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Stable-BC: Controlling Covariate Shift with Stable Behavior Cloning
Shaunak A. Mehta1, Yusuf Umut Ciftci2, Balamurugan Ramachandran1, Somil Bansal2, and Dylan P. Losey1

Abstract— Behavior cloning is a common imitation learning
paradigm. Under behavior cloning the robot collects expert
demonstrations, and then trains a policy to match the actions
taken by the expert. This works well when the robot learner
visits states where the expert has already demonstrated the
correct action; but inevitably the robot will also encounter new
states outside of its training dataset. If the robot learner takes
the wrong action at these new states it could move farther from
the training data, which in turn leads to increasingly incorrect
actions and compounding errors. Existing works try to address
this fundamental challenge by augmenting or enhancing the
training data. By contrast, in our paper we develop the control
theoretic properties of behavior cloned policies. Specifically, we
consider the error dynamics between the system’s current state
and the states in the expert dataset. From the error dynamics
we derive model-based and model-free conditions for stability:
under these conditions the robot shapes its policy so that its
current behavior converges towards example behaviors in the
expert dataset. In practice, this results in Stable-BC, an easy
to implement extension of standard behavior cloning that is
provably robust to covariate shift. We demonstrate the effective-
ness of our algorithm in simulations with interactive, nonlinear,
and visual environments. We also conduct experiments where
a robot arm uses Stable-BC to play air hockey. See our website
here: https://collab.me.vt.edu/Stable-BC/

I. INTRODUCTION

Behavior cloning enables robots to learn new tasks by
imitating humans. Consider the air hockey game in Figure 1.
Here a human might show the robot arm a few examples of
how to block the puck. With behavior cloning, the robot
learns to match the human’s actions, so that — if the robot
sees the puck moving like it did in one of the examples
— the robot mimics how the human expert blocked that
puck. But what happens when the puck moves in a new way
(e.g., with a previously unseen angle or velocity)? This is
an instance of covariate shift, a difference between what the
robot observes at training time and what the robot encounters
when executing its learned policy [1]–[3]. Covariate shift is
a fundamental problem for behavior cloning because it can
lead to compounding errors: a small change in the puck angle
or velocity may cause the robot to take the wrong action,
resulting in a larger covariate shift and increasingly incorrect
robot behavior (i.e., the robot misses the puck entirely).

Existing research tries to prevent compounding errors and
learn robust policies by focusing on the data (i.e., the human
examples) used during behavior cloning. For instance, when
the human provides initial demonstrations of their desired
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Fig. 1. Robot playing air hockey by behavior cloning demonstrations D.
The robot can successfully hit the puck when it moves at an angle and
velocity observed during training (∈ D). However, when the puck moves
at new angles or velocities (/∈ D), standard behavior cloning (BC) misses
the puck entirely because of covariate shift. To address this problem we
introduce Stable-BC, a variant of BC that encourages the system state to
evolve similarly to the expert’s demonstrated behaviors.

behavior, off-policy methods perturb the human to collect
more diverse examples [4], [5], or synthetically augment
the human’s demonstrations to gather a larger dataset [6]–
[10]. Similarly, as the robot executes what it has learned in
the environment, on-policy methods encourage the human to
correct the robot when it makes mistakes, and then add these
new examples to the robot’s dataset [11]–[16]. In either case,
a core idea within existing works is that — if the robot has
sufficient and relevant data — it will return to the desired
behavior when it encounters novel states and situations.

In this paper we introduce an alternate viewpoint for robust
behavior cloning. Instead of enhancing the data used to train
the robot, we will focus on the control theoretic properties
of the robot’s learned policy. We hypothesize that:

Behavior cloned policies are robust when they stick to
what they know, i.e., when the robot remains close to the

example motions that the expert demonstrated.

Our intuition here is that compounding errors occur when the
robot drifts away from its training distribution, and so we can
avoid these errors by intentionally attracting the robot back
towards the dataset. We apply this hypothesis to formulate
covariate shift as a dynamical system, and derive stability
conditions that cause the robot to converge towards behaviors
the human has demonstrated. In practice, this results in a
behavior cloning algorithm with two loss functions. First,
the standard loss that causes the robot policy to match the
human’s behavior, and second, a stability loss that makes the
expert dataset a basin of attraction. Robots that execute this
learned policy are inherently robust to covariate shift: e.g.,
when the puck’s angle and velocity in Figure 1 deviates from
the dataset, the robot extrapolates from the expert examples
while still remaining similar to these demonstrated behaviors.

Overall, we make the following contributions:

https://collab.me.vt.edu/Stable-BC/
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Stability Condition. We write covariate shift as a linearized
dynamical system. We then use these error dynamics to de-
rive model-based and model-free stability conditions. These
conditions bound the covariate shift in the robot state as a
function of the covariate shift in the environment state.

