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Abstract
Robot actions influence the decisions of nearby humans. Here influence refers to intentional change: robots influence
humans when they shift the human’s behavior in a way that helps the robot complete its task. Imagine an autonomous
car trying to merge; by proactively nudging into the human’s lane, the robot causes human drivers to yield and provide
space. Influence is often necessary for seamless interaction. However, if influence is left unregulated and uncontrolled,
robots will negatively impact the humans around them (e.g., autonomous cars that repeatedly merge in front of humans
may cause human drivers to become more aggressive). Prior works have begun to address this problem by creating a
variety of control algorithms that seek to influence humans. Although these methods are effective in the short-term, they
fail to maintain influence over time as the human adapts to the robot’s behaviors. In this paper we therefore present an
optimization framework that enables robots to purposely regulate their influence over humans across both short-term
and long-term interactions. Here the robot maintains its influence by reasoning over a dynamic human model which
captures how the robot’s current choices will impact the human’s future behavior. Our resulting framework serves to
unify current approaches: we demonstrate that state-of-the-art methods are simplifications of our underlying formalism.
Our framework also provides a principled way to generate influential policies: in the best case the robot exactly solves
our framework to find optimal, influential behavior. But when solving this optimization problem becomes impractical,
designers can introduce their own simplifications to reach tractable approximations. We experimentally compare our
unified framework to state-of-the-art baselines and ablations, and demonstrate across simulations and user studies
that this framework is able to successfully influence humans over repeated interactions. See videos of our experiments
here: https://youtu.be/nPekTUfUEbo
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1 Introduction

When robots and humans interact, it is inevitable that
robot behavior will influence human decisions. Consider an
autonomous car moving near a human-driven vehicle. If the
autonomous car drives in an aggressive way — e.g., merging
directly in front of the human — the human may start to
drive more defensively to give the robot space. Conversely, if
the autonomous car is consistently defensive — e.g., always
yielding to the human — then the human may change their
behavior to drive aggressively around the robot. We refer to
these robots as influential because they choose actions that i)
cause the human’s behavior to shift in a way that ii) increases
the robot’s overall performance.

On one hand, the ability to influence other agents is
what enables autonomous robots to seamlessly coordinate
with humans. On the other hand, if the influential behaviors
are haphazardly designed, they can have significant
consequences. In non-embodied domains, we have already
observed the effects of influential artificial intelligence (AI)
agents on elections, consumer habits, and popular trends
(Nicas 2018; Hagen et al. 2022; Stella et al. 2018; Tran et al.
2021; Khaund et al. 2021). Embodied robots are not nearly
as pervasive as AI agents; but as robots increasingly integrate
into human lives, the scale to which they influence human

behaviors will continually grow. Consider our example of
shared roads — as the number of autonomous vehicles
increases, humans have new expectations for how closely
they can follow other vehicles, and place more responsibility
on autonomous cars for avoiding incidents (Schneble and
Shaw 2021; Marshall 2018; Eliot 2020). Prior works have
accordingly proposed algorithms to control and regulate
influential robots. Over short-term interactions current
approaches can discourage or encourage human behaviors
(Hong et al. 2023; Lazar et al. 2018), change leader and
follower roles within a team (Li et al. 2021; Chari et al.
2024), and manipulate the human’s actions to increase the
robot’s reward (Xie et al. 2021; Tian et al. 2023).

Despite success in short-term and one-off interactions,
robots still struggle to regulate the long-term impacts their
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Figure 1. (Left) Human interacting with a drone, a robot arm, and an autonomous car. In each scenario, the robot uses
state-of-the-art algorithms to influence the human and change their actions. (Right) Results from online and in-person user studies.
The state-of-the-art approaches work in the short-term, i.e., human behavior is influenced by the robot in the first few interactions,
but not in the long-term, i.e., over time the participants adapt to avoid or ignore the influential robot.

behaviors have on humans (see Figure 1). This stems from a
fundamental issue with the way today’s robots model human
partners. Prior work on influence typically treats the human
as a static agent; i.e., it assumes that the human will always
respond to a given robot behavior in a fixed way. Returning
to our motivating example, each time the autonomous car
merges in front of the human, it predicts that the human will
slow down. Accordingly — to influence the speed of the
human driver — the autonomous car simply needs to move
into the human’s lane. This approach works well the first few
times the human interacts with the robot. But gradually the
human adapts and their responses shift; for instance, after
the autonomous car merges into the human’s lane several
times, the human driver may quickly accelerate to pass the
autonomous car or prevent it from merging.

In this paper, we introduce a unifying formalism for
influential robots. Our approach connects prior works that
focus on short-term interactions, while also enabling robots
to regulate their long-term influence on nearby humans.
To achieve this unification, we recognize that static human
models are insufficient: robots must account for how humans
continually adapt over time. Indeed, relying on any single
human model is bound to fail — so we instead propose a
control-theoretic framework which accounts for a variety of
human responses. Our core hypothesis is that:

When robots interact with humans, the robot’s current
actions will affect not only the human’s current response,

but also the human’s future latent strategy.

By applying this hypothesis, we are able to formulate
influence as an underactuated dynamical system with an
unknown and evolving latent state which parameterizes the
human’s strategy. The robot is uncertain about how the
human’s latent strategy will change over time, i.e., how
the human will adapt to robot actions. However, during
interaction, the robot gathers information about the dynamic
human model, and updates not only its estimate of the current
human, but also how that human will respond in the future.
Robots can then leverage this dynamic understanding of the
human to select actions that guide the underactuated system
towards increased performance. In practice, applying our
control framework results in robots that account for how their
current behavior affects the human in the long-term, without
relying on a single, pre-specified human model.

Our work is a step towards embodied systems that account
for their potentially unintended effects on human decision
making. Overall, we make the following contributions*:

Formulating Long-Term Influence. We present a for-
mal definition for influence in human-robot interaction
(Section 3). When robots interact with humans, the humans’
behavior will change in multiple ways — and not all of these
changes are purposeful or meaningful. We restrict influence
to only include robot behaviors that alter the human’s strat-
egy in ways that increase the robot’s long-term reward.
Optimizing for Influential Behavior. Leveraging our
definition of influence, we derive a dynamical system
composed of the robot, human, and environment (Section 5).
From the robot’s perspective, these overall dynamics are
an underactuated system, where the immediate and future
behavior of the human is indirectly controlled by the robot’s
actions. The advantage of this framework is that the robot is
not tied to any specific human model; instead, the robot can
maintain a distribution of models, and learn how the adaptive
human shifts between these models in response to the robot’s
actions. More formally, we write the underactuated system as
a mixed-observability Markov decision process (MOMDP),
where the parameters of the human’s short- and long-term
dynamics are latent states. From this MOMDP we can extract
an optimal robot policy that maximizes cumulative reward
while maintaining long-term influence over the human’s
latent strategy. In practice, our framework enables both
precise solutions (for low-dimensional settings) and tractable
approximations (for more realistic problems).
Prior Works as Instances of Our Unifying Framework.
Next, we theoretically and empirically demonstrate that
current approaches to influence (such as Sadigh et al. (2016);
Fisac et al. (2019); Schwarting et al. (2019); Xie et al.
(2021); Parekh and Losey (2023)) are actually instances of
our unifying framework (Sections 4 and 5.2). This includes
robots that influence humans by treating the interaction as
a turn-based game, and and robots that learn influential
policies by reasoning over latent parameters. For each of
these approaches to influence, we demonstrate that we can
reach the same methods by applying different simplifications
or approximations to our unified MOMDP framework.

∗Note that a preliminary version of this work was published at the IEEE
International Conference on Robotics and Automation (Sagheb et al. 2023).
Results from the preliminary conference paper are included in Section 4.2
and Section 7.1. However, this journal version is significantly different
because i) we develop a unified framework for long-term influence, ii)
we demonstrate how prior approaches are approximations of this unified
framework, and iii) we conduct new simulations and user studies to
demonstrate how the unified framework maintains long-term influence.
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Designers can also apply new approximations to our unifying
framework to obtain principled but tractable policies that
influence humans in the long-term.

Influencing Humans in the Long-Term. We perform mul-
tiple simulations (Section 6) and user studies (Section 7)
to explore how our unified approach influences human over
repeated interactions. Our simulations align with our theo-
retical analysis and suggest that state-of-the-art algorithms
are approximations of our unified approach. Across pursuit-
evasion, driving, and manipulation environments, robots that
apply our unified framework influence simulated humans
more consistently than existing methods. We then conduct
two user studies: in the first, N = 11 participants interact
with an aerial drone, and in the second, N = 20 participants
drive a simulated car alongside an autonomous vehicle.
Across more than 25 repeated interactions, we find that our
unified approach — and tractable algorithms generated from
that approach — regulate long-term influence on the human
more effectively than state-of-the-art baselines.

2 Related Works

Influence in HRI. As robots enter human environments,
influencing humans is inevitable. Robots on factory floors
have already been influencing how human workers complete
tasks in ways that reduce idle time and increase team
efficiency (Sanneman et al. 2021; Unhelkar et al. 2018;
Mainprice and Berenson 2013; Pearce et al. 2018; Liu et al.
2018). Prior works have explored two fundamental ways
in which robots can purposely influence humans: influence
by design and influence by action. Influence by design uses
factors such as gender (Siegel et al. 2009; Bryant et al. 2020),
posture (Obaid et al. 2016), transparency (Wright et al. 2019;
Hellström and Bensch 2018), or appearance (Breazeal and
Scassellati 1999; Natarajan and Gombolay 2020) to alter
the human’s willingness to collaborate. Although we do
not focus on influence by design here, we recognize the
importance of social factors for influential robots. In this
work, we focus on influence by action. Here, robots select
their behavior (e.g., their actions or policy) to guide humans
towards advantageous states (Newman et al. 2020; Xie et al.
2021; Parekh et al. 2022; Tian et al. 2023), increase the
team’s reward (Fisac et al. 2019; Sadigh et al. 2016; Tian
et al. 2022; Pandya et al. 2024), or change underlying leader
and follower roles (Reily et al. 2020; Li et al. 2021). For
instance, the way a robot arm passes objects to a human
can influence how the human grasps and holds these objects
(Bestick et al. 2017; Kedia et al. 2024). Robots can also
explicitly measure the influence that they have on humans
they interact with by computing the divergence between the
two agents’ future trajectories (Tolstaya et al. 2021), seeing
if removing the robot changes the human’s behavior (Hsu
et al. 2023; Schaefer et al. 2021), or measuring the deviation
from the human’s nominal behavior (Ding et al. 2025).
We instead recognize that not all deviation from nominal
behavior is necessarily meaningful, so we formally define
influential robot behavior as actions that both change the
human’s underlying policy and result in higher reward. This
enables us to explicitly optimize for the long-term behavior
of robots to have positive influence on humans.

