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Abstract— When humans interact with robots influence is
inevitable. Consider an autonomous car driving near a human:
the speed and steering of the autonomous car will affect how
the human drives. Prior works have developed frameworks that
enable robots to influence humans towards desired behaviors.
But while these approaches are effective in the short-term (i.e.,
the first few human-robot interactions), here we explore long-
term influence (i.e., repeated interactions between the same
human and robot). Our central insight is that humans are
dynamic: people adapt to robots, and behaviors which are
influential now may fall short once the human learns to antic-
ipate the robot’s actions. With this insight, we experimentally
demonstrate that a prevalent game-theoretic formalism for gen-
erating influential robot behaviors becomes less effective over
repeated interactions. Next, we propose three modifications to
Stackelberg games that make the robot’s policy both influential
and unpredictable. We finally test these modifications across
simulations and user studies: our results suggest that robots
which purposely make their actions harder to anticipate are
better able to maintain influence over long-term interaction.
See videos here: https://youtu.be/ydO83cgjZ2Q

I. INTRODUCTION

Consider a human that is driving alongside an autonomous
car or walking near a delivery drone (Figure 1). The human
and robot each have their own objectives: perhaps the hu-
man wants to drive home as quickly as possible while the
autonomous car is trying to ensure that all vehicles share the
road safely. During human-robot interaction intelligent robots
can leverage their actions to influence humans. For instance,
here the autonomous car can merge in front of the human to
cause this driver to slow down. Merging in front of speeding
humans may influence these people the first few times the
human and robot interact. But as the human becomes more
familiar with the robot’s behaviors and capabilities, these
actions no longer have the intended effect: over time, human
drivers anticipate that the autonomous car will change lanes,
and adapt to avoid the robot or pass it altogether.

Within this paper we define influence as robot actions that
(a) emerge as part of the robot’s optimal policy and (b) cause
nearby humans to change behavior. Today’s robots intention-
ally select influential actions to increase the team’s overall
reward [1]–[5], guide humans towards goal regions [6]–[9],
or change leader and follower roles [10], [11]. However,
these state-of-the-art influencing algorithms often assume
that the human is static; i.e., the human always interacts with
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Fig. 1. Human interacting with autonomous car (Top) and drone (Bottom).
The robot uses state-of-the-art algorithms to influence the human to yield.
These approaches work in the short-term, but not in the long-term.

the same robot actions in the same way. For example, some
approaches [7], [8] assume that the will human react to the
robot using consistent rules; other methods [1]–[6] assume
that the human treats interaction as a turn-based game, and
chooses the optimal response to the robot’s behavior.

Prior works indicate that current approaches influence the
human as desired in the short-term. But we recognize that
people are dynamic: over repeated interactions humans will
inevitably learn from the robot and adapt their responses. In
this paper, we experimentally demonstrate that one common
framework for influencing algorithms fails in the long-term.
We then take a step towards addressing this issue:

Robots better maintain influence over long-term
interaction by making their behaviors less predictable.

Let us return to our driving example from Figure 1. When the
robot assumes the human is static, it always selects the same
influential actions (e.g., merging into the left lane). But as the
human gets better at anticipating these behaviors, they be-
come increasingly ineffective (e.g., the human changes lanes
and passes on the right). Applying our insight, we envision
autonomous systems that — like their human counterparts
— consistently interact in slightly different ways, making
it challenging for humans to predict exactly what the robot
will do next. Towards this end, we formalize game-theoretic
controllers that optimize for unpredictable and influential
robot behaviors across long-term interaction.

Overall, we make the following contributions:

https://youtu.be/ydO83cgjZ2Q
https://collab.me.vt.edu/
https://thehcalab.web.illinois.edu/


Testing Influencing over Repeated Interaction. We con-
duct an online and in-person study where users repeatedly
drive alongside an autonomous car. This car solves a Stack-
elberg game to influence the human: we find that participants
are influenced to yield at the start of the experiment, but over
time people yield to the robot less frequently.

Formulating Unpredictable Influence. We introduce three
possible modifications to an existing game-theoretic frame-
work for influencing humans. These modifications bias the
robot’s optimal behavior towards actions that purposely ob-
scure the robot’s reward function and intended behavior.

Maintaining Influence. We test our approach in driving sim-
ulations and an in-person experiment with delivery drones.
As participants move across the room their path intersects
with the drone: over 25 interactions, we measure how often
the human is influenced to yield. Our results suggest that
unpredictable behaviors improve long-term influence.