Stable-BC. We leverage our analysis to develop Stable-BC,
a behavior cloning algorithm that encourages policy stability
around the dataset. Two key advantages of our approach are
(a) it is easy to implement and (b) it does not alter the training
data. As such, Stable-BC can be applied independently or
alongside existing on-policy or off-policy methods.

Experiments. We conduct simulated experiments in inter-
active, nonlinear, and visual environments. We also perform
a real-world study where human users teach a robot arm to
play a simplified game of air hockey. Across all experiments,
we find that Stable-BC results in more robust and effective
policies than state-of-the-art baselines.

II. RELATED WORKS

Behavior cloning is a common imitation learning approach
in robotics [17]. Below we summarize recent methods for
robust behavior cloning, as well as works that apply stability
analysis in similar imitation learning settings.

Off-Policy Approaches. Within behavior cloning the robot
is given a dataset of expert state-action pairs, and the robot
learns a policy to match this dataset. One way to enhance the
robustness of the learned policy is to improve the quality of
the original dataset. For example, some off-policy methods
intentionally perturb the human when they are providing
demonstrations, and then record how the human corrects
the robot in response to those disturbances [4], [5]. Other
approaches synthetically augment the dataset provided by
the human to enhance the diversity and quantity of training
data [6]–[10]. For example, Ke et al. [6] learn a dynamics
model from the data, and then use that model to generate new
state-action pairs that align with the expert’s demonstrations.

On-Policy Approaches. The robot can also iteratively gather
new data by executing its policy in the environment, and then
asking the human to provide expert guidance when the robot
makes mistakes [11]. Recent works in interactive imitation
learning explore when to query the human for additional
data, and how to best leverage that data to accelerate the
robot’s learning [12]–[16]. For example, in Menda et al. [14]
the robot maintains an ensemble of behavior cloned models;
the robot asks for human guidance when it encounters a state
where the models disagree over which action to take.

Overall, both off-policy and on-policy methods focus on
the data used to train the behavior cloned agent. This is
orthogonal to our approach, where we will only consider
the control theoretic properties of the learned policy.

Stable Imitation Learning. Multiple related works have
applied stability analysis to imitation learning. For example,
safety filters [18]–[20] monitor the robot’s real-time error
(e.g., covariate shift), and revert to a given or learned
backup policy when that error exceeds some threshold. Other
methods structure the robot’s policy like a dynamical system,

and ensure that this system converges towards a goal state
[21]–[23]. The robot can also take advantage of the stability
of the human teacher: Pfrommer et al. [24] train the robot’s
behavior cloned policy to match the higher order derivatives
of the human’s demonstrations.

Our approach is most similar to recent research by Kang
et al. [25]. In [25] the authors seek to prevent distribution
shift in learned policies by formulating the entire training
distribution as an equilibrium point. However, [25] focuses
on model-based reinforcement learning — by contrast, we
study local stability for behavior cloning.

III. PROBLEM STATEMENT

We consider settings where a robot is learning to imitate
human behaviors. This includes scenarios where the robot is
acting in isolation (e.g., a robot arm reaching a goal position),
as well as interactive tasks where the robot must reason over
other agents (e.g., an autonomous vehicle at an intersection
with a human-driven car). Offline the robot is provided with
a dataset of state-action pairs, and the robot applies behavior
cloning to learn its policy. Our objective is for the robot to
extrapolate from the dataset to the learned policy, so that
online — when the robot executes this policy — the system
is robust to covariate shift.
Robot. Let x ∈ X ⊂ Rm be the state of the robot and let u ∈
U ⊂ Rn be the robot’s action. For instance, within our air
hockey example from Figure 1, x is the position of the paddle
and u is the robot’s end-effector velocity. The robot’s state
evolves according to the dynamics ẋ(t) = f

(
x(t), u(t)

)
. We

assume that the robot can observe its state x, and that the
robot has an accurate model of its own dynamics f .
Environment. During each task the robot interacts with
its environment. This environment could consist of static
goals, dynamic objects, or even other agents. We separate
the state of the environment from the state of the robot: let
y ∈ Y ⊂ Rd be the environment’s state. Returning to our air
hockey example, y could be the angle and velocity of the
puck the robot is trying to block. The environment state y
updates according to its dynamics ẏ(t) = g

(
x(t), y(t), u(t)

)
.

We assume that the robot can observe the environment state
y, but we do not assume that the robot has access to the
environment dynamics g. For instance, when the robot arm
moves to block the puck, the robot does not know how the
angle and velocity of the puck might change after collision.
Behavior Cloning. The robot is given a dataset D of N state-
action pairs. Here the overall system state (x, y) consists of
both the robot’s state and the environment’s state. Hence, the
offline dataset is: D = {(x1, y1, u1), . . . , (xN , yN , uN )}.

