences were then converted into a preference
matrix according to Equation (7) for use in our human model
(Equation (6)):

W (α) =
1

1 + α

P1 + α 0 0
0 P2 + α 0
0 0 P3 + α

 (7)

Equation (7) normalizes saliency in the range [α, 1]. We
chose α = .25 for this user study. Using the personaliza-
tion algorithm detailed in Section IV, we ranked the three
interface configurations for each user based on their expected
information gain. These configurations consisted of two haptic
displays, each conveying signals from one modality mapped
to an axis of information in the task. We identified these
configurations per user as Rank 1, 2, and 3, corresponding
to the highest, intermediate, and lowest expected information
gains, respectively. In both tasks, the robot manipulator has
hidden information that it communicated through the modu-
lar haptic system using these configurations. The first task,
Search, was a goal-reaching task: the robotic manipulator had

a discrete target position within a 4×4 grid. Users interpreted
haptic signals to guide the manipulator’s end effector toward
the perceived intended goal. The second task, Assembly, was
a higher-dimensional ingredient-selection scenario. Here, the
hidden information specified one of seven ingredients placed
in individual bowls and one of three destination plates. Par-
ticipants interpreted the haptic cues, moved the robot’s end
effector to select the correct ingredient bowl, and subsequently
placed the ingredient onto the indicated plate.

Participants and Procedure. We recruited 13 participants
(6 female, average age 24 ± 4) of the Purdue University
community for this user study. Of the 13 participants, five
had not previously used robotic manipulators and 10 had
not previously interacted with haptic devices. Participants
provided written consent according to university guidelines
(IRB # 2025-19).

We leveraged a within-subjects design, with each participant
completing 8 trials per interface configuration. Participants
were not informed about the relative ranking or expected per-
formance of each interface configuration (e.g., which interface
had higher information gain). To mitigate order effects, we
randomized and counterbalanced both the sequence of tasks
and the order of interface configurations across participants.
For instance, approximately half of the participants began with
the Search task, and about a third started with the pressure-area
configuration.

In each trial, participants received two consecutive haptic
signals, each lasting three seconds, with each signal cor-
responding to a distinct piece of task-relevant information.
Specifically, in the Search task, the first signal corresponded to
the target’s discrete position along the X-axis, and the second
to the position along the Y-axis. Similarly, in the Assembly
task, the initial signal indicated which ingredient participants
should select from among seven options, while the subsequent
signal indicated the plate onto which the ingredient should
be placed from three possible locations. Participants were
instructed that signal intensity corresponded proportionally to
magnitude; for example, greater signal intensity indicated a
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Figure 5. Results from our in-person user study. An asterisk (⋆) denotes sig-
nificance. (Top) In the Search task, a repeated-measures ANOVA test revealed
that configurations had a significant effect on error: F (1.868, 192.454) =
6.719, p < .05. Post-hoc analysis suggests that our predicted Rank 1 interface
configuration outperformed the Rank 2 (p < .05) and Rank 3 configurations
(p < .001) in terms of Error, but it does not outperform with respect to the
Time needed to complete the task. (Middle) Likewise in the Assembly task, a
repeated-measures ANOVA test revealed that configurations had a significant
effect on error: F (1.984, 204.373) = 3.499, p < .05. Post hoc-analysis
shows that Rank 1 configurations significantly outperform Rank 3 (p < .05)
with a trend toward better performance over Rank 2 (p = .197). As in the
Search task, configurations did not seem to have a significant effect on time.
(Bottom) Combined subjective ratings from our Likert-scale survey indicate
a significant difference between the subjective preferences of Rank 1, 2, and
3 configurations. A detailed analysis of results are presented in Table I.

more distant target location along the respective axis. After
each trial, participants received feedback indicating the accu-
racy of their responses, including the correct target and the
Manhattan distance between their selection and the intended
answer. The entire user study procedure lasted approximately
50 minutes per participant.