Influence via Games. One way for robots to choose
influential actions is to pose and solve a multi-agent game.
Prior works have utilized game theoretic approaches to
identify control policies that maximize the robot’s total
reward (Nikolaidis et al. 2017; Hadfield-Menell et al.
2016; Fridovich-Keil et al. 2020; Peters et al. 2020, 2021;
Le Cleac’h et al. 2021; Mehr et al. 2023; Schwarting et al.
2019). Influential actions arise naturally as part of this
optimization. This is particularly evident in leader-follower
games, known as Stackelberg games, where the leader acts
(e.g., the robot chooses its actions first) and then the follower
reacts (e.g., the human selects their response given the
robot’s chosen behavior). Works such as Sadigh et al. (2016);
Lazar et al. (2018); Fisac et al. (2019); Schwarting et al.
(2019) treat human-robot interaction as a Stackelberg game
to solve for influential policies and Li et al. (2021); Tian
et al. (2022) additionally consider changing the leader and
follower roles online. Optimal robots in these Stackelberg
games intentionally take actions that maximize the robot’s
reward by shaping the human’s response (Ratliff et al. 2019).
Other work has used a zero-sum game formulation for
learning a robot policy that can influence the human towards
safer outcomes (Hu et al. 2023; Pandya et al. 2025). Outside
human-robot interaction, work on multi-agent games with
reinforcement learning has shown that it can be beneficial
for agents to influence how the other agents will learn in
the environment (Foerster et al. 2018; Letcher et al. 2019;
Kim et al. 2022; Lu et al. 2022) and that including a
positive reward for influencing other agents can encourage
exploration and cooperation (Jaques et al. 2019; Yang et al.
2020). While all these game-theoretic approaches generate
influential actions, they assume both that the robot knows the
human’s reward function (or it can be estimated a priori), and
that humans are static agents and will always react the same
way. In practice, human behavior shifts over time as they
learn from and adapt to the robot’s behavior. We accordingly
present an optimization framework that can account for such
shifts by allowing the robot to learn the human’s policy and
how it evolves online as a function of the robot’s current
behavior in long-term interactions.

Influence via Latent Representations. Another line of
work has shown success in learning influential robot policies
by learning a latent representation of the human’s strategy or
intention. Specifically, some work has learned the dynamics
of this latent strategy between interactions (Xie et al. 2021;
Wang et al. 2022b; Parekh et al. 2022) or within a single
interaction (Bajcsy et al. 2024; Li et al. 2021). Other work
has learned a latent strategy space offline from a fixed dataset
for playing collaborative games using offline reinforcement
learning (Hong et al. 2023) and imitation learning (Wang
et al. 2022a). Similarly, Carroll et al. (2024) proposes a
formalism called “Dynamic Reward MDPs” where an AI
model may influence a human user’s reward function (i.e.
their latent strategy) during an interaction. While these
approaches do account for how the human’s latent intention
may change over time, they still assume that the long-
term dynamics are stationary — meaning that they do not
capture the full dynamics of the interaction. We show that
these latent representation formulations are instances of our
unified framework which ignore the long-term dynamics of
the human’s intentions that depend on the robot’s behavior.
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Short-Term vs Long-Term Influence. Prior work has
been very successful optimizing for influential behavior for
robots by predicting how their actions will affect a human’s
trajectory (Tolstaya et al. 2021; Tang et al. 2022; Huang
et al. 2023), solving games (Sadigh et al. 2016; Fisac et al.
2019), or learning the dynamics of a latent representation
(Xie et al. 2021; Bajcsy et al. 2024). However, these prior
works all focus on short-term influence — while the human
may react to the robot (e.g. yielding to an autonomous car),
they do not consider how the human’s long-term behavior
will be influenced (e.g. shifting from defensive to aggressive
driving). We know from literature in AI that algorithms and
recommendation systems have the ability to influence the
long-term preferences of humans that interact with them,
often to their detriment (Nicas 2018; Hagen et al. 2022;
Adomavicius et al. 2019; Franklin et al. 2022; Bezou-
Vrakatseli et al. 2023; Carroll et al. 2023). As embodied
agents are starting to be integrated into human life (Waymo
2024), this will inevitably be true for robots as well. Prior
work has shown that robots quickly lose their ability to
influence humans in a simple repeated driving scenario
(Cooper et al. 2019) and that human trust over repeated
interactions with robots breaks down (Ayub et al. 2025).
As a result, it is very important to understand and optimize
for robot behavior that has positive long-term influence
on humans. While some have studied repeated Stackelberg
games inspired by human-robot interaction (Cooper et al.
2019; Zhao et al. 2023; Donahue et al. 2024), prior work
lacks any general framework for modeling how robots can
continue to exert both short-term and long-term influence
on humans. In this work, we thus formally define long-
term influence then introduce a unifying framework that
ultimately allows the robot to find optimal, influential
behavior across both the short and long term.

3 Problem Setting
In this section, we formulate the class of settings where
robots can influence humans. For ease of explanation, we
will focus on interactions between one robot and one human;
however, our formulation can be extended to one robot
working alongside multiple people. We find that influence
is not present in all human-robot interactions. Instead,
influence is restricted to settings where the human and
robot behaviors are interdependent. Specifically, the robot’s
performance must depend upon the human’s actions, and the
human must be willing to change their actions in response to
the robot.
Dynamics. Let sR be the robot’s state, let sH be the human’s
state, and let s = (sR, sH) ∈ S be the overall system state.
The robot takes actions aR ∈ AR and the human takes
actions aH ∈ AH. For instance, within our driving example
s contains the heading and position of both cars, aR is the
steering angle and acceleration of the autonomous vehicle,
and aH is the steering angle and acceleration of the human’s
car. Using t to index the current timestep, the system state
transitions according to its dynamics:

st+1 = f(st, atR, atH) (1)

We emphasize that both the robot and human actions affect
the system state s. Returning to the driving example, the

steering and acceleration of the human and robot change the
position and heading of both vehicles. We will assume that
this system state s is fully observable, and that the human
and robot can observe each other’s previous actions. In other
words, at timestep t the robot senses st and at−1

H , and the
human perceives st and at−1

R .
Rewards. Both agents have a task they want to accomplish.
We formulate these tasks using reward functions that map the
system state s to scalar values. The robot’s reward function
is rR(s, θR), and the human’s reward function is rH(s, θH).
Here θR ∈ ΘR and θH ∈ ΘH are the parameters of the robot
and human reward functions. For instance, in our driving
example the robot’s reward function includes the distance
the autonomous vehicle travels (i.e., speed) and the distance
between the autonomous vehicle and the human car (i.e.,
safety). The parameters θR determine the relative importance
of the speed and safety terms. More generally, rR(s, θR) and
rH(s, θH) could be neural networks, and θR and θH could be
the weights of those networks.

Each agent knows their own reward function, but they
do not know what the other agent is optimizing for. Hence,
the robot does not know θH and the human does not know
θR. We define P0(θR, θH) as the prior distribution over
reward parameters; at the start of the interaction, the robot
and human sample their reward parameters from this prior.
Depending on the robot and human rewards, the agents could
be collaborating (i.e., sharing a common reward function),
competing (i.e., attempting to complete different tasks), or a
mix of the two. We assume that the robot’s reward parameters
remain constant throughout the interaction.
Interdependence. To study influence, we explore problem
settings where the agents’ decisions are interdependent.
More formally, we focus on scenarios where the actions of
the robot impact the human’s reward, and — conversely
— the human’s actions impact the robot’s reward. This
interconnection is captured by the reward functions of both
agents: we assume that rR and rH and have a non-trivial
dependence on the overall system state s = (sR, sH). For
example, consider rewards that penalize collisions between
the autonomous and human-driven vehicles. These collisions
rely on the position of both vehicles, and thus the rewards
depend on sR and sH. In practice, this restricts our analysis
to scenarios where the robot’s task performance is affected
by how the human updates their state sH, and vice versa.
Interaction. The human and robot interact over a finite
horizon that lasts H timesteps. In some cases this overall
interaction is broken into multiple segments. For instance,
human drivers will interact with autonomous cars at many
intersections, and at each intersection the human driver and
autonomous car need to decide who crosses that intersection
first. Within these cases there are N repeated interactions of
length T , such that H = N · T , and the overall, long-term
interaction is composed of the repeated segments.

In summary, our problem setting occurs during human-
robot interaction when i) both agents’ actions affect the
overall system dynamics, and ii) the reward of each
agent depends on the entire system state. Many real-world
situations fall under this problem setting: consider our
motivating example of autonomous and human-driven cars,
or an assistive robot working alongside a human user. These
conditions result in interconnected agents whose behaviors
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affect each other’s task performance. The interplay between
the human and robot could play out over a single short-term
game, or over long-term and repeated interactions.