Based on this dataset, the robot should learn a policy π
that maps from system states to robot actions: π(x, y)→ u.
We instantiate this policy as a neural network with weights θ.
Within standard behavior cloning algorithms the robot learns
θ such that the policy’s actions match the human’s actions
across states in the dataset. More specifically, the robot learns
θ to minimize the loss function:

LBC(θ) =
∑

(x,y,u)∈D

∥πθ(x, y)− u∥2 (1)
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Although the resulting policy is designed to mimic the human
at states within dataset D, it may fail to match the human
outside of this dataset. Consider Figure 1: training the robot
using Equation (1) leads to compounding errors when the
puck moves at a previously unseen angle and velocity.

IV. STABLE BEHAVIOR CLONING

Our objective is to learn a robot policy that maintains
the correct behavior despite covariate shift. Here we return
to our hypothesis: behavior cloning is robust when robots
stick to what they know, i.e., when robots remain close
to the example motions the expert has demonstrated. We
will apply this hypothesis to introduce Stable-BC, a control
theoretic approach for behavior cloning. Stable-BC is based
on the error dynamics between the system’s current state and
the states in dataset D. We define these error dynamics in
Section IV-A, and derive the stability conditions under which
the error locally converges to zero. In practice, robot policies
that satisfy these stability conditions update the robot’s state
to converge towards behaviors in the dataset, mitigating the
effects of covariate shift and preventing compounding errors.
We next apply our stability analysis to derive new loss
functions for behavior cloning when the robot has access
to a model of the environment (Section IV-B), and when the
environment dynamics are unknown (Section IV-C).

A. Error Dynamics and Stability Analysis

We start by formulating the error dynamics between the
current state of the system and the states observed during
training. Let (x′, y′) be the current state, and let (x, y) ∈ D
be a labeled state from the training dataset. In order to remain
close to behaviors that the human expert has demonstrated,
the robot should take actions so that a trajectory starting at
(x′, y′) converges towards a trajectory starting at (x, y). Re-
call that the robot state x updates according to the dynamics
ẋ = f(x, u), and the environment state y updates according
to dynamics ẏ = g(x, y, u). Utilizing these equations, the
overall error dynamics become:

ẋ′ − ẋ = f
(
x′, u′)− f

(
x, u

)
(2)

ẏ′ − ẏ = g
(
x′, y′, u′)− g

(
x, y, u

)
(3)

Compounding errors occur when (x′, y′) diverges from the
dataset (x, y) ∈ D, i.e., as the error grows over time. To
mitigate compounding errors we therefore want to design
the robot’s policy such that Equations (2) and (3) converge
to zero. Substituting u = π(x, y) into the above equations,
where π is the robot’s policy, and applying a first order Taylor
Series approximation around (x, y) ∈ D, we reach:

ẋ′ − ẋ =
(
∇xf +∇uf · ∇xπ

)
(x′ − x)

+
(
∇uf · ∇yπ

)
(y′ − y)

ẏ′ − ẏ =
(
∇xg +∇ug · ∇xπ

)
(x′ − x)

+
(
∇yg +∇ug · ∇yπ

)
(y′ − y)

It is important to recognize that these equations are coupled.
The covariate shift in the robot state x is a function of the
covariate shift in the environment state y, and vice versa.

This coupling is reflected in our motivating example from
Figure 1: if the puck moves with a new angle or velocity
such that y′ is dissimilar from any y in the dataset (i.e.,
∥y′ − y∥ is large), then this could cause the robot’s position
x′ to increasingly diverge from labeled states x.

Below we write the coupled system in standardized form:

ż = Az (4)

where z is the augmented error state, and A is a square
matrix that captures the coupled error dynamics:

z =

[
x′ − x
y′ − y

]
, (5)

A =

[
∇xf +∇uf · ∇xπ ∇uf · ∇yπ
∇xg +∇ug · ∇xπ ∇yg +∇ug · ∇yπ

]
(6)

Ideally, we want the error dynamics ż = Az to be stable
about the equilibrium z = 0. If we achieve this stability, then
the the behavior starting at the current system state (x′, y′)
will converge towards the demonstrated behavior starting at
a labeled state (x, y). This mathematically formalizes our
original hypothesis: stabilizing Equation (4) encourages the
robot to take actions that remain close to the examples
the expert has demonstrated. Because matrix A is a local,
linearized approximation of the error dynamics, we conclude
that ż = Az is locally stable if and only if matrix A is stable,
i.e., if all eigenvalues of A have negative real parts [26] (The-
orem 7.1). When A is stable the system locally converges
towards z = 0. The rate of convergence is determined by the
eigenvalues of matrix A, where more negative eigenvalues
result in faster convergence [26] (Theorem 7.2).