II. RELATED WORK

Influential Actions. While robots can also influence humans
through social factors such as their expressions or appearance
[12]–[14], we here focus on leveraging actions to influence
humans. Influential actions naturally emerge when robots
are interacting with humans and the robot must shape the
human’s behavior to complete its own task or maximize its
own reward [1]–[3], [5], [8]. Consider a collaborative robot
arm that is handing cups to a human. How the robot passes
these cups will change the human’s grasp; as such, the robot
orients its cups to guide humans towards more stable grasps
[6]. Alternatively, take a competitive robot arm that is playing
air hockey against a human. The actions this robot makes to
block the human’s shots will alter how the human shoots next
time: here robots learn to block in ways that lead opponents
towards more easily stopped shots [7], [8]. Other prior works
research influential actions in autonomous driving scenarios
that are not necessarily collaborative or competitive [1]–[3],
[5], [15]. Within this application robots actively guide human
drivers towards synergistic behaviors; e.g., an autonomous
car nudges into a busy lane so that the humans yield and the
autonomous car can seamlessly merge.

Across each of these examples the robot selects influential
actions while assuming the human will respond using fixed
rules or static patterns. In practice, however, human behavior
shifts over time as people learn from and adapt to robots.
Unlike prior works, we therefore explore how robots should
select influential actions over long-term interaction.

Influence & Game Theory. How do robots identify influ-
ential actions in the first place? One common approach is to
formulate human-robot interaction as a multi-agent system
[5], [16], and then leverage game-theoretic approaches to find
robot policies that influence the human towards advantageous
behaviors. More specifically, works including [1]–[3] treat
human-robot interaction as a Stackelberg game [17] where
the robot acts (i.e., the robot chooses its actions first) and
then the human reacts (i.e., the human selects their response
given the robot’s chosen behavior). Optimal robots in these

Stackelberg games intentionally take actions that maximize
the robot’s reward by shaping the human’s response [4],
[18]. But while these game-theoretic approaches generate
influential actions, they miss out on: (a) humans are not static
agents that always react in the same way and (b) humans and
robots act simultaneously, not in turns. As we extend these
approaches towards long-term interaction, we seek to capture
the human’s dynamics and adaption during interaction.

III. EXISTING APPROACHES TO INFLUENCE

Building on prior works [1]–[4], we model human-robot
interaction as a discrete-time, general-sum Stackelberg game
[17]. This formalism recognizes that the human and robot are
trying to complete their own tasks, but each agent’s ability to
do so is inherently coupled with the other agent’s behavior.
For example, in the highway scenario from Figure 1 the
robot’s ability to merge without colliding depends on the
human yielding to the robot; in turn, the human sacrifices
how fast they can drive home to prevent this collision. Here
we will restrict ourselves to interactions between one human
and one robot, but this same modelling paradigm extends to
an arbitrary number of agents [5].

Let s be the system state (e.g., the position of both human
and robot cars), let uR be the robot’s action, and let uH be
the human’s action (e.g., their steering and acceleration). The
human-robot system transitions according to the discrete-
time dynamics st+1 = f(st, ut

R, ut
H). At each timestep t

the robot receives reward rR(st, ut
R, ut

H) and the human
receives reward rH(st, ut

R, ut
H). The human and robot may

have different reward functions — in our running example
the human wants to go as quickly as possible while the
robot is rewarded for keeping other drivers below the speed
limit. Let the robot’s action trajectory over T timesteps be
uR = (u0

R, . . . , uT
R) and let uH = (u0

H, . . . , uT
H) be the

human’s action trajectory. In practice, the human and robot
act simultaneously. But under the Stackelberg game model
we separate each interaction into turns: first the robot selects
uR and then the human responds with uH. More formally,
the robot and human perform bi-level optimization:

u∗
R = argmax

uR
RR(s0,uR,u∗

H(s0,uR)).

s.t. st+1 = f(st, ut
R, ut

H)

u∗
H(s0,uR) = argmax

uH
RH(s0,uR,uH)

s.t. st+1 = f(st, ut
R, ut

H)

(1)

Here RR(s0,uR,uH) =
∑T

t=0 rR(st, ut
R, ut

H) is the robot’s
total reward and RH(s0,uR,uH) =

∑T
t=0 rH(st, ut

R, ut
H)

is the human’s total reward. When solving Equation (1) both
the robot and human maximize their own cumulative reward,
but the robot gets to select its actions first.