Influence. Within this interdependent problem setting we
can formally define influential robot behavior. Let atR =
πR(s0:t, a0:t−1

R , a0:t−1
H , θR) be a robot policy that maps its

history of observations to robot actions aR, and similarly
let atH = πH(s0:t, a0:t−1

R , a0:t−1
H , θH) be a human policy that

maps their history of observations to human actions aH.
Without loss of generality, the robot begins with some initial
policy π0

R, and the human has a baseline policy π0
H. For

instance, within our motivating example the robot’s objective
is to ensure the human driver maintains a safe speed. The
autonomous car might initially plan to stay in the right lane,
and the human is initially an aggressive driver speeding
along the left lane. We say that the robot policy π′

R is
influential if i) π′

R has a higher expected cumulative reward
than π0

R, and ii) the human follows a policy different from
π0
H when interacting with π′

R. Put another way, robots
influence humans when they take actions that increase their
own performance while manipulating the human’s behavior.
Returning to our example, an influential autonomous car
might merge into the human’s lane — causing the human to
switch from aggressive to defensive driving while increasing
the robot’s reward for maintaining safe driving speeds.

4 Existing Approaches and Long-Term
Influence

Recent works have created learning and control algorithms
that regulate influence within our problem setting. Although
these methods can successfully influence humans in the
short-term, here we explore how humans respond to the
robot over repeated, long-term interactions. We begin by
providing a general formulation for existing approaches (see
Section 4.1). As we will show, these approaches rely upon a
fixed model of the human, i.e., they assume that the human
consistently responds to the same robot behaviors in the same
way. We hypothesize that this is a fundamental limitation
that will cause unregulated influence in the long-term —
because humans adapt, actions that were once influential
may later be avoided or ignored. To test our hypothesis, we
perform online and in-person user studies that measure how
effectively today’s robots influence humans as a function of
time (see Section 4.2). Our results suggest that — although
existing frameworks can correctly influence human’s over a
handful of interactions — these approaches fail as humans
adapt to the robot’s behaviors.

4.1 Formulating Existing Methods
We first describe how robots currently choose influential
actions. Existing approaches are based on optimization:
the robot seeks to maximize its cumulative reward, while
recognizing that both the robot’s and human’s behaviors
contribute to that interdependent reward. The robot directly
controls its own behaviors. In order to indirectly influence
the human’s behaviors, the robot is equipped with a human
model. This model — which can be learned or pre-
programmed — predicts how the human will react to the
robot’s actions. For instance, within our driving example this

human model might predict that the human will yield if the
autonomous car merges in front of the human driver, and
accelerate otherwise. Robots then reason over the human
model to select actions (e.g., merging in front of the human)
that will manipulate the user and optimize the robot’s overall
reward (e.g., minimizing the human driver’s speed).
Trajectories. We formulate the underlying optimization
over a finite horizon of H timesteps. Let the sequence
of robot actions over H timesteps be aR = (a0R, . . . , aHR),
and similarly let aH = (a0H, . . . , aHH) be the human’s action
sequence. If we execute these action sequences starting at
state s0 and following the dynamics from Equation (1), we
obtain a trajectory of system states. This trajectory can be
written as: ξ(s0,aR,aH) = (s0, . . . , sH+1). Note that the
robot directly controls aR, but the human’s action sequence
aH relies on the person the robot is interacting with.
Total Reward. The robot seeks to maximize its cumulative
reward across the interaction. Given a trajectory ξ, the robot’s
total reward is the sum of state rewards:

RR(s0,aR,aH) =
∑

s∈ξ(s0,aR,aH)

rR(s, θR) (2)

Likewise, the human’s cumulative reward is the sum of state
rewards rH(s, θH) along the trajectory ξ. Because these
rewards encode the desired tasks (e.g., ensuring the human
driver maintains a safe speed), maximizing total reward
corresponds to efficient task performance.
Optimization. Existing approaches achieve influential
behaviors by maximizing Equation (2) in interdependent
problem settings. We can generally break down these
approaches into two components: i) an optimizer that seeks
to maximize the robot’s cumulative reward, and ii) a model
that predicts how the human will react to robot actions. Both
components are formulated below:

a∗R = argmax
aR

RR
(
s0,aR, g(s0,aR)

)
s.t. st+1 = f(st, atR, atH)

(3)

where a∗R is the optimal sequence of H robot actions, and
aH = g(s0,aR) is the human model. Influential behaviors
naturally emerge by solving Equation (3) because the robot
considers how its own actions guide the human’s response. If
the robot can identify behaviors that cause an advantageous
human reaction, the robot will select those behaviors and
attempt to influence the human. Take our running example
where the autonomous car seeks to regulate the speed of a
human driver: the human model predicts that merging into
the human’s lane will slow that driver. The robot therefore
performs a merge — and influences the human to slow
down — in order to maximize its overall reward. In theory,
Equation (3) can extend across an arbitrary time horizon
H . In other words, this framework could find behaviors that
influence humans in the short-term and in the long-term.
Human Models. Existing works generally agree on the
framework in Equation (3). However, these approaches differ
in their choice of the human model; i.e., how they instantiate
the function g. Below we summarize two common themes
from the literature.

Methods such as Sadigh et al. (2016); Lazar et al. (2018);
Fisac et al. (2019); Schwarting et al. (2019); Losey and
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Sadigh (2019); Fridovich-Keil et al. (2020); Tian et al.
(2022) model the human as a game-theoretic agent that
seeks to maximize their own reward. If the human and robot
act simultaneously, the human model solves for the Nash
Equilibrium; alternatively, if the human and robot take turns,
this can be treated as a Stackelberg game. In either case, here
the human model becomes:

g(s0,aR) = argmax
aH

RH(s0,aR,aH)

s.t. st+1 = f(st, atR, atH)
(4)

where RH is the human’s cumulative reward. Existing
methods assume that the robot knows the human’s reward
function, or the robot can learn that reward function from
prior data. Combining Equation (4) with Equation (3) results
in nested optimization, where the robot reasons over how the
optimal human will respond to its actions aR.

Alternatively, methods such as Xie et al. (2021); Bajcsy
et al. (2024); Jaques et al. (2019); Li et al. (2021); Chen et al.
(2020) model the human as an agent whose decisions are
parameterized by some latent variable z. Here the human’s
policy πH(s, z) → aH maps system states and the latent z to
human actions. This latent parameter could be the human’s
willingness to adapt, the human’s strategy for completing the
task, or the human’s reward or preferences when interacting
with the robot. Importantly, z updates over time in response
to the robot’s behavior. Consider a setting where the human
and robot repeatedly interact N times, and let i index the
current interaction. In this case the human model from
Equation (3) becomes:

g(s0,aR) = π(s, zi), i = 1, . . . , N

s.t. zi = g(z0, s0, a0:iR )
(5)

where zi = g(z0, s0, a0:iR ) captures how the latent parameter
updates between interactions, and a0:iR includes all robot
actions up to the start of interaction i. In practice, z
could express whether the human is an aggressive or
defensive driver. If the human is initially aggressive, and
the autonomous car merges into its lane, the human may
become wary of the autonomous car and switch to more
defensive driving. Under this model the robot influences the
human by guiding z towards values that align with the robot’s
underlying objective (e.g., manipulating the human to be a
defensive driver so that the human slows down).

4.2 Testing Long-Term Influence
In Section 4.1, we outlined the general optimization
framework existing robots use to influence human actions.
At a high-level, this framework seeks to maximize the
robot’s reward, and at a low-level, the robot achieves reward
maximization by reasoning over a human model. But the
two types of human models currently employed are static.
Both Equation (4) and Equation (5) state that the human
will change behaviors in response to the robot’s actions.
However, this change follows a consistent pattern; e.g., if
the autonomous car merges, the human driver slows down.
In practice, real humans adopt and change — making robot
behaviors that were once influential now ineffective.

In Section 4.2, we now explore this limitation by
measuring how an existing method influences humans over

long-term interaction. Across online and in-person user
studies, participants drive a simulated vehicle while sharing
the road with an autonomous car. The autonomous car selects
actions according to Equation (3) while using the static
human model in Equation (4) (i.e., the robot applies the
game-theoretic method from Sadigh et al. (2016); Fisac
et al. (2019); Tian et al. (2022); Schwarting et al. (2019)).
Each participant interacts with the autonomous car across
highway, intersection, and roundabout environments for 36
total trials. Our results from 45 online users and 10 in-
person drivers show that the robot is initially able to influence
humans to yield, but over time human drivers adapt to ignore
or avoid the autonomous car.
Experimental Setup. Participants shared the road with an
autonomous car in three settings: highway, intersection, and
roundabout (see Figure 2). These settings are consistent
with related works (Sadigh et al. 2016; Tian et al. 2022;
Fisac et al. 2019; Fridovich-Keil et al. 2020; Schwarting
et al. 2019). To simulate the driving environment and vehicle
dynamics in real-time we used CARLO (Cao et al. 2020). In-
person participants controlled their simulated vehicle using
a Logitech G29 steering wheel and responsive pedals. Each
interaction ended after a fixed number of timesteps. Online
participants first watched an animated video of the start of the
interaction, and then selected their behavior from a multiple
choice menu (i.e., participants could choose to yield or try
and pass the autonomous car). Both in-person and online
participants earned points for avoiding a collision, staying
on the road, and making lane progress. We displayed the
participant’s current score throughout the experiment. All
participants interacted within the highway, intersection, and
roundabout settings 12 times each for a total of 36 repeated
interactions. The presentation order for each road setting was
randomized and balanced across users.
Independent Variables. The autonomous car solved the
optimization problem in Equation (3) and Equation (4) to
select its actions uR. More specifically, the robot treated
each interaction as a separate Stackelberg game where the
autonomous car played first and the human model predicted
the optimal response to the robot’s actions. We rewarded the
robot for avoiding collisions and minimizing the human’s
lane progress (i.e., slowing down the human driver). More
specifically, we selected:

rR(s, θR) = −ṡH − 10 · 1{collision in s} (6)

where ṡH ⊂ s is the velocity of the participant’s vehicle. The
robot assumed that the human’s reward matched the score
that was displayed on the screen:

rH(s, θH) = ṡH − 10 · 1{on road in s}
− 100 · 1{collision in s} (7)