B. Stable-BC for Model-Based Settings

Overall, our analysis from Section IV-A indicates that we
can mitigate errors between the system’s current behavior
and the expert’s demonstrated behaviors by ensuring that
matrix A is stable. Inspecting Equation (6), we find that A
depends upon the robot dynamics f , the robot policy π, and
the environment dynamics g. In this section we will focus
on model-based settings where the robot has access to all of
these terms. Put another way, here we assume that the robot
not only knows its own dynamics f(x, u), but it also has an
accurate model of the environment dynamics g(x, y, u).

Stability vs. Performance. Within model-based settings the
robot can directly compute the A matrix. Accordingly — in
order to make the matrix A locally stable — we simply need
to train the robot’s policy π such that all the eigenvalues of
A have negative real parts across each state (x, y) ∈ D. But
just ensuring that A is stable does not mean that the robot
has learned to perform the task correctly. In fact, this stability
can conflict with performance; for instance, when A is stable
the robot may converge to z = 0, and then remain at rest at
that local equilibrium instead of continuing to complete the
task. In practice, we resolve this theoretical conflict between
stability and performance by training the robot to match
the expert’s demonstrations (standard behavior cloning loss)
while also penalizing the robot’s policy when A is unstable
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(our proposed addition). This leads to the loss function:

L(θ) =
∑

(x,y,u)∈D

[
∥u− πθ(x, y)∥2

+ λ
∑

σi∈eig(A)

ReLU(Re(σi))

] (7)

The first term in Equation (7) matches the original behavior
cloning loss function from Equation (1). Within the second
term, σi∀i ∈ {1, 2, · · · } are the eigenvalues of A, Re(σ)
represents the real part of eigenvalue σ, and ReLU is the
Rectified Linear Unit activation. The constant λ > 0 is
a hyperparameter set by the designer that determines the
relative weight of the two loss terms. Intuitively, a robot
policy that minimizes Equation (7) mimics the expert’s
actions across the dataset D, while also shaping its policy
to converge towards the demonstrated behaviors. We directly
use this loss function to train Stable-BC policies in model-
based settings where the robot has an estimate of g.

C. Stable-BC for Model-Free Settings

In practice, often robots do not have a model of how
their actions will impact the environment around them. For
instance, in our air hockey experiments the robot arm does
not know how its position x and velocity u will change y, the
angle and velocity of the puck. In this section we therefore
consider model-free settings where the robot is not given
the environment dynamics g(x, y, u). Model-free settings are
challenging because — without a model of g — the robot can
only compute the top row of the A matrix in Equation (6).
In general, if we have no information about the environment
dynamics g or state y′, we cannot make guarantees about the
overall stability of matrix A.

Bounded Stability. To resolve this issue we define ∥y′− y∥
as the magnitude of the environment’s covariate shift. In
many settings it is reasonable to assume that this magnitude
is bounded, i.e., the environment in which the robot is
performing its task is similar to the environments seen during
training. Moving forward, we will therefore assume that the
magnitude of the environment’s covariate shift has some
upper bound ∥y′− y∥ ≤ ϵ. Let A1 = ∇xf +∇uf ·∇uπ and
A2 = ∇uf · ∇yπ. Substituting these terms in Equation (6),
the first row of the A matrix can be written as:

ėx = A1ex +A2ey, ex = x′ − x, ey = y′ − y (8)

Integrating both sides of this ordinary differential equation,
we obtain: ex(t) = ex(0)e

A1t +
∫ t

τ=0
A2ey(τ)e

A1(t−τ)dτ .
Taking the matrix norm of the result, and substituting in the
upper bound for ∥ey∥ ≤ ϵ, we obtain an upper bound on the
covariate shift in the robot’s state:

∥ex(t)∥ ≤ ∥ex(0)eA1t∥+ ∥A2∥ϵ
∫ t

τ=0

∥eA1(t−τ)∥dτ (9)

Intuitively, Equation (9) provides an limit on how far the
robot state at test time, x′, could diverge from the robot states
during training, x. Similar to our approach from Section IV-
A, our goal here is to minimize the upper bound on this error

Algorithm 1 Stable-BC
1: Given: state-action pairs D and robot dynamics f
2: Initialize: robot policy πθ(x, y) with weights θ
3: for i ∈ 1, 2, · · · do
4: if g is available then
5: Compute loss L(θ) using Equation (7)
6: else
7: Compute loss L(θ) using Equation (11)
8: end if
9: Update robot policy θ ← θ − α∇θL(θ)