Dependent Measures — Objective. We leveraged the Franka
Research 3 manipulator to measure the position of the end-
effector. To assess user performance, we considered two met-
rics: time and error. In the Search task, error was quantified
as the mean-squared error (MSE) between the intended goal
position θ and the center of the closest grid cell to the user’s
final end-effector position. In the Assembly task, we calculate
error in a similar way by determining the closest bowl and
plate during the interaction and measuring the mean-squared

Pressure-Area

Pressure-Frequency

Frequency-Area

Rank 1 Configurations

69%

Rank 2 Configurations

46%

31%

23%

23%

8%

User Preference (onset)

45%

45%10%

Rank 3 Configurations

31%

69%

Figure 6. We report the number of times that each configuration is rated
Rank 1, 2, or 3. We also note the reported User Preference at the onset of
the interaction. Note that this is not the results of our Likert-Scale survey: it
is derived from the preference data we recorded prior to task completion.
These results show that although the algorithm in Section IV accounts
for preferences, it does not rely on them: our method considers both user
preference and task parameters. If our method considered preferences alone,
the User Preference and Rank 1 Configuration charts would be identical.
Similarly, if preference data was ignored, then the Rank 1 configuration chart
would comprise of a single configuration. Instead, this figure shows that a
diverse collection of interface configurations are deployed across users in a
way that maximizes task performance while accommodating user preference.

error of the intended bowl and plate with the recorded bowl-
plate combination.

Dependent Measures — Subjective. Between each config-
uration, participants completed a 7-point Likert scale survey.
This survey assessed the user’s subjective preferences along
five multi-item scales. We asked users:

1) If they trusted the interface to guide them.
2) If they adapted to the interface’s signals.
3) If they understood the interface’s signals.
4) If they could differentiate the interface’s signals.
5) If they preferred using this configuration.

Hypotheses. We had three hypotheses for this user study:
H1. The configurations that our method selects will
be more efficient than alternatives.
H2. The configurations that our method selects will
be more understandable than alternatives.
H3. Users will subjectively prefer configurations that
our method selects.

Results – Objective. We analyzed user performance in both
the Search and Assembly tasks using two objective measures:
error and completion time. We conducted repeated-measures
ANOVA tests with configuration (Ranks 1–3) as the within-
subjects factor. We report significant effects at p < .05 and
apply Bonferroni correction for post-hoc comparisons.

In the Search task, we found that the configuration
of the haptic display had a significant effect on error
(F (1.868, 192.454) = 6.719, p < .01). Post-hoc comparisons
confirmed that Rank 1 (the configuration recommended by
our method) significantly outperformed Rank 2 (p < 0.05) and
Rank 3 (p < .001). Completion time did not differ significantly
across configurations (F (2, 206) = 2.518, p = .083), with
Rank 2 yielding the shortest average time.
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Table I
QUESTIONS FROM OUR LIKERT-SCALE SURVEY GROUPED INTO FIVE SCALES: TRUST, ADAPTATION, INTUITIVENESS, CLARITY, AND PREFERENCE. THE

RELIABILITY (CRONBACH’S α) AND RESULTS FROM A REPEATED-MEASURES ANOVA ARE REPORTED FOR EACH SCALE. A p < .05 INDICATES
SIGNIFICANT DIFFERENCES ACROSS METHODS.

Questionnaire Items Reliability F(2,50) p-value
Trust .87 8.75 < .001

I trusted the interface to guide me accurately during the task.
I could not rely on the interface’s signals when completing this task.

Adapt .69 7.15 < .01
I was able to adapt to the feedback provided by this configuration.
I struggled to adapt to the interface’s signals.

Understand .76 9.59 < .001
I understood what this interface was trying to convey.
I found the signals from this configuration confusing and unclear.

Distinguish .85 5.03 < .05
I could easily differentiate between signals when using this interface.
I could not distinguish between signals when using this configuration.

Prefer .91 10.18 < .001
I would prefer to use this configuration again in future tasks.
I would prefer to not use these modalities for future tasks.

In the Assembly task we again observed a significant ef-
fect of configuration on error (F (1.984, 204.373) = 3.499,
p < .05). Post-hoc analysis showed that Rank 1 significantly
outperformed Rank 3 (p < .05), with Rank 1 showing
a non-significant trend toward better performance compared
to Rank 2 (p = .10). Completion times did not show a
significant main effect (F (2, 206) = 2.369, p = .096).
While these results indicate no statistical difference in time
across configurations, this can be viewed positively: improved
task accuracy with Rank 1 configurations was not achieved at
the cost of longer task durations. These results suggest that
the gains in accuracy introduced by the personalized Rank 1
configurations were not due to slower, more deliberate actions,
but instead reflect improved signal clarity and interpretability.