Positive values for ṡH indicate that the human’s car is
moving forward along the road (i.e., making lane progress),
while negative values mean the human’s car is in reverse. In
order to maximize the state reward from Equation (6), the
robot attempts to influence humans to yield, slow down, or
reduce their overall lane progress.
Dependent Variables. For online participants, we recorded
whether the human chose to yield or pass the autonomous
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Figure 2. Exploring how the existing approaches from Section 4.1 influence humans over short- and long-term interactions.
Participants repeatedly interact with an autonomous car that uses Equation (3) and the static human model from Equation (4) to
influence their behavior. The autonomous car selects actions aR by treating each interaction as an independent Stackelberg game;
this is consistent with prior works (Sadigh et al. 2016; Fisac et al. 2019; Tian et al. 2022; Schwarting et al. 2019). The robot is
rewarded for influencing the human to slow down, yield, and reduce lane progress. For both online (Top) and in-person (Bottom)
participants, the robot’s influence decreases over time (i.e., human yields less or makes more lane progress). In the last column
(Right) we display the average behavior across all three environments. Shaded regions show standard error.

car. For in-person subjects we measured their lane progress,
i.e., the vertical distance they traveled. In each environment,
the human’s car started at the bottom of the screen and drove
towards the top of the screen; a driver that never yields to the
autonomous car would maximize their lane progress.

Participants. For the online component of the user study
we recruited 63 anonymous participants. At the start of the
experiment these participants read our instructions and then
answered qualifying questions to check that they understood
the experimental procedure. A total of 45 users passed these
questions and continued on to the survey.

For the in-person component we recruited 12 participants
from the Virginia Tech community. Of these, 10 answered
the qualifying questions correctly and completed the exper-
iment (5 female, ages 24.7± 5.2 years). All participants
provided informed written consent consistent with university
guidelines (IRB #20-755). We recognize that users may
adapt to become better drivers as they continue to interact
in our simulated environment. To account for this confound-
ing factor we had participants practice driving without any
autonomous cars in each environment until they were able to
consistently reach expert-level scores.

Hypothesis. We hypothesized that:

H1. As the number of interactions increases,
existing approaches will fail to regulate how
they influence the human driver.

Results. Our results from this initial user study are
summarized in Figure 2. The top row shows how frequently
the online users chose not to yield to the autonomous car as a
function of interaction number; the bottom row displays lane
progress for in-person drivers over repeated interactions.

Online users chose to either yield or pass the autonomous
car during each interaction. We performed Wilcoxon signed-
rank tests to see how the human’s choice evolved between
the first interaction and the final interaction (i.e., to see how
the human’s response to the robot changed over time). Our
results averaged across all three driving scenarios reveal that
humans passed the autonomous car more frequently by the
end of experiment (Z = −5.798, p < .001). This change
was also statistically significant for the highway (Z =
−4.583, p < .001) and intersection environments (Z =
−3.838, p < .001), but not for the roundabout environment
(Z = −1.155, p = .248). Within the roundabout, humans
rarely yielded to the robot, perhaps because they already
perceived their own car as having the right of way.

For in-person drivers we measured their lane progress.
Remember that the autonomous car is trying to influence
humans to reduce their speed; as such, higher lane progress
is correlated with less robot influence. Paired t-tests show
the human’s average lane progress was significantly higher
at the final interaction as compared to their first interaction
(t(29) = −5.952, p < 0.001). This trend is consistent
across highway (t(9) = −2.4, p < .05), intersection (t(9) =
−3.1, p < .05), and roundabout (t(9) = −5.6, p < .001).
The result suggests that robots were able to influence humans
to slow at the start of the experiment, but as the number
of interactions increased the robot was no longer able to
influence the human effectively.

Summary. Our results from this study support H1.
Autonomous cars that leverage an existing game-theoretic
framework to generate influential behaviors are effective in
the short-term, but do not maintain the same influence across
the long-term. Over repeated interactions, human drivers
adapt to ignore the robot’s influential actions (in the online
study) or anticipate the robot and avoid its behavior (in the
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in-person study). This suggests that existing approaches to
influence are insufficient; if we want robots that can regulate
how they manipulate the human’s actions in the long term,
we need to re-examine our underlying framework.

5 A Unified Framework for Long-Term
Influence

Existing robot policies fail to maintain long-term influence
during human interactions. Based on our experiments, we
hypothesize that this failure occurs because existing methods
rely on static human models. Under static models, the robot
assumes the human has a fixed strategy for reacting to the
robot’s actions. But — as we observed in Section 4.2 — the
human’s response often evolves over time (e.g., accelerating
to prevent the autonomous car from merging). In Section 5.1,
we now capture dynamic humans by reasoning over history-
aware human models. These models predict both short-term
human behaviors (e.g., yielding to the autonomous car) as
well as long-term shifts (e.g., the human adapting from
defensive to aggressive driving). Optimizing over dynamic
human models leads to our unified framework for short- and
long-term influence. We ultimately formulate influence as
a mixed-observability Markov decision process (MOMDP).
As shown in Section 5.2, casting the problem of long-term
influence as a MOMDP enables two things. First, we can
compute robot policies that consistently influence the human
while accounting for how their current behaviors affect
the user in later interactions. Second, we can demonstrate
that existing approaches are actually simplifications of our
framework, revealing why these methods fail to control
influence across long-term interactions.

5.1 Optimizing over Dynamic Human Models
Here we introduce our unified framework for long-term
influence. Similar to existing methods, our approach is based
on the high-level goal of maximizing the robot’s cumulative
reward. However, the key difference is how we model the
human agent — particularly in the long-term. An overview
of our unified approach is shown in Figure 3.
History-Aware Human Model. Let π∗

H denote the human’s
actual policy. By definition, this policy maps some subset
of all available human observations to human actions aH ∈
AH. At timestep t the human can reason over s0:t (the system
states up to and including the current state), a0:t−1

R and
a0:t−1
H (the previous robot and human actions), and θH (the

human’s own reward parameters). Accordingly, the human’s
true policy is of the form:

atH = π∗
H(s0:t, a0:t−1

R , a0:t−1
H , θH) (8)

Intuitively, Equation (8) means that the human’s decisions
are based on more than the robot’s most recent actions — the
human may reason over the history of interactions between
themselves, the robot, and the environment. This implies that
the robot’s current behaviors could affect downstream human
responses (e.g., the robot actions at interaction i could affect
the human’s decisions at interaction i+ j).
Dynamic Human Model. The robot does not have access
to π∗

H. Instead, the robot maintains its own human model.
We have already seen examples of fixed human models in

Equation (4) and Equation (5). Here we extend these models
to capture the history-aware aspects of the human’s time-
varying decision making. We rewrite Equation (8) into:

atH = πH(st, zt) (9)

zt+1 = gs(s
t, atR, atH, zt, ϕt) (10)

ϕt+1 = gl(s
t, atR, atH, ϕt) (11)

where πH is the robot’s current estimate of the human’s pol-
icy. This policy is parameterized by the latent representation
z ∈ Rd. For instance, within our motivating example z could
capture whether the human is an aggressive or defensive
driver. The latent state z updates at two levels: with short-
term dynamics gs and long-term dynamics gl, with the latent
vector ϕ ∈ Rk parameterizing how the human chooses their
next latent strategy zt+1.

Imagine our autonomous car on the highway with a
human-driven vehicle. If the autonomous car merges in
front of the human at timestep (or interaction) t, that
could cause the human to slow and drive defensively at
timestep (or interaction) t+ 1. This immediate response is
formulated by short-term dynamics gs, which expresses how
the human reacts to the robot. Here human’s reaction strategy
for selecting zt+1 is parameterized by vector ϕ ∈ Rk. In
practice, ϕ could be the weights of a neural network gs, or
the set of rules which govern the human’s response strategy
(e.g., slow down if the autonomous car merges, accelerate
otherwise). Prior works in Section 4 stop at this point: they
leave ϕ as a constant value. But — to capture how humans
adapt over time — we propose the long-term dynamics gl
that update ϕ in Equation (11). Returning to our example, if
the autonomous car repeatedly merges in front of the human,
at some timestep (or interaction) τ the human may shift their
response strategy. Instead of yielding to the robot with their
original rules ϕ0, now the human uses a new set of rules ϕτ to
react to the robot and update z. The long-term dynamics over
ϕ enable the robot to model how its current actions could
affect the human’s downstream behavior (e.g., causing the
human to shift from defensive to aggressive driving).
Dynamical System: State and Human Evolution. Now
that we have a human model with short-term and long-
term components, we next will integrate this model within
a larger representation of the system. From the robot’s
perspective, its actions aR affect the interaction in two
ways. The robot’s behavior causes the environment state s to
transition according to the state dynamics from Equation (1).
In addition, the robot’s actions cause the human’s state with
parameters z and ϕ to evolve according to Equations (10) and
(11). To capture the robot’s overall effect on the environment
and human we therefore introduce the augmented system
state x = (s, z, ϕ). This augmented state has dynamics:

xt+1 =


st+1

zt+1

ϕt+1

 =


f
(
st, atR, πH(st, zt)

)
gs
(
st, atR, πH(st, zt), zt, ϕt

)
gl
(
st, atR, πH(st, zt), ϕt

)
 (12)

=


F (xt, atR)

GS(x
t, atR)

GL(x
t, atR)

 (13)
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Figure 3. Our unified framework for influence. When interacting with humans, the robot models the human’s short-term as well as
long-term dynamics. During interaction 1, the robot merges into the human’s lane to influence them. Upon observing the human
slow down, the robot models their short term dynamics and infers that the human is a defensive driver z1. However, over k repeated
interactions the human might change their response strategy and start driving aggressively according to their set of rules ϕk.
Modeling the human’s long-term dynamics enables the robot to anticipate the change in the human’s response strategy. This
enables the robot to optimize for a policy which can influence the human over long-term interaction. During interaction k + n, the
robot does not merge into the human’s lane, anticipating how the human will change lanes to try and avoid the autonomous car.