10: end for
11: return Trained robot policy πθ(x, y)

and cause ∥ex∥ to converge towards zero.
In order to minimize the right side of Equation (9) we

propose to design the robot’s policy π such that matrix A1 is
stable. This causes ∥ex(0)eA1t∥ → 0, and thus Equation (9)
simplifies to ∥ex(t)∥ ≤ ∥A2∥ϵ

∫ t

τ=0
∥eA1(t−τ)∥dτ . Next,

leveraging the properties of matrix exponentials, we have
that ∥eA1t∥ ≤ e∥A1∥t, where ∥A1∥ is the induced 2-norm of
matrix A1. Substituting this inequality back into the equation
and solving the integral, we finally reach:

∥ex(t)∥ ≤
∥A2∥ · ϵ
∥A1∥

·
(
e∥A1∥t − 1

)
(10)

Equation (10) offers a useful upper bound on the robot’s state
error. Provided that the change in the environment state is
bounded by ϵ, Equation (10) shows that the covariate shift in
the robot’s state is also bounded, and the magnitude of that
bound depends on the off-diagonal matrix A2. For instance,
if we design the matrix A such that ∥A2∥ → 0, then the
upper bound on ∥ex(t)∥ also converges towards zero, and
the robot’s behavior at test time will remain similar to the
examples given at training time.

Stability vs. Performance. To summarize our analysis, in
model-free settings we cannot directly stabilize matrix A.
Instead, we enforce an upper bound on the covariate shift in
the robot’s state by designing policy π such that:

1) All eigenvalues of matrix A1 (the top left component
of A) have negative real parts

2) The magnitude of matrix A2 (the top right component
of A) is minimized

We note that the robot can compute both A1 and A2, since
neither term depends on the environment dynamics g.

Examining these two conditions we again find a conflict
between stability and performance. Specifically, if ∥A2∥ →
0, then ∇yπ → 0 and the robot’s policy no longer depends
upon the environment state y. From a stability perspective,
this is desirable because ∥A2∥ = 0 means that the equations
in Equation (4) are decoupled, and thus any error y′−y will
not impact x′−x. From a performance perspective, however,
this is undesirable because we often need the robot to make
decisions based on its environment state. Consider our air
hockey example: to successfully hit the puck, the robot’s
policy must reason over the state of that puck. Similar to
Section IV-B, we practically resolve this conflict by training
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a robot policy that trades-off between mimicking the expert’s
actions and satisfying the two stability conditions. Our loss
function for Stable-BC in model-free settings is:

L(θ) =
∑

(x,y,u)∈D

[
∥u− πθ(x, y)∥2 + λ1∥A2∥

+ λ2

∑
σi∈eig(A1)

ReLU(Re(σi))

] (11)

where σ are the eigenvalues of the sub-matrix A1. The first
term in Equation (11) matches the original behavior cloning
loss function from Equation (1). The other terms enforce
our two conditions for bounded stability, and λ1 and λ2 are
hyperparameters selected by the designer. We note that this
result for the model-free case is weaker than in the model-
based case. Within Section IV-B we provided conditions for
local asymptotic stability in both ex and ey; by contrast,
here we can only ensure bounded stability for ex assuming
an upper bound on the magnitude of ey .
Algorithm Summary. Given a dataset of state-action pairs
D = {(x1, y1, u1) . . . (xN , yN , uN )} and robot dynamics f ,
the robot uses the procedure outlined in Algorithm 1 to learn
a behavior cloned policy that is locally stable around the
expert demonstrations. We refer to this approach as Stable-
BC. If the robot has access to the environment dynamics g,
then we use Equation (7) as the loss function. Alternatively, if
the environment dynamics are unknown, the robot leverages
Equation (11) as the loss function.

V. SIMULATIONS

In Section IV we presented Stable-BC, our method for
shaping behavior cloned policies such that they have stable
error dynamics. Next we will perform controlled simulations
that compare Stable-BC to standard behavior cloning and
recent off-policy variants. We consider three different tasks:
(Section V-A) an interactive driving environment where an
autonomous car and human vehicle are trying to cross an
intersection, (Section V-B) a single-agent quadrotor envi-
ronment where drone with nonlinear dynamics must safely
navigate 3D spaces, and (Section V-C) a simple visual setting
where a point mass uses RGB images to estimate its goal
position. The code for implementation can be found here:
https://github.com/VT-Collab/Stable-BC

A. Interactive Driving

In our first simulation an autonomous car learns to cross
an intersection while avoiding a human driver (see Figure 2).
This environment is challenging for the autonomous car
because it is interactive: even if the autonomous car matches
the demonstrated behavior, changes in how the human drives
during policy execution can lead to covariate shift.
Environment. The autonomous car’s state x ∈ R2 is its
position, and action u ∈ R2 is the autonomous car’s velocity.
State x updates with the known linear dynamics ẋ = u.
During each interaction the autonomous car tries to reach a
static goal position on the opposite side of the intersection
while maintaining a safe distance from a human driver. Here

y ∈ R2 is the position of the human’s vehicle, and y evolves
with unknown and nonlinear dynamics g(x, y).