Results – Subjective. After using each haptic configuration,
participants rated their experience across five scales: Trust,
Adaptation, Intuitiveness, Clarity, and Preference. Table (I)
and Figures (5-6) summarize our results. We first tested the
reliability of our five scales and found that all five were reliable
(Cronbach’s α > 0.7). Accordingly, we grouped each of
these scales into a combined scale and performed a repeated-
measures ANOVA on the results. The haptic configurations
recommended by our modular approach consistently received
the highest ratings across all subjective measures (p < 0.05).
Participants reported greater trust in Rank 1, found it easier
to adapt to, and described it as clearer and more intuitive.
Preference scores also strongly favored Rank 1, indicating a
high level of user satisfaction with the configurations selected
by our algorithm. These results suggest that users could
not only perform better with Rank 1, but also subjectively
recognize and value its benefits.

VI. DISCUSSION

The user study results demonstrate that both aspects of our
modular approach led to improved objective performance and
more favorable user experiences. Rank 1 configurations (i.e.,

hardware configurations recommended by our information
gain algorithm) consistently resulted in lower task error and
higher subjective ratings, supporting our hypotheses.

Impact of Hardware Modularity. Our modular hardware ap-
proach enables physical reconfiguration of the haptic displays,
which proves essential in accommodating individual differ-
ences. While in the user study the PA configuration was most
frequently selected as Rank 1 by our personalization algorithm,
the other displays were better for 4 out of 13 users. Without
hardware modularity, this result would suggest that PA is
the most effective interface out of the three options to build.
However, with the modular and reconfigurable hardware, each
participant could be given their Rank 1 interface configuration.
While not exercised to the fullest extent in this experiment,
this reinforces the value of physical reconfiguration: a larger
variety of different combinations of pressure, frequency, and
area could feasibly allow the system to further accommodate
diverse user needs, preferences, and perceptual sensitivities
with only quick hardware reconfigurations. Without this me-
chanical flexibility, such personalization would not be possible.

Additionally, modality effectiveness did not always fully
transfer across tasks. In the Assembly task — which required
interpreting one signal to choose an object from a set of seven
and another from a set of three — participants found certain
configurations less intuitive. For instance, one noted, “area was
super hard when it was assigned to finding the ingredient,” and
another stated, “the assembly task was difficult and frustrating
because none of the modalities mapped well.” These experi-
ences emphasize that signal-task alignment is critical as well.
Here, hardware modularity offers another key advantage: it
allows designers to quickly reconfigure which modalities are
assigned to which task components (e.g., mapping a clearer
signal to the harder selection task) and the dimensionality of
those modalities.

Beyond supporting personalization in this study, the hard-
ware modularity of our system plays a critical role in enabling
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broader adaptability. From a practical standpoint, swapping in
new signals types or adjusting modality pairing requires min-
imal effort — standardized valve assemblies and interchange-
able displays could allow researchers to rapidly prototype
and evaluate new configurations iteratively, without modifying
software or rebuilding the core system. This potentially makes
our system scalable to more complex interfaces and to user
adaptation over time.

Impact of Algorithmic Recommendations.
Complementing the mechanical flexibility, our algorithmic

layer determined which hardware configuration to deploy for
each user. Interestingly, the configurations selected by the al-
gorithm did not always match participants’ initial preferences,
nor pick the display with the most distinct signals. Figure 6
illustrates this: if our algorithm relied only on preferences, the
Rank 1 and User Preference distributions would be identical —
but they are not. If it ignored preferences entirely, all Rank 1
configurations would have been the same — which is also not
the case. Instead, the algorithm successfully considers both
user preferences and task parameters, selecting the signal pair
that is expected to maximize information transfer for each
user. As a result, PA appeared as the top-ranked interface for
9 out of 13 participants and the remaining participants were
assigned either PF (3 participants) or AF (1 participant) as their
top configuration. In all cases, each participant — regardless
of their assigned configuration — performed best with their
Rank 1 interface configuration, keeping the same trends seen
in Figure 5.

Some reasons for the discrepancy from user preference or
maximal signal are suggested by participant comments. Some
participants reported perceptual overlap between modalities,
making certain configurations harder to interpret. For example,
one user remarked, “PA confused me a little because they felt
like very similar signals,” while another shared, “I thought
I had pressure figured out but then I would make mistakes
that would make me doubt it.” Other participant feedback
highlighted where saliency was high but granularity was low.
One participant wished that “frequency had more levels,” while
another offered a more strategic suggestion: “I would like to
separate the ingredients into two groups, then I would assign
two modalities to the ingredients only.”