Robots that apply this formulation use their actions to
influence humans. For instance, in [1] an autonomous car
solving Equation (1) nudges into the human’s lane to cause
the driver to yield, or backs up at an intersection to encourage
the human to proceed first. Other state-of-the-art methods
have modified the Stackelberg game approach. This includes
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Fig. 2. Participants repeatedly interact with an autonomous car that uses existing Stackelberg game approaches to influence their behavior. The autonomous
car selects actions uR by solving Equation (1); this is consistent with prior works [1]–[5]. The robot is rewarded for influencing the human to slow down,
yield and reduce lane progress. For both online (Top) and in-person (Bottom) participants, the robot’s influence decreases over time. In the last column
(Right) we display the average behavior across the highway, intersection, and roundabout driving environments. Shaded regions show standard error.

adding an additional reward term for gathering information
about the human’s internal state [19], and parameterizing
each agent’s reward function with their Social Value Orien-
tation [5]. Other works recognize that humans are not always
optimal [3], [15], and infer whether the human is playing first
or second within the Stackelberg game [2].

In this paper we use the Stackelberg game in Equation (1)
as our baseline for generating influential robot behaviors.
Although previous research has shown that this model influ-
ences humans in the short-term, we will explore how humans
respond over repeated, long-term interactions.

IV. ARE HUMANS INFLUENCED IN THE LONG-TERM?

We first performed online and in-person user studies to test
whether existing Stackelberg game approaches consistently
influence humans during long-term interaction. Participants
drove a simulated car while sharing the road with an au-
tonomous vehicle that selected actions according to Equa-
tion (1). Each participant interacted with the autonomous car
across three driving settings and 36 total trials. Our results
from 45 online users and 10 in-person drivers show that the
robot successfully influenced people to yield at first, but over
time human drivers adapted to ignore or avoid the robot.

Experimental Setup. Participants shared the road with an
autonomous car in three settings: highway, intersection, and
roundabout (see Figure 2). To simulate the driving environ-
ment and vehicle dynamics in real-time we used CARLO
[20]. In-person participants controlled their car using a
Logitech G29 steering wheel and responsive pedals. Each
interaction ended after a fixed number of timesteps. Online
participants first watched an animated video of the start of the
interaction, and then selected their behavior from a multiple
choice menu. Both in-person and online participants earned
points for avoiding a collision, staying on the road, and
making lane progress. We displayed the participant’s current

score throughout the experiment. All participants interacted
within the highway, intersection, and roundabout settings 12
times each for a total of 36 repeated interactions. The road
setting order was randomized and balanced across all users.
Independent Variables. The autonomous car solved the
Stackelberg game in Equation (1) to select its actions uR. We
rewarded the robot for avoiding collisions and minimizing
the human’s lane progress. More specifically, we selected:

rR(s, uR, uH) = −ṡH − 10 · 1{collision in s} (2)

where ṡH ⊂ s is the human car’s velocity. The robot assumed
that the human’s reward matched their displayed score:

rH(s, uR, uH) = ṡH − 10 · 1{on road in s}−
100 · 1{collision in s} (3)

Positive values for ṡH indicate that the human’s car is
moving forward along the road (i.e., making lane progress),
while negative values mean the human’s car is in reverse.
Combining Equations (1)–(3), the robot attempts to influence
humans to yield in order to reduce their lane progress.
Dependent Variables. For online participants we recorded
whether the human chose to yield or pass the autonomous
car. For in-person subjects we measured their lane progress,
i.e., the vertical distance they traveled. In each environment
the human’s car started at the bottom of the screen and drove
towards the top of the screen; a driver that never yields to
the autonomous car would maximize their lane progress.
Participants. For the online component of the user study
we recruited 63 anonymous participants. At the start of the
experiment these participants read the instructions and then
answered qualifying questions to check that they understood
the experimental procedure. A total of 45 users passed these
questions and continued on to the survey.

For the in-person component we recruited 12 participants



from the Virginia Tech community. Of these, 10 answered the
qualifying questions correctly and completed the experiment
(5 female, ages 24.7±5.2 years). All participants provided in-
formed written consent consistent with university guidelines
(IRB #20-755). We recognize that users may adapt to become
better drivers as they continue to interact in our simulated
environment. To account for this confounding factor we had
participants practice driving without any autonomous cars
until they reached expert-level scores.