The autonomous car is given a dataset D of offline demon-
strations. In each demonstration two simulated humans show
how both vehicles should navigate the intersection. The
initial car positions x and y are uniformly randomly sampled
from regions on the left and bottom of the intersection. Then
one simulated human expert drives the autonomous car while
noisily optimizing the following cost function:

Cost(x, y, c) = ∥x(t+∆t)− c∥ − ∥x(t)− c∥+
0.75 · ∥x(t)− y(t)∥ − 0.75 · ∥x(t+∆t)− y(t)∥ (12)

where c is the constant goal position. The first two terms
of Equation (12) encourage the car to move towards goal c,
and the final two terms penalize actions that get closer to the
other vehicle y. Simultaneously, a second simulated human
controls the human-driven car while optimizing the same
cost function (where x and y are switched). Each individual
demonstration results in 20 state-action pairs (x, y, u).

Methods. The autonomous car learns from these demonstra-
tions using four different methods. We start with standard
behavior cloning (BC) trained using Equation (1). Next, we
implement CCIL [6]: CCIL is a state-of-the-art off-policy
approach that builds a dynamics model from the dataset, and
then leverages that model to synthetically increase the num-
ber of expert state-action pairs. We compare these baselines
to our approach applied independently (Stable-BC), as well
as our approach applied alongside CCIL. In CCIL + Stable-
BC we first use CCIL to enhance the offline dataset, and then
train Stable-BC on this augmented dataset.

Results. Our results are summarized in Figure 2. We report
the autonomous car’s total cost across an interaction, where
the cost at the current timestep is computed using Equa-
tion (12). In the top row we compare BC to Stable-BC, and
in the bottom row we compare CCIL and CCIL + Stable-BC.
We also plot Stable-BC in the bottom row for reference.

To evaluate the robustness of the learned policies, we
executed each trained policy in three different testing envi-
ronments. We started with a testing environment that exactly
matched the training environment (left column). Next, we
modified the dynamics g of the human-driven car (middle
column). Instead of moving to avoid the autonomous car
with dynamics g(x, y), now the simulated human was self-
centered, and only reasoned over their own state using
dynamics g(y). Finally, we sampled the autonomous car’s
initial state x(0) from regions outside of the training distri-
bution (right column). The human again used the training
dynamics g(x, y), but the autonomous car had to navigate
around that human from new regions of the workspace.

Summary. Across all testing environments, our results indi-
cate that Stable-BC outperforms BC and CCIL, and that the
differences between Stable-BC and CCIL + Stable-BC are
negligible. This is a positive result because it suggests that
our approach is more robust to covariate shift in interactive
settings, and that off-policy data-augmentation methods may
not be necessary when applying Stable-BC.

https://github.com/VT-Collab/Stable-BC
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Fig. 2. Simulation results from interactive driving. (Left) An example rollout using BC and Stable-BC. With BC the autonomous car gets stuck in the
middle of the intersection. By contrast, when using Stable-BC the autonomous car lets the human pass and then crosses afterwards, resulting in a lower
cost. (Right) Average cost over 100 trials as a function of the number of expert demonstrations. In the left column the testing environment matches the
training environment. In the middle column the human agent ignores the autonomous car, and in the right column the autonomous car starts from initial
states outside of its training distribution. Shaded regions show SEM. Ideal cost is the best-case scenario where the autonomous car’s learned policy exactly
matches the policy of the human teacher. In the bottom row we plot Stable-BC (solid orange) and CCIL + Stable-BC (dashed orange).

B. Nonlinear Quadrotor Navigation

In our second simulation we apply Stable-BC to a non-
linear system. Specifically, we consider a quadrotor that
must navigate across a room with spherical obstacles (see
Figure 3). The quadrotor’s state x ∈ R6 includes its position
(px, py, pz) and velocity (vx, vy, vz), and the quadrotor’s
action u ∈ R3 includes its acceleration uT , roll uϕ, and
pitch uθ. State x evolves with nonlinear dynamics:

ṗx = vx, ṗy = vy, ṗz = vz

v̇x = ag tanuθ, v̇y = −ag tanuϕ, v̇z = uT − ag

At the start of each interaction the quadrotor is uniformly
randomly initialized on one side of the room. There are seven
static obstacles that the robot must avoid as it navigates to
its fixed goal location on the opposite side of the room. The
interaction ends when the quadrotor either reaches within 0.5
units of the goal (a success) or collides with an obstacle or
wall of the room (a failure).