It is important to note that this is with a simple static human
model, i.e. user reported preference after a single interaction,
and with a small set of task repetitions without time for signif-
icant adaptation. Interestingly, one participant described their
experience of decoding haptic signals by drawing parallels to
the process of machine learning. “So this is how it feels to be
a machine learning algorithm?” This reaction highlights a core
insight of our approach: participants were engaging in a form
of online inference, forming and refining internal models of
the interface over time. This perceptual co-adaptation suggests
that future systems could go beyond static personalization,
incorporating metrics like user error and reaction time to
continuously re-rank or adjust signal selection over time.

System Simplicity and Limitations. The pneumatic infras-
tructure required to support our reconfigurable haptic system is
fundamentally simple: a pressurized air supply, hand pressure

regulators to produce P0 to PN and signal level pressure,
solenoids to turn on and off code logic inputs, and some-
thing to control the on/off state of the solenoids, such as a
microcontroller or logic switches. These relatively inexpensive
components and simple control makes the system easily acces-
sible and maintainable for users without previous experience
in pneumatic device design. That said, there are limitations
when trying to scale to higher input-output combinations.
Although our 3I/8O system performed reliably, increasing
complexity to, for example, 5I/32O or beyond may begin
to introduce significant mechanical delays as valves respond
sequentially, and pressure losses in longer chains may impact
consistency. Higher efficiency and faster switching mechanical
valves could aid in such scaling [41]. Another potential area
for improvement within our modified soft valve design would
be an option to maintain full bistability, as seen in the original
molded design. In our version, the use of stock silicone tubing
introduces greater stiffness to the internal structure, causing the
membrane to be monostable when depressurized. For many
logic operations in our system, this behavior is sufficient and
even desirable. However, for more complex display behaviors
could be achieved with persistent state memory and asyn-
chronous behavior, which a fully bistable valve would allow.

VII. CONCLUSION

In this work we presented a modular haptic display with
reconfigurable signals. The basis of our haptic display was a
set of fluidic logic circuits. By reconfiguring, i.e. connecting
and disconnecting, these logic circuits, users can manually
change the haptic signals that their interface renders. A key
implementation benefit was that — because of the design of
these circuits — no pressure or flow controllers were required,
and, in our user experiments, the same software could provide
combinations of either pressure signals, frequency signals, or
area signals with only hardware reconfiguration. Overall, our
physically modular hardware set the stage for haptic systems
that can customize their signals to align with the current user
and task. In practice, this modularity enabled a wide range of
different configurations; to determine which configuration was
best for the current user and task, we formulated a set of equa-
tions to recommend the haptic configuration that maximized
information transfer. This recommendation balanced both the
robot’s perspective (choosing information-rich displays) and
the human’s perspective (selecting displays that the human
could sense and prefer). Our experiments across two tasks
suggest that haptic signals which were personalized to the user
led to more effective performance than the alternatives. Both
aspects of our work contributed to its overall effectiveness:
(a) different individual users performed better with different
configurations, confirming that one size does not fit all and me-
chanical customization is required, and (b) the recommended
— and best performing — interface is not simply the haptic
display that user’s subjectively prefer. Instead, our algorithm
correctly balanced user preferences with the task’s commu-
nication requirements. Overall, our mechanical, algorithmic,
and experimental findings suggested that personalizing haptic
systems through modular, reconfigurable signals enables more
seamless human-machine communication.
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APPENDIX

A. Code Logic Details

Here we provide additional details for fluidic logic circuits
implemented in the code logic. Figure A1 shows the set of
fluidic logic circuits used to implement our 3-bit pneumatic
code logic. These circuits were automatically generated using
the Soft Compiler tool developed by Kendre et al. [17],
based on the truth table shown. Each output state (S0–S7)
corresponds to one unique combination of inputs (A, B, C),
and the resulting signal is used to activate a separate valve that
passes actuation pressure to the output logic stage, as shown
in Figure 3.

Figure A1. Fluidic logic circuits automatically generated using the Soft
Compiler developed by Kendre et al. [17]. These circuits implement the code
logic stage of our fluidic control architecture, functioning as a pneumatic
demultiplexer. A 3-bit input (A, B, C) selects one of eight output states
(S0–S7), which in turn activates a downstream valve that routes actuation
pressure (P0, P1, ..., PN ) to the output logic stage.
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