Note that in the dynamical system above we have substituted
the robot’s estimated human policy πH(s, z) in place of the
human actions aH. Incorporating this human model results in
the augmented dynamics F , GS , and GL, which only depend
on the augmented state x and the robot’s action aR.

The resulting dynamics in Equation (13) formulate how
the robot can influence the human. By taking actions aR the
robot not only i) changes the physical state s, but the robot
also ii) impacts the human’s short-term and long-term latent
states z and ϕ. If the robot had access to Equation (13), it
could use these dynamics to select actions that would drive
the human towards a beneficial latent state (e.g., causing the
human to remain as a safe, defensive driver).

MOMDP. The augmented state x has mixed observability:
the robot can measure s, but the human’s latent states z
and ϕ are unknown. Despite this uncertainty, the robot seeks
to maximize its expected cumulative reward subject to the
overall, single-agent dynamics presented in Equation (13).
We can formulate this optimization problem as an instance of
a mixed-observability Markov decision process (MOMDP)
(Ong et al. 2010). The key advantage of this formulation is
that — if we can solve the MOMDP — we obtain the optimal
robot policy that maximizes expected reward while reasoning
over the short-term and long-term human model.

Our influence MOMDP is defined by the tuple M =
⟨X ,AR, (F,GS , GL),O, rR, H⟩. Here x ∈ X is the aug-
mented system state, where s is observed by the robot
and z and ϕ are unknown and must be inferred during
the interaction. The robot takes actions aR ∈ AR. These
actions cause the augmented state to transition according
to the underactuated dynamics F , GS , and GL from Equa-
tion (13). At each timestep the robot makes observation ot =
(st, at−1

H ) ∈ O with two parts: the robot measures the current
system state st and the previous human action at−1

H . The
robot then uses these observations to update its probability
distribution over the human’s latent parameters z and ϕ.
We will refer to this probability distribution as the robot’s
belief. The robot updates its belief using the human model,
where atH = πH(xt, zt) is the likelihood of action atH given
representation zt, and zt+1 = gs(s

t, atR, atH, zt, ϕt) is the
likelihood of representation z given representation dynamics

gs with parameters ϕ. Hence, the human model presented
in Equations (9)–(11) provides the observation model within
the MOMDP. The final two components of the MOMDP
tuple are the same as our original problem statement. The
robot is trying to optimize its reward function rR(x, θR) =
rR(s, θR), and the interaction lasts a total of H timesteps.

5.2 Existing Approaches are Approximations
In Section 5.1 we introduced a general human model with
short- and long-term dynamics, and then incorporated this
human model within the augmented system dynamics. From
the robot’s perspective, the resulting dynamics convert the
optimization problem into an instance of an MOMDP.
Formulating our problem as a MOMDP enables us to apply
existing tools to identify the optimal robot policy πR.

Solving for a Long-Term Influential Policy. A variety of
online solvers have been developed to obtain near-exact
estimates of πR. For example, methods such as POMCP
(Silver and Veness 2010), DESPOT (Somani et al. 2013), and
their variants (Sunberg and Kochenderfer 2018; Kurniawati
2022) input the MOMDP M, the current system state s,
and the current belief over z and ϕ, and then output the
optimal robot action aR. Because our MOMDP includes
both a short-term and long-term human model, the actions
output by these solvers estimate not just how they will
immediately influence the human, but also how they will
guide the human’s internal state for future interactions. We
apply these solvers in Sections 6 and 7 to compute influential
robot’s policies. Our results empirically demonstrate how the
robot policies obtained via this MOMDP maintain influential
robot control over humans, maximizing robot reward while
still enabling effective coordination.

Generating Tractable Approximations. The underlying
MOMDP structure developed in Section 5.1 provides the
gold standard for influential robot behaviors. The policies
obtained from this framework optimize the robot’s expected
performance while reasoning over short- and long-term
human dynamics. However, computing exact or near-exact
solutions to the MOMDP may not always be feasible. As
the dimension of the continuous states x ∈ X and actions
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aR ∈ AR increase, it becomes intractable to identify πR
with state-of-the-art MOMDP solvers.

A fundamental advantage to our unifying framework is
that it provides a principled starting point for influence.
When the exact solution is infeasible, we can i) derive
approximations that maintain influence while being more
computationally efficient. We can also ii) fairly compare
different methods as simplifications of our overarching
MOMDP framework. For example — instead of maintaining
a belief distribution — the robot can approximate the
MOMDP by assuming a point estimate over z and ϕ.
Alternatively, the robot might assume that z and ϕ will be
revealed at a later interaction, and so the robot does not need
to take information gathering actions.

To demonstrate the value of our unifying framework,
below we show how the current approaches for influence
described in Section 4 are approximations of our MOMDP.

5.2.1 To Game-Theoretic Approaches Here we derive
the game-theoretic methods from Equation (3) and Equa-
tion (4) (also tested in Section 4.2) as approximations of
our unified approach. First, we slightly modify the human’s
observations: by default, our unified approach assumes that
the human can only observe the robot’s previous actions.
But for this approximation we extend the observations so
that the human has access to the robot’s next H actions. Let
Equation (10) in our human model be:

zt+1 = gs(s
t,aR, atH, zt, ϕt) = aR (14)

so that the human’s short term dynamics are a prediction aR
of what the robot will do. For this simplification the robot
does not maintain any long-term dynamics, and ϕ = ∅.

Because the robot also has access to its future actions (i.e.,
the robot knows what actions it is planning to take) here
z is fully observable. This means that the augmented state
x = (s, z, ϕ) is observable, and accordingly the MOMDP
reduces to a Markov decision process (MDP). Within this
MDP where the robot searches for actions aR that will
maximize its cumulative reward RR. Simultaneously, the
human observes z = aR and responds with actions aH
that maximize their cumulative reward RH. This exactly
corresponds to the nested optimization problem outlined in
Equation (3) and Equation (4).

5.2.2 To Latent Representation Approaches Next, we
derive the latent representation methods from Equation (3)
and Equation (5) as a simplification of our unified MOMDP
framework. As before, we begin by ignoring the long-term
human dynamics. Here the human follows some rules ϕ
when responding to the robot, but these rules do not change
over time; hence, Equation (11) reduces to a constant value
ϕt+1 = ϕt. The key step for this derivation is to approximate
our unified MOMDP as a QMPD (Littman et al. 1995).
Under the QMDP approximation the robot assumes that
it will uncover the augmented state (s, z, ϕ) at the next
timestep. Accordingly, the robot does not need to take
information gathering actions, and the QMDP simplifies into
two subproblems: i) estimating the augmented state x and ii)
finding optimal actions given the current estimate of x.

To perform step i), existing approaches such as Xie et al.
(2021); Bajcsy et al. (2024); Parekh and Losey (2023)
directly observe system state s and obtain a point estimate

of z and ϕ. Hence, the robot believes the augmented state
is x̂ = (s, ẑ, ϕ̂). Treating this point estimate as the current
state, in step ii) the robot solves an MDP to obtain the
policy πR that maximizes the cumulative reward starting at
x̂ and evolving according to Equation (13). Unwinding our
definitions, the optimal actions for this MDP correspond to
the solutions of Equation (3) and Equation (5).

Interestingly, we notice that both existing approaches for
influence simplify our unified framework by ignoring the
long-term human dynamics gl. This is consistent with our
experimental findings from Section 4.2, and suggests that
these methods fall short over repeated interactions because
they fail to explicitly account for how the human will adapt
to the influential robot over time.

6 Simulating Influential Robots
Here we perform two experiments with simulated humans
under controlled conditions. The purpose of these simula-
tions is to compare our unified framework from Section 5.1
with the two state-of-the-art simplifications discussed in
Section 5.2. First, we implement our Unified and the game-
theoretic Stackelberg approach in a simulated highway
environment (see Section 6.1). Second, we test the perfor-
mance of our Unified framework against a Latent repre-
sentation method within pursuit-evasion, driving, and robot
manipulation environments (see Section 6.2). Across both
experiments we find that robots using our proposed formal-
ism are more successful in influencing simulated humans,
particularly over long-term interactions where the simulated
agents completed the same tasks multiple times. Code for
our simulations and experiments is available here: https:
//github.com/VT-Collab/influence

6.1 Comparing to Game-Theoretic
Approaches

Our first simulation can be seen as a continuation of the
user study from Section 4.2. Here simulated humans drive
alongside an autonomous car on a highway environment (see
Figure 4); as before, the autonomous car’s objective is to
safely slow down the human driver. The simulated human
attempts to get around the autonomous car and maximize
their lane progress by optimizing Equation (7). Both agents
have continuous state-action spaces.