Methods. Because the obstacles and goal locations are fixed,
and the quadrotor knows its dynamics, in this simulation we
apply our model-based approach for Stable-BC. We com-
pare Stable-BC to two baselines: BC and DART [4]. DART
is a state-of-the-art data collection approach that perturbs the
expert while they provide demonstrations to increase dataset
diversity. As the robot collects expert demonstrations offline,
DART iteratively estimates the errors between the expert’s
actions and its current policy. DART then injects noise based
on these errors when collecting new demonstrations from
the expert; this causes the expert to show the robot more
diverse and corrective behaviors. BC and Stable-BC are
trained using the same offline dataset that does not include
DART’s perturbation procedure. To test the robustness of the
learned policies and simulate real-world conditions, we inject
Gaussian noise into quadrotor’s actions at test time.
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Fig. 3. Simulation results for nonlinear quadrotor navigation. (Left) An
example trajectory of the quadrotor flying around the 3D obstacles to reach
its goal position. (Right) Average success rate of the quadrotor. We trained
the system end-to-end 10 separate times, and then performed 100 test
rollouts with each trained model. Shaded regions show SEM.

Results. Our results are summarized in Figure 3. We report
the success rate, i.e., the fraction of trials where the quadrotor
reached its goal without collisions. For all methods the
success rate increases when the robot is given more ex-
pert demonstrations. However, Stable-BC achieves a higher
success rate with fewer demonstrations as compared to the
baselines. Looking specifically at DART and Stable-BC, we
find that Stable-BC with the original offline dataset converges
to best-case performance more rapidly than robots which use
DART to perturb the expert and collect more diverse data.
These results demonstrate that Stable-BC can be effectively
applied to nonlinear systems.

C. Point Mass with Visual Observations

Our final simulation examines whether Stable-BC extends
to visual settings. Here a point mass robot attempts to reach a
2D goal location. The robot’s state x ∈ R2 is its position, and
x updates with linear dynamics ẋ = u. In each interaction
the start and goal position are uniformly randomly sampled.
However, the robot is not given direct access to the goal;
instead, the robot observes an image y that displays the goal
location in pixel space (see Figure 4). The robot must learn
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Fig. 4. Simulation results for visual observations. (Left) The robot is trying
to reach a goal. At each timestep the robot observes image y where the goal
position is marked by a white pixel; here we show an example of one of
these images. The goal position and robot position are randomly sampled at
the start of each new interaction. (Right) Average distance between the goal
and the robot’s final position over 25 trials. Shaded regions show SEM.

a policy that moves towards this goal based on its current
position x and the visual observation y.
Methods. The images that the robot receives have 21 × 21
pixels. Offline, a simulated expert shows the robot what ac-
tions to take in respond to these images: each demonstration
consists of a (x, y, u) pair (i.e., at state x, if the robot
observes image y, it should take action u). After collecting
the set of these demonstrations, we first train an autoencoder
that embeds images y into a 10-dimensional latent space
using the encoder E(y). We then apply BC and Stable-BC
to learn policies of the form π(x, E(y)). Both methods are
trained using the same demonstration data.
Results. In Figure 4 we plot the distance between the robot’s
position at the end of each interaction and the goal state (i.e.,
Final State Error). If the robot moves completely randomly,
the expected Final State Error is 10 units. Our results from
this proof-of-concept simulation suggest that Stable-BC can
be applied to settings where y consists of visual observations;
we find that Stable-BC outperforms standard BC when given
the same amount of training data.

VI. AIR HOCKEY EXPERIMENT

In this section we evaluate Stable-BC in a real-world en-
vironment with user-provided training data. Specifically, we
conduct imitation learning experiments where participants
teach a 7-DoF Franka Emika robot arm to play a simplified
game of air hockey. We compare Algorithm 1 (Stable-BC) to
standard behavior cloning (BC). Videos of our air hockey ex-
periments are available here: https://youtu.be/ZC3BjY1k18w
Experimental Setup. The robot’s task is to hit the hockey
puck so that it bounces off the opposite side of the table and
returns to the robot (see Figures 1 and 5). The robot’s state
x ∈ R2 is the position of its end-effector on the surface of the
air hockey table, and action u ∈ R2 is the robot’s end-effector
velocity. A camera is mounted directly above the table to
track the position of the hockey puck at a frame rate of 20
Hz. The environment state y ∈ R4 is the current and previous
position of the puck in this camera frame; y evolves with
unknown dynamics g(x, y, u). Because the robot does not
have access to g, in this experiment we applied the model-
free version of our proposed Stable-BC algorithm.
Training Data. We recruited 10 members of the Virginia
Tech community to provide offline training data. Participants

gave their informed consent under IRB #23-784. We first
gave the participants 2 minutes to practice controlling the
robot and hitting the puck. Once this practice was complete,
each participant teleoperated the robot to repeatedly hit the
puck against the opposite side of the table for ∼ 2.5 minutes.
This resulted in ∼ 3000 state-action pairs per user. We kept
each user’s data separate, so that we obtained 10 different
datasets D1 . . .D10 that we used to test our approach.