Hypothesis. We hypothesized that:

H1. Over repeated interactions the autonomous
car’s influence will decrease and human drivers
will yield to the robot less frequently.

Results. Our results from this first user study are summarized
in Figure 2. The top row shows pass % for online users as a
function of interaction number; the bottom row displays lane
progress for in-person drivers over repeated interactions.

Online users chose to either yield or pass the autonomous
car during each interaction. We performed Wilcoxon signed-
rank tests to see how the human’s choice evolved between the
first interaction and the final interaction. Our results averaged
across all three driving scenarios reveal that humans passed
the autonomous car more frequently by the end of experiment
(Z = −5.798, p < .001). This change was also statistically
significant for the highway and intersection, but not for the
roundabout (Z = −1.155, p = .248). Within the roundabout
humans rarely yielded to the robot, perhaps because they
perceived their own car as having the right of way.

For in-person drivers we measured their lane progress.
Remember that the autonomous car is trying to influence
humans to reduce their speed; as such, higher lane progress
is correlated with less robot influence. Paired t-tests show
the human’s average lane progress was significantly higher
at the final interaction as compared to their first interaction
(t(29) = −5.952, p < 0.001). This trend is consistent
across highway (t(9) = −2.4, p < .05), intersection (t(9) =
−3.1, p < .05), and roundabout (t(9) = −5.6, p < .001).

Our results from this first study support H1. Autonomous
cars that leverage an existing game-theoretic framework to
generate influential behaviors are effective in the short-term,
but do not maintain the same influence across the long-term.

V. INFLUENTIAL AND UNPREDICTABLE ROBOTS

Our experiments in Section IV show that the state-of-the-
art approach to influential robots falls short over long-term
interaction. So what can we do to address this challenge?
Here we take a first step towards control strategies that main-
tain influence. Remember our original insight: as humans
observe the robot and learn to anticipate its actions, it be-
comes easy for humans to ignore, avoid, or work around the
robot. We therefore propose a game-theoretic approach that
combines influential and unpredictable behavior. Specifically,
we introduce three possible modifications to the framework
from Section III. These modifications i) inject noise, ii) trade-
off between influence and state entropy, or iii) trade-off
between influence and belief entropy.

Noise. One naïve modification is simply to inject noise into
the robot’s actions. Here the robot still solves Equation (1) to
find its action trajectory u∗

R = (u∗,0
R , . . . , u∗,T

R ), but at each
timestep we add zero-mean Gaussian noise:

ut
R = u∗,t

R + ϵt, ϵt ∼ N (0,Σ) (4)

Covariance matrix Σ is a tunable hyperparameter. In practice,
safe robots should not take noisy or random actions when
those actions could lead to low rewards (i.e., noise ϵ should
not cause a collision). Similar to [21], we therefore constrain
ϵ at each timestep so that rR(st, ut

R, u∗
H) is probabilistically

greater than a designer-chosen threshold δ.
Entropy over States. Our second modification is inspired by
human behavior. We recognize that humans never perform
the same task in the exact same way; e.g., human drivers
naturally vary their timing, acceleration, and steering so
that the system state is constantly changing. Here we will
similarly encourage robots to visit new states during each
interaction by balancing between influence and state entropy.
Let ξ(s0,uR,uH) := (s0, . . . , sT ) be the state trajectory
induced by robot and human actions. We augment the robot’s
reward with the Shannon entropy of the trajectory, H(ξ):

RR(s0,uR,uH) =

T∑
t=0

rR(st, ut
R, ut

H) + λH(ξ) (5)

where λ ≥ 0 determines the relative importance of state
entropy. Under this approach the robot solves the Stackelberg
game in Equation (1) while optimizing for Equation (5).
Because it is intractable to compute H(ξ) in real time, we
approximate entropy using the particle-based estimate from
[22]. Specifically, we use: H(ξ) ≈ log ∥ξc − ξ∥, where ξc is
the closest trajectory to ξ in our trajectory buffer.
Entropy over Belief. In our final modification the robot pur-
posely makes it harder for humans to predict its objectives.
Typically we design robots to reveal their intentions [23]. But
here we propose the opposite: to maintain influence, robots
may mislead humans so that users cannot fully anticipate the
robot’s behaviors. Let the robot’s reward rR = rtask+rcoord
contain two terms: a task reward and a coordination reward.
For instance, in autonomous driving rtask could be slowing
the human and rcoord could be avoiding a collision. We will
focus on how the robot can increase the human’s uncertainty
about rcoord (e.g., whether the robot actually wants to avoid
collisions). Let bi = P (rcoord | ξ0, . . . , ξi−1) be the human’s
current belief over rcoord. Consistent with prior works, we
assume that the human updates their belief using [24], [25]:

bi+1 ∝ bi · exp
(
RR(s0,uR,uH))