Simulated Human. To simulate the human, we implemented
an agent that treats the interaction as a Stackelberg game: this
game-theoretic human approximates the interaction as a turn-
based sequence and takes actions according to Equation (3)
and Equation (4). The human initially plays second (i.e., the
human responds to the robot), but based on the behavior of
the autonomous car the simulated human can shift between
playing first or second in the Stackelberg game. When
playing first the human takes a more proactive role — i.e.,
the human expects the robot to respond to its actions. If
the autonomous car merges in front of the human in more
than 3 of the past 6 interactions, the human plays first (i.e.,
the human becomes more aggressive). Alternatively, if the
human and autonomous car crash, the human reverts to
playing second (i.e., the human becomes more defensive).
The autonomous car does not know how humans will behave

https://github.com/VT-Collab/influence
https://github.com/VT-Collab/influence
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Figure 4. Experiment from Section 6.1. (Left) Simulated humans drive alongside robots using Unified and Stackelberg methods.
The robot car takes actions to slow down the human without crashing. We show examples of the trajectories that the cars followed
initially (i.e., first interactions) vs later on (i.e., final interactions). (Right) We plot average lane progress and total number of collisions
per interaction. A higher lane progress indicates that the robot is unable to successfully influence the human to slow down. The
shaded regions and error bars indicate standard error. We compare robot reward averaged across all interactions for each method.
Fewer collisions and a higher reward are indicative of better robot performance. Asterisks ∗ denote statistical significance (p < .05).

a priori. Simulations were performed in Julia (Egorov et al.
2017) based on the CARLO environment (Cao et al. 2020).

Independent Variables. We compared two algorithms for
influencing the simulated human. As a baseline we used
Stackelberg, the game-theoretic approximation discussed in
Section 5.2 and previously implemented in works such as
Sadigh et al. (2016); Lazar et al. (2018); Fisac et al. (2019);
Schwarting et al. (2019). We compared this baseline to our
Unified framework. As a reminder, our approach is based on
a MOMDP formulation: to solve this MOMDP for a tractable
approximation of the influential robot policy, we used the
POMCPOW algorithm (Sunberg and Kochenderfer 2018).

Dependent Measures. We simulated every human for 100
interactions. Each individual interaction lasted T = 120
timesteps. The initial state of the cars were chosen at random,
but with the condition that the autonomous car had an initial
y-value greater than the simulated car (i.e., the robot started
in front of the human). We measured total lane progress for
both cars (in pixels), total of number of collisions between
the cars, and robot’s total reward using Equation (6).

Results. Our results from the first simulation are presented
in Figure 4. On the left we show qualitative examples
of the trajectories that the cars followed initially (within
the first 10 interactions) vs. later on (within the final 10
interactions). In the middle we plot average lane progress
and the total number of collisions per interaction. Finally,
on the right we compare the robot’s reward averaged across
all interactions for each method. To analyze these results
we performed paired t-tests and found that with Unified the
human made significantly less lane progress by the end of
the interaction (t(99) = −10.73, p < 0.001), the human and
autonomous car had fewer collisions (t(99) = −16.01, p <
0.001), and the autonomous car achieved a higher average
reward (t(99) = 14.42, p < 0.001).

Overall, these experimental results are aligned with our
theoretical analysis. Stackelberg is a simplification of
Unified that does not take into consideration how the
human’s behavior might change over repeated interactions.
Here the human shifted their role within the Stackelberg
game: switching from passively playing second to more
proactively playing first. With Stackelberg the autonomous
car could not predict or account for these changes, resulting
in failed influence and increased collisions. But with our
Unified framework the autonomous car could reason over

how the human’s responses would change (i.e., the robot
modeled ϕ as playing first or playing second). The Unified
robot leveraged these long-term dynamics to maintain safe
influence over 100 interactions.

6.2 Comparing to Latent Representation
Approaches

In our second simulation we compare the performance of our
Unified formalism against a state-of-the-art Latent represen-
tation (Parekh and Losey 2023). This Latent algorithm is
consistent with the human model in Equation (5): the robot
maintains a low-dimensional representation of the human’s
strategy z, and learns how to update this strategy based
on the human’s behavior from repeated interactions. More
formally, the robot learns latent representations z ∈ Z and
short-term dynamics gs directly from interaction data. We
test how Latent and Unified influence simulated humans
across three environments: Circle, Driving, and Robot. In
each environment the simulated human has different rules
governing how they update their short-term and long-term
behavior in response to the robot’s actions. We detail these
rules and the environments below.

Simulated Environments & Humans. Our three environ-
ments for the second simulation are shown in Figure 5. We
selected these environments to be consistent with prior work
(Parekh and Losey 2023). All environments are composed
of continuous state-action spaces. Within each environment
the robot repeatedly interacts with a simulated human 100
times; each interaction has T = 10 timesteps. We repeat
this process 50 times (to simulate 50 different humans) and
report the averaged results. Overall, the robot’s objective is
to maintain its influence across long-term interaction.

Circle. The Circle environment is an instance of pursuit-
evasion games (Vidal et al. 2002) with two-dimensional
states and actions. The robot agent (i.e., the pursuer) tries
to reach the simulated human agent (i.e., the evader). To
avoid the robot the human moves along the circumference of
the circle. Here z encodes where the human hides from the
robot along the circle, and ϕ governs how the human moves
along the circle to avoid the robot. For example, some human
evaders move away from the robot’s previous position. The
robot’s reward is its negative distance from the human.

Driving. In Driving an autonomous car is trying to pass a
human vehicle. At every interaction the human starts out
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Figure 5. Example interactions from Section 6.2 between the robot and simulated human in the Circle (Top), Driving (Middle), and
Robot (Bottom) environments. The first row for each environment shows interactions with a robot using the Latent method, while
the second row shows interactions with a robot using the Unified method. In Circle, Unified is able to successfully influence the
human by trapping them at the top of the circle while Latent is not. In Driving, Latent leads to higher number of collisions since it is
not able to influence the human to stay out of the robot’s lane. Finally, in the Robot environment while Latent cycles through each of
the three goals, Unified influences the human to frequently pick the robot’s preferred goal (shown with a star).

in front of the autonomous car, and changes lanes as the
autonomous car attempts to pass. Here z encodes the lane
that the human merges into, and ϕ determines how the human
selects that lane. For instance, the some simulated humans
merge into the lane where the autonomous car passed at the
previous interaction. The robot is rewarded for passing the
human, and penalized for crashing with the human. Similar
to the Circle environment, the robot does not know which
lane the human will select; to safely pass the human the robot
must anticipate and influence the driver’s behavior.

Robot. Finally, in Robot the autonomous agent reaches for
goals within a shared workspace. The robot is rewarded if
it reaches for the same goal as the simulated human (i.e.,
if both agents move to the far left object). The robot’s

action space is its 3-DoF end-effector velocity, the latent
representation z encodes the target the human wants to reach,
and ϕ determines how the human updates their target object.
For instance, at interaction i+ 1 some humans select the
object to the left of its target at the previous interaction i.

Implementation. To ensure a fair comparison between the
baseline Latent and our proposed Unified approach, we
provided the system state s = (sR, sH) to both algorithms.
This system state included the position of the robot and
the human. Here providing the robot with s alleviated the
need to learn the latent strategy z, since the human’s current
strategy was often captured by their state (i.e., z in Circle
encodes the human’s location). However, we emphasize that
the robot does not know how the human will update this z
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Figure 6. Experimental results from Section 6.2 comparing
Latent and Unified with simulated humans. The results are
shown for the three environments Circle (Left), Driving (Middle),
and Robot (Right). Plots show the number of interactions where
the robot manages to successfully influence the human.
Asterisks ∗ denote statistical significance (p < .05).

between interactions, i.e., ϕ is still a latent parameter that
must be learned. Similar to Section 6.1, we implemented our
MOMDP framework using the Julia programming language
(Egorov et al. 2017) and the POMCPOW approximation
(Sunberg and Kochenderfer 2018).

Results. Our results from the second simulation are shown in
Figure 6. In the middle we provide quantitative examples of
how each method interacted with simulated humans, and on
the right we plot the number of times the robot successfully
influenced the human. The definition of successful influence
varied based on the robot’s reward. For Circle this was
the number of times the robot pursuer trapped the human
evader; for Driving this was the number of times the human
driver moved out of the autonomous car’s way; and for
Robot this was the number of times the human selected
the object closest to the robot. Robots that applied our
Unified framework were able to influence simulated human
more frequently over long-term interactions than the Latent
baseline. Paired t-tests revealed that the number of successful
influences for Unified was significantly higher than Latent
in Circle (t(49) = −6.543, p < .001), Driving (t(49) =
−10.933, p < .001), and Robot (t(49) = −4.411, p < .001).

Overall, we again found that our experimental results
aligned with our theoretical analysis. The Latent simplifi-
cation was able to learn the human’s latent representation
z and the patterns the human leveraged to update z in the
short-term. However, when humans changed the rules that
underpinned z (i.e., when the long-term dynamics caused ϕ
to shift) Latent was confused, and the robot needed to re-
learn the human’s latent strategy and response pattern. By
contrast, Unified constantly reasoned about both short-term
and long-term dynamics, ultimately learning not just how the
human would update z for the next interaction, but also how
the robot’s actions could impact ϕ. The robot’s ability with
Unified to account for long-term impacts enabled the robot
to more frequently influence the simulated human.

7 Influencing Users in the Long-Term
In Section 6 we demonstrated how our unified formulation
can influence simulated humans over repeated interactions.
Equipped with this formulation, we now return to our core
challenge: controlling how robots influence actual users

over long-term interaction. In Section 4 we highlighted that
existing approaches fail to regulate this long-term influence
— within a span of 12 interactions, humans quickly learned
to disregard the robot’s actions. Now we return to similar
experimental setups, and seek to influence participants
over the span of 25+ interactions. We demonstrate two
contributions of our unified approach. First, in Section 7.1
we show how designers can leverage our unified framework
to generate principled but tractable simplifications. We make
a greedy approximation (i.e., a one-step look-ahead) to arrive
at a new algorithm for influencing humans, and test how that
method influences users during human-drone interactions.
Second, in Section 7.2 we leverage particle-based solvers
to reach a near-exact solution to our unified framework,
and compare that approach to state-of-the-art baselines. Here
users drive a simulated vehicle alongside an autonomous
car: we again test whether the robot is able to consistency
regulate how aggressively the human drives. Videos of our
user studies are available online at: https://youtu.be/
nPekTUfUEbo.