Testing Procedure. Given the expert datasets D1 . . .D10, we
trained robot policies using BC and Stable-BC. We varied the
amount of data the robot had access to during training — e.g.,
we trained robot policies with 15, 60, and 120 seconds of
expert data. For each amount of training data we learned 10
different policies (one for every user’s dataset), and then we
tested the performance of each policy across 10 independent
rollouts. The proctor started every trial by pushing the puck
towards the robot, and then the robot executed its policy to
autonomously and repeatedly hit the puck.

We quantified the performance of the robot learner by
measuring the average number of times that the robot con-
secutively hit the puck against the opposite side of the table
without missing it (Number of Successful Hits). If the robot
successfully hit the puck 25 times in a row, we terminated
the trial there; i.e., 25 was the maximum possible number of
successful hits. To assess the quality of the robot’s motion,
we also measured the Number of Direction Changes per
successful hit. A direction change was defined as a difference
between actions ut and ut−1 of more than 10 degrees.

Hypothesis. We had the following two hypotheses:
H1. Given the same training data, Stable-BC will achieve a
higher number of successful hits as compared to BC.
H2. Stable-BC will learn policies that output actions with
fewer direction changes.

Results. Our results are summarized in Figure 5. A repeated
measures ANOVA revealed that both the robot’s learning
algorithm (F (1, 9) = 19.03, p < 0.05) and the amount of
training data (F (2, 18) = 50.79, p < 0.05) had significant
effects on the number of successful hits. For 15, 60, and 120
seconds of training data, Stable-BC resulted in more robust
policies that had a higher number of successful hits than BC
(p < 0.05). As expected, the performance of both imitation
learning algorithms increased in proportion to the amount of
training data. But Stable-BC was able to converge to ideal
performance with less data than BC: under Stable-BC, the
number of successful hits with 120 seconds (2 minutes) of
data was only marginally less than the number of successful
hits with 1200 seconds (20 minutes) of training data. Both
BC and Stable-BC converged to similar performance when
given 1200 seconds of data — i.e., the combined data across
all 10 users — indicating that Stable-BC is as effective or
more effective than BC across all data levels. Overall, these
results support hypothesis H1.

We next explored the smoothness of the robot’s learned
policy. As before, a repeated measures ANOVA found that
the robot’s learning algorithm (F (1, 9) = 59.65, p < 0.05)
as well as the amount of training data (F (2, 18) = 9.62,
p < 0.05) had significant effects of the number of direction

https://youtu.be/ZC3BjY1k18w
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Fig. 5. Results for the air hockey experiment in Section VI. (Left) Participants teleoperated a 7 DoF robot arm to hit the puck. We collected their
demonstration data offline, and then used this data to train BC and Stable-BC policies. (Center) We measured the number of successful hits with different
amounts of training data. Ideally, a robust robot policy will repeatedly hit the puck, even when that puck travels with previously unseen angles and velocities.
Both BC and Stable-BC eventually converged to equivalent performance, but Stable-BC reached that performance with a smaller amount of training data.
(Right) To qualitatively assess the learned behavior, we also measured the number of direction changes per successful hit. Stable-BC produced policies
that were more smooth and consistent, with fewer direction changes than BC. Error bars show SEM and ∗ denotes statistical significance (p < 0.05).

changes. Post-hoc analysis confirmed that across all levels of
learning data, Stable-BC produced policies with significantly
fewer direction changes (p < 0.05) than BC. We even
observed that Stable-BC had fewer direction change when
trained on the combined dataset with 1200 seconds of data
(t(9) = 4.681, p < 0.05). Viewed together, these results
support hypothesis H2 and suggest that not only does Stable-
BC lead to more robust policies, but these policies are
qualitatively more smooth and consistent.

VII. CONCLUSION

In this paper we presented a behavior cloning approach
to reduce covariate shift. Instead of focusing on the training
data, our method explored on the error dynamics between
the robot’s current behavior and the expert’s demonstrated
behaviors. By performing control theoretic analysis on these
dynamics, we derived model-based and model-free stability
conditions for shaping the learned policy to bound covariate
shift. Our resulting algorithm, Stable-BC, is an easy to
implement extension of standard behavior cloning that can
be used independently or alongside existing data-centric ap-
proaches. Multiple experiments across interactive, nonlinear,
visual, and real-world environments suggest that Stable-BC
produces more robust policies than state-of-the-art baselines
given the same training data.
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