)
(6)

Intuitively, this human thinks the robot will make decisions
that are consistent with rcoord and approximately optimize
the robot’s reward function. We encourage the robot to
select influential actions now that will maximize the human’s
uncertainty over b at the next interaction:

RR(s0,uR,uH) =

T∑
t=0

rR(st, ut
R, ut

H) + λH(bi+1) (7)
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Fig. 3. Simulated humans drive alongside an influential robot on the highway. The autonomous car takes actions to reduce the human’s lane progress. We
test four robot control algorithms: Stackelberg is the state-of-the-art approach from Section III, while Noise, State Entropy, and Belief Entropy are our
proposed modifications from Section V. We then paired these controllers with five different types of simulated humans. Behavior Cloned humans were
trained to mimic the actions of in-person users from Section IV (either their First 4 interactions or their Last 4 interactions). Stackelberg humans follow
the Stackelberg game formulation from Equation (1). Memory humans assume that the robot will follow its average trajectory from the last 3 interactions,
while Belief humans infer whether the robot will coordinate with their behaviors. (Left) Example interactions with a Stackelberg robot (gray) and our
proposed Belief Entropy robot (purple). (Right) Average lane progress across 100 simulated humans. Asterisks ∗ denote statistical significance (p < .05).

Within this proposed modification robots apply Equation (6)
to model the human’s belief at interaction i, and then solve
Equation (1) with Equation (7) as the reward fuction. In prac-
tice, this leads to robots that select actions uR which make
the human uncertain about how the robot will coordinate.

VI. EXPERIMENTS WITH SIMULATED HUMANS

To test our proposed approaches for long-term influence
we first performed experiments with simulated humans (see
Figure 3). These simulated humans drove alongside an au-
tonomous car on the highway environment from Section IV.
The autonomous car’s objective matched Equation (2) in the
previous user study: the robot car tried to influence humans
to slow down and reduce their lane progress. We combined
different types of simulated humans with each influential
algorithm. Across these experiments, we found that robots
which are influential and unpredictable were better able to
influence simulated humans and reduce their speed.

Robot Controllers. We implemented four different types of
autonomous cars. The Stackelberg baseline selects actions
uR by solving Equation (1). Noise, State Entropy, and
Belief Entropy are our proposed modifications. None of the
autonomous cars knew what type of simulated human they
would be interacting with.

Simulated Humans. Actual human drivers exhibit a variety
of different behaviors. To try and mimic this diversity, we
designed five different simulated humans. We trained two
Behavior Cloning models using the highway data from our
in-person study in Section IV. The first model was trained
on data from the first 4 interactions (where users were more
influenced by the robot), and the second model was trained
on data from the last 4 interactions (where users yielded to
the robot less frequently). Next, we simulated a Stackelberg
human that behaves according to Equation (1). In practice,
humans may assume that the robot will behave the same

way this interaction as it did on the previous interaction. We
therefore designed Memory, a simulated human that predicts
the robot will match its average trajectory from the last 3
interactions. Finally, the Belief human uses Equation (6) to
infer whether the robot will coordinate with the human (e.g.,
if the robot will move out of the way to avoid a collision).
Dependent Measures. We paired each combination of hu-
man and robot and then simulated every pair for 100 inter-
actions. The initial state of the cars was randomized, but we
ensured that the autonomous car always started ahead of the
human’s car. At the end of each interaction we measured the
human car’s total lane progress (in pixels).
Results. Our results from this simulation are displayed in
Figure 3. On the left we show example trajectories the cars
followed, and on the right we plot average lane progress.
To analyze these results we performed repeated measures
ANOVAs. We found that the robot’s controller had a signifi-
cant main effect on lane progress: the results of post hoc anal-
ysis are highlighted in Figure 3. For each type of simulated
human the Belief Entropy approach resulted in significantly
lower lane progress (as compared to Stackelberg and Noise).
These results support our proposed modifications: robots that
purposely make their behaviors more unpredictable are better
able to influence our array of simulated humans.