7.1 Interacting with an Aerial Drone

In this experiment we test how our unified framework can
be leveraged to reach principled but tractable simplifications.
In general, computing near-exact solutions to the MOMDP
may not always be feasible — but designers can introduce
approximations into this framework to derive real-time
methods. Game-theoretic and latent approaches to influence
are two examples of these approximations. Here we generate
another novel approximation: the One-Step method. We then
compare that approach to the Stackelberg baseline in a user
study where participants are walking near an aerial drone.
The humans and drone have orthogonal goals, and often
need to intersect each other’s path. At these intersections
the drone takes actions to attempt to influence the humans
to yield (so that the drone passes first and completes its task
more efficiently). We measure how successfully the drone
influences the human over 25 repeated interactions.

One-Step Approximation. On one hand, fully solving the
MOMDP requires the robot to reason about all possible
evolutions of its belief. On the other hand, if the robot does
not consider how its belief can change, then it will be unable
to reason about how the person could be influenced and thus
fail to maintain control. Our One-Step approximation to the
MOMDP in Section 5 attempts to strike a balance between
these two extremes by having the robot reason about one
belief update it will perform after the current timestep. Let b
be the robot’s belief over the augmented state x = (s, z, ϕ),
where z and ϕ are both unknown parameters of the human
model. We instantiate z as the human’s reward function, such
that z = rH, and we instantiate ϕ as the human’s estimate
of the robot’s reward, such that ϕ = b(rR). Within this
instantiation the human is trying to determine what the robot
is optimizing for: as the human uncovers rR, the human can
accurately anticipate or ignore the robot’s influential actions.

To tractably solve this instantiation for the optimal robot
policy πR, we assume that the robot will fully observe x
two timesteps in the future. This is an improvement over
the QMDP approximation (where the robot assumes it will

https://youtu.be/nPekTUfUEbo
https://youtu.be/nPekTUfUEbo
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Figure 7. User study from Section 7.1 where in-person participants repeatedly cross paths with a drone. (Left) When the drone
and human intersect, the drone tries to influence humans to yield so that it can cross first. If this influence fails, the robot
temporarily reverses direction to avoid a collision. (Right) We plot the amount of time the robot reverses direction across 25
repeated interactions. The Stackelberg drone solves Equation (3) and Equation (4) to try and influence the human; this robot
always yielded once the human was within a specific radius. By contrast, the One-Step drone used a simplification of the unified
framework presented in Equation (15) to make its actions less predictable. This drone would occasionally yield at a larger radius or
a smaller radius as compared to the Stackelberg drone. We found that this unpredictability reduced the amount of time the robot
had to reverse and increased the number of successful influences. Error bars show standard error.

uncover x at the next timestep). As a result, our One-
Step look-ahead greedily reasons over how its belief b will
evolve, and incorporates that belief within its objective.
Using this one-step simplification we reach the modified
reward function (Brooks and Szafir 2019):

RR(st,aR,aH) = λH(ϕt+1)+∑
s∈ξ(st,aR,aH)

rR(s, θR) (15)

where H is the Shannon entropy over the distribution ϕ at
one timestep in the future, and λ ≥ 0 is hyperparameter set
by the designer. Comparing Equation (15) to Equation (2),
we see that the key difference is the inclusion of the entropy
term. Maximizing this modified reward causes the robot to
take actions now that will increase the human’s uncertainty
over the robot’s reward at the next timestep. Put another
way, the robot proactively attempts to modify ϕ so that
the human cannot uncover what the robot optimizing for
or predict how the robot will behave. We expect that this
One-Step simplification will outperform existing methods
such as Stackelberg because i) the robot is reasoning over
how ϕ evolves within long-term human dynamics and ii) the
robot attempts to control that evolution so that the robot can
maintain influence.
Experimental Setup. To put this simplification generated by
our unified approach to the test, we created a task where
participants interacted with an aerial drone (see Figure 7).
The drone and human had similar tasks at opposite sides of
the room. Participants walked back and forth across the room
to pick up blocks and build a tower; each time the human
started to cross, the drone moved orthogonally to monitor
the blocks at two other locations. This resulted in repeated
intersections between the drone and the human. Both agents
had to determine how to navigate these intersections: e.g.,
the drone might move backwards to yield to the human, or
the human might wait for the drone to cross. We tracked the

position of the drone using ceiling-mounted cameras, and
humans wore an HTC Vive Tracker around their waist for
real-time position measurements.
Independent Variables. We compared two robot con-
trollers: the Stackelberg baseline introduced in Section 4
and the One-Step simplification of our unified framework.
The robot was rewarded for crossing the room as quickly
as possible while avoiding collisions with the human: to
maximize its speed, the robot tried to influence humans
to yield. The drone selected actions in real-time using the
following reward functions:

rR(s, θR) = ṡR − 10 · 1{collision in s} (16)

rH(s, θH) = ṡH − 100 · 1{collision in s} (17)

where ṡR ⊂ s is the robot’s forward velocity and ṡH ⊂ s is
the human’s velocity. We recognize that actual participants
may not have followed this human reward function: rH is
used purely by the robot to calculate the Stackelberg human
model in Equation (4).

Negative values for ṡR indicate that the drone is reversing
direction and yielding to the human. Recall that the One-
Step robot takes actions that make the human uncertain
about what the robot is optimizing for (i.e., whether the
robot is trying to avoid collisions). In practice, this caused
the One-Step drone to randomly switch between crossing
aggressively (only yielding if the human was within a small
radius) and defensively (yielding if the human was anywhere
within a larger radius).
Dependent Measures. A robot that maintains the right-of-
way will always have a positive ṡR. However, if the human
insists on going first, then the robot must back off and give
the participant space. To measure influence, we therefore
recorded the amount of time the robot reversed during each
interaction. Lower values correspond to higher influence
(i.e., a robot that reverses direction the fewest number of
times is effectively influencing the human to yield).
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Participants. We recruited 11 participants from the Virginia
Tech community (10 male, ages 22.1± 3.1 years). These
participants provided informed written consent under IRB
#20-755. We recognized that people may hesitate to walk
close to a flying drone; before starting the experiment, we
accordingly demonstrated the task and drone behaviors to
help users become familiar and comfortable walking near the
drone. We leveraged a within-subjects design: all participants
interacted with a One-Step robot 25 times and a Stackelberg
robot 25 times. The order of presentation was balanced
across users, so that half started with One-Step and the other
half started with Stackelberg.
Hypothesis. We hypothesized that:

H2. A drone that approximates our unified
framework while reasoning about long-term
influence will cause the human to yield more
consistently than the game-theoretic baseline.

Results. Our results are summarized in Figure 7. Paired t-
tests reveal that the Stackelberg robot spent significantly
more time backing-up and yielding to the human as
compared to One-Step (t(327) = 13.02, p < .001). We also
noticed that — as participants became more familiar with
the Stackelberg robot — they insisted on going first more
frequently (perhaps because they were able to predict when
this robot would yield). As a result, the final 8 interactions
with Stackelberg had a higher average reverse time than
the first 8 interactions, although this difference was not
statistically significant (t(10) = −1.45, p = .09). Overall,
the findings from this study supported H2: the One-Step
robot consistently influenced the 11 participants to yield the
right-of-way over 25 repeated interactions. This user study
demonstrates that we can leverage our unified framework to
generate novel simplifications (such as One-Step), and by
carefully designing these simplifications we reach robots that
effectively influence humans over long-term interaction.

7.2 Driving Alongside an Autonomous car
In our first user study (Section 7.1) we demonstrated how our
unified framework can be leveraged to generate influential
algorithms. This makes sense for cases where the problem
setting is high dimensional, and we cannot practically solve
the MOMDP. At the same time, we recognize that recent
advances in optimization enable robots to reach near-exact
solutions to the MOMDP in increasingly complex settings
(Kurniawati 2022). In this experiment we therefore put our
unified formalism to the test, and compare Unified to two
baselines. The user study is performed in the same driving
environment as in Sections 4.2 and 6.1. Participants drive
a simulated vehicle alongside an autonomous car in both
a highway and intersection environment. The autonomous
car attempts to regulate the speed of the human on the
highway, and cross in front of the human at the intersection.
Importantly, this study focuses on long-term influence:
participants interact with the autonomous car 30 times in
each environment. Our results explore whether the unified
formulation — in its complete form — regulates influence
more effectively than state-of-the-art approximations.
Experiment Setup. We created driving environments
consistent with both prior works on influence (Tian et al.

2023; Sadigh et al. 2016; Fisac et al. 2019; Schwarting et al.
2019) and our preliminary experiments from Sections 4.2
and 6.1. Participants shared a road with an autonomous car
in two settings: Highway and Intersection (see Figure 8).
The vehicles had point-mass dynamics from the CARLO
environment (Cao et al. 2020). To control their car in real-
time, users interacted with a Logitech G29 steering wheel
and pedal. The length of the interactions was fixed; the
next interaction started immediately after the previous one
ended. As described in Equation (7), participants earned a
score based on staying on the road, making lane progress,
and avoiding collisions with the autonomous car. This score
was displayed to participants throughout the experiment to
encourage safe and efficient driving.
Independent Variables. We varied the autonomous car’s
control strategy with three levels. To provide a baseline
consistent with our previous studies, we included the game-
theoretic Stackelberg algorithm. Next, we tested a modified
version of this Stackelberg approach that added zero-mean
Gaussian noise to the robot’s actions. Under Noise the robot
solves Equation (3) and Equation (4) to find its action
trajectory a∗R = (a∗,0R , . . . , a∗,TR ), and then we inject noise
at each timestep:

atR = a∗,tR + ϵt, ϵt ∼ N (0,Σ) (18)

Intuitively, we thought that Noise might improve Stackel-
berg because it makes the robot’s actions less predictable,
preventing the human from precisely anticipating the robot’s
influential behavior over repeated interactions. Against the
these baselines we compare our Unified formalism as
described in Section 5.2. To tractably obtain πR we again
leveraged the POMCPOW approximation in Julia (Sunberg
and Kochenderfer 2018). For each of the implemented con-
trollers the robot reward was the same as Equation (6).
Dependent Measures. For both environments we measured
the human’s lane progress, total number of collisions, and
robot reward. A participant that speeds up and safely passes
the autonomous car will increase their own score while
lowering the robot’s reward. Here the autonomous car
successfully influences the human towards defensive driving
by (i) reducing the speed of the human on the Highway or
(ii) crossing the Intersection in front of the human.
Participants and Procedure. We advertised our experiment
to the Virginia Tech community and recruited 20 college-
age participants (16 male, ages 23.75± 2.79 years). All
the participants had experience with driving vehicles, and
16 of the users had previously played racing video games.
Participants provided informed written consent following
university guidelines (IRB #23-784).

At the start of this user study participants answered a
demographics survey. Next — similar to the experimental
procedure in Section 4.2 — participants practiced driving
in each environment for roughly five minutes. After
this familiarization phase we began the recorded trials
by following a within subjects design. Every participant
interacted with Stackelberg, Noise, and Unified 60 times
(30 per environment) so that individual users completed
a total of 60× 3 = 180 trials. The order of the tasks
and influential algorithms was randomized and balanced
across participants. After interacting with each algorithm
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Figure 8. Example interactions from Section 7.2 between the robot and a user in Highway (Top) and Intersection (Bottom). The
interactions are shown for robots using the three frameworks, Stackelberg, Noise, and Unified. We compare how influential the
robot was in the beginning of the experiment versus at the end. All three frameworks enable the robot to successfully influence the
user at the start. In Highway, the robot influences the user to slow down, reducing their lane progress. In Intersection, the robot
influences the user to yield. Over long-term, repeated interactions with N = 20 users, only the Unified framework is able to
maintain influence — slowing down the user in Highway or crossing in front of the user in Intersection.

the participants answered survey questions about their
experience. On a 1-to-7 Likert scale, users indicated
how much they agreed with the following prompts: the
autonomous car’s response was predictable, and I changed
my inputs based on what the autonomous car was doing.

Hypothesis. We hypothesized that:

H3. Robots controlled with our unified frame-
work will more effectively influence actual users
over the long-term than current approaches.

Results. Our average results across 20 participants are
summarized in Figures 8 and 9.

In Figure 8 we show examples of the interaction
trajectories for the two environments and three control
algorithms. These trajectories are presented in pairs: on the
left of each pair are the participant and robot behaviors at the
start of the experiment, and on the right are the participant
and robot behaviors after 30 repeated interactions. In general,
we observe that Stackelberg, Noise, and Unified robots are
all able to initially influence the human to slow down or
yield. But as the human gains experience driving alongside
the robot, with Stackelberg and Noise participants identify
behaviors that avoid or mitigate the robot’s influential
actions. By contrast, Unified is able to maintain influence —
consider Intersection, where the Unified robot still crosses in
front of the human driver at the end of 30 trials.

The objective results from our final user study are pre-
sented in Figure 9 (Left). Here we plot the human’s lane
progress, the robot’s reward, and the number of collisions.
Robots that influence participants should minimize lane
progress and collisions while maximizing robot reward. To
analyze our results — and examine whether each algorithm
was able to influence humans — we conducted repeated
measures ANOVAs. We found that algorithm type had a
significant effect on lane progress (Highway: F (1, 599) =
97.7, p < .001, Intersection: F (1, 599) = 25.9, p < .001),

robot reward (Highway: F (1, 599) = 21.0, p < .001, Inter-
section: F (1, 599) = 19.8, p < .001) and collisions (High-
way: F (1, 599) = 8.6, p = .003, Intersection: F (1, 599) =
75.2, p < .001). Bonferroni post hoc tests revealed that
Unified caused the human to have less lane progress than
Stackelberg (p < .001) or Noise (p < .001) across Highway
and Intersection. Similarly, Unified increased the robot’s
reward over Stackelberg (p < .001) and Unified (p < .001).
For the Highway environment, the number of collisions was
roughly equal for Unified and Noise (p = 0.87). But in
the Intersection environment Unified reduced the collisions
as compared to both Stackelberg (p < .001) and Noise
(p < .001). A possible explanation for this difference in the
number of collisions is that human drivers perceived the
Intersection to be a more structured environment (with clear
expectations for going first or second), while the Highway
was less structured — e.g., human drivers could weave
between lanes repeatedly to try and pass the robot. This may
have led to more collisions across the board.

Finally, in Figure 9 (Right) we plot the subjective results
of our survey. This survey had two items: Predictable
and Change. Predictable indicated whether participants
perceived the robot’s behavior to be easy to anticipate, and
Change indicated whether participants thought they changed
their behavior in response to the robot’s actions. Repeated
measures ANOVAs show that users gave significantly
different scores for Predictable (F (1, 19) = 11.0, p < .01)
and Change (F (1, 19) = 8.0, p < .05) based on the type of
robot they interacted with. Post hoc tests suggest that with
Unified participants found the robot to be harder to predict
than with Stackelberg (p < .05) or Noise (p < .001). In
addition, when interacting with Unified participants felt
that they had to change their behaviors more than with
both Stackelberg (p < .05) and Noise (p < .05). These
subjective results match our previous findings for controlling
influence. When humans are able to easily anticipate what
the robot will do, they can plan around those behaviors
and mitigate influential actions. By contrast, robots that
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Figure 9. Objective and subjective results from our driving user study in Section 7.2. (Left) Objective results for the highway and
intersection tasks. The leftmost plots show the lane progress made by the human; a lower lane progress indicates that the robot is
successfully able to influence the users to slow down. The plots in the second column compare the robot’s reward across all the
users. A higher reward suggests better robot performance. The plots in the third column display the number of collisions between
the robot and the human in each interaction. The shaded region and the error bar in the plots show the standard error. (Right)
Subjective results from Likert scale surveys. We plot the average user rating for Predictable, i.e., whether participants perceived the
robot’s behavior to be easy to anticipate, and Change, i.e. whether participants thought they changed their behavior in response to
the robot’s actions. A lower rating for Predictable suggests that the robot could maintain its influence over humans who could not
easily anticipate the robot’s behavior. In contrast, for Change a higher rating suggests that the robot was able to influence the users.

effectively influence humans cause those humans to change
their actions in response to the robot’s behavior.

Summary. Our final user study demonstrates that when
robots solve our unified framework to select their policy,
they are able to consistently influence humans across long-
term interactions. Specifically, the Unified approach guided
20 participants to drive more defensively across 60 total
interactions within two driving environments.

8 Conclusion
Just as AI agents have affected human decision making,
embodied agents will influence the way people interact. In
this paper we presented a unified framework to control how
robots influence humans over long-term interaction. We first
demonstrated that existing approaches are often unable to
regulate influence during repeated interactions; this failure
occurs because existing approaches rely on a static human
model, and assume humans respond to robot behaviors in a
fixed way. However, our experiments revealed that humans
adapt to the robot — so that behaviors which were originally
influential are later avoided or ignored.

To enable robots to reason over how humans adapt to
their actions, we next developed an optimization framework
for long-term influence. Our framework models humans as
history-aware agents with short- and long-term dynamics,
and then incorporates that human model into an augmented
dynamical system. We formally write this as a single-agent
system (i.e., the robot is the actor), where parameters of
the human’s evolving model are unknown parts of the
augmented state, and the robot gathers information about

this state by observing the human’s actions. Our overall
formulation is an instance of a mixed-observability Markov
decision process (MOMDP): existing optimization tools can
be leveraged to obtain near-optimal robot policies from our
framework. We refer to this formalism as unified because
we can derive existing approaches from our method. For
example, we show that state-of-the-art influential algorithms
based on game theory and latent representations are actually
simplifications of our MOMDP.

We tested our unified framework across simulations and
user studies. Our simulations compared the unified method
against state-of-the-art simplifications. These simplifications
ignore the human’s long-term dynamics — so while they are
able to influence the human at first, they struggle to maintain
that influence as the human changes behavior. Accordingly,
the simulation results supported our theoretical analysis and
indicated that solving the unified framework outperforms
state-of-the-art approximations. Next, we conducted two
user studies where N = 11 participants interacted with an
aerial drone and N = 20 participants drove a simulated
vehicle alongside an autonomous car. These user studies
focused on long-term interactions: the participants worked
with the robot for 25+ trials. Our results suggest that i)
designers can apply new simplifications to our method to
reach tractable but influential policies, and ii) our unified
approach is able to successfully regulate how it influences
humans over repeated interactions.

Limitations. This paper is a step towards robots that consider
how their behaviors will affect human decision making in
the short-term and long-term. One limitation of this work
is that our experiments focus on one robot interacting
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with one human. Although the theoretical framework we
developed in Sections 3–5 can extend to multiple users,
it is not yet clear how this method will scale in practice.
Theoretically, interacting with several humans increases the
dimension of the latent parameters z = (z1, . . . , zk) and ϕ =
(ϕ1, . . . , ϕk). Here k is the number of humans, and zi and ϕi

parameterize the robot’s model of the i-th human. Increasing
the number of humans increases k, meaning that the latent
vectors z and ϕ gain dimensions. This is a practical challenge
for our approach: as discussed in Section 5.2, solving the
MOMDP becomes intractable as the belief space grows.
Designers can introduce simplifications to convert this multi-
human MOMDP into a feasible optimization problem — but
without additional experiments, it is not year clear which
simplifications are most appropriate. Overall, we see the
problem of one robot influencing multiple humans as an open
question where future work can build upon our formalism.
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