VII. USER STUDY

Our simulations supported our modifications (and in par-
ticular Belief Entropy). We therefore conducted a second
study in which real humans interacted with a drone (see Fig-
ure 1). Here the human and robot repeatedly intersected each
other’s path: at these intersections, the drone flew forward
to attempt to influence humans to yield. Over 25 repeated
interactions, we measured whether the drone was able to
maintain influence and keep the right-of-way. We compared
a proposed framework for influential but unpredictable robots
to the state-of-the-art Stackelberg game formalism.
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Fig. 4. Participants repeatedly cross paths with a drone. (Left) When the drone and human intersect, the drone tries to influence humans to yield so that
it can cross first. If this influence failed the robot temporarily reversed direction to avoid a collision. (Right) We plot the amount of time the robot reversed
direction across 25 repeated interactions. The Stackelberg drone solves Equation (1) to try and influence the human; this robot always yielded once the
human was within a specific radius. By contrast, the Belief Entropy drone used our modification in Equation (7) to make its actions less predictable. This
drone would occasionally yield at a larger radius or a smaller radius as compared to the Stackelberg drone. We found that this unpredictability reduced
the amount of time the robot had to reverse and increased the number of successful influences. Error bars show standard error.

Experimental Setup. Participants shared space with a drone
(see Figure 4). We tracked the drone using ceiling-mounted
cameras, and humans wore an HTC Vive Tracker around
their waist for real-time position measurements. Participants
walked back and forth across the room to pick up blocks and
build a tower; each time the human started to cross, the drone
moved orthogonally to intersect with the human’s path.
Independent Variables. We compared two robot controllers:
the Stackelberg baseline from Section III and our proposed
Belief Entropy modification from Equation (7). The robot
was rewarded for crossing the room as quickly as possible
while avoiding collisions with the human: to maximize its
speed, the robot tried to influence humans to yield. The drone
selected actions in real-time using the reward functions:

rR(s, uR, uH) = ṡR − 10 · 1{collision in s} (8)

rH(s, uR, uH) = ṡH − 100 · 1{collision in s} (9)

where ṡR ⊂ s is the robot’s forward velocity and ṡH ⊂ s is
the human’s velocity. Negative values for ṡR indicate that the
drone is reversing direction and yielding to the human. Recall
that the Belief Entropy robot takes actions that make the hu-
man uncertain about whether the robot will coordinate (i.e.,
whether the robot is optimizing for avoiding collisions). In
practice, this caused the Belief Entropy drone to randomly
switch between crossing aggressively (only yielding if the
human was within a small radius) and defensively (yielding
if the human was anywhere within a larger radius).
Dependent Measures. A robot that maintains the right-of-
way will always have a positive ṡR. However, if the human
insists on going first, then the robot must back off and give
the participant space. To measure influence, we therefore
recorded the amount of time the robot reversed during each
interaction. Lower values correspond to higher influence.
Participants. We recruited 11 participants from the Virginia
Tech community (10 male, ages 22.1 ± 3.1 years). These

participants provided informed consent under IRB #20-755.
We recognized that people may hesitate to walk close to
a flying drone; we accordingly demonstrated the task and
drone behaviors before starting the experiment. We leveraged
a within-subjects design: all participants interacted with a
Belief Entropy robot 25 times and a Stackelberg robot 25
times. The order of presentation was balanced across users.
Hypothesis. We hypothesized that:

H2. A drone that optimizes for influential but
unpredictable actions will better maintain influence
than a purely influential drone.

Results. Our results are summarized in Figure 4. Paired t-
tests reveal that the Stackelberg robot spent significantly
more time backing-up and yielding to the human as com-
pared to Belief Entropy (t(327) = 13.02, p < .001). We also
noticed that — as participants became more familiar with
the Stackelberg robot — they insisted on going first more
frequently (perhaps because they were able to predict when
this robot would yield). As a result, the final 8 interactions
with Stackelberg had a higher average reverse time than
the first 8 interactions, although this difference was not
statistically significant (t(10) = −1.45, p = .09). Overall,
the findings from our second study supported H2: the Belief
Entropy robot consistently influenced the 11 participants to
yield the right-of-way over 25 repeated interactions.

VIII. CONCLUSION

Our work is a step towards long-term human-robot inter-
action. We first demonstrated that a prevalent framework for
influential robots is effective in the short-term, but humans
adapt to these influential actions over repeated interactions.
We next proposed three modifications to make the robot’s
behaviors less predictable. Our simulations and experiments
support these modifications, and indicate that robots which
are less predictable may be more influential in the long-term.
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