
Towards Balanced Behavior Cloning from Imbalanced Datasets

Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

Abstract Robots should be able to learn complex be-

haviors from human demonstrations. In practice, these

human-provided datasets are inevitably imbalanced : i.e.,

the human demonstrates some subtasks more frequently

than others. State-of-the-art methods default to treat-

ing each element of the human’s dataset as equally im-

portant. So if — for instance — the majority of the

human’s data focuses on reaching a goal, and only a

few state-action pairs move to avoid an obstacle, the

learning algorithm will place greater emphasis on goal

reaching. More generally, misalignment between the rel-

ative amounts of data and the importance of that data

causes fundamental problems for imitation learning ap-

proaches. In this paper we analyze and develop learning

methods that automatically account for mixed datasets.

We formally prove that imbalanced data leads to imbal-

anced policies when each state-action pair is weighted

equally; these policies emulate the most represented

behaviors, and not the human’s complex, multi-task

demonstrations. We next explore algorithms that rebal-

ance offline datasets (i.e., reweight the importance of

different state-action pairs) without human oversight.

Reweighting the dataset can enhance the overall pol-

icy performance. However, there is no free lunch: each

method for autonomously rebalancing brings its own

pros and cons. We formulate these advantages and dis-

advantages, helping other researchers identify when each

type of approach is most appropriate. We conclude by

S. Parekh
Mechanical Engineering Department, Virginia Tech
E-mail: sagarp@vt.edu

H. Nemlekar
Mechanical Engineering Department, California State Uni-
versity, Northridge. E-mail: herambnemlekar@gmail.com

D. Losey
Mechanical Engineering Department, Virginia Tech
E-mail: losey@vt.edu

introducing a novel meta-gradient rebalancing algorithm

that addresses the primary limitations behind existing

approaches. Our experiments show that dataset rebal-

ancing leads to better downstream learning, improv-

ing the performance of general imitation learning al-

gorithms without requiring additional data collection.

See our project website: https://collab.me.vt.edu/

data_curation/.

Keywords Imitation Learning, Dataset Quality,

Human-robot Interaction, Multi-Task Learning

1 Introduction

Human teachers have multiple tasks that they want

their robots to learn. Humans therefore provide a dataset

of examples, showing the different tasks and their de-

sired behavior across these tasks. Within the human’s

examples there are some movement patterns that show

up frequently, and other patterns that are only demon-

strated once or twice. For instance, consider a human

teaching a robot arm to organize a desk (see Figure 1).

This may require the robot to pick up objects, open

drawers or cabinets, and then put away those objects.

On the one hand, there are certain behaviors — like

reaching for the desired item — that are commonly ob-

served across all the human’s demonstrations. On the

other hand, there are alternate behaviors that are seen

rarely in the demonstrations, but are nevertheless im-

portant for the robot to learn. For instance, after grasp-

ing the desired object, the three tasks — opening a

drawer, moving a slider, picking up an object — all

require the robot to move in different directions.

More generally, when learning complex or multi-

part tasks, robot learners are often provided with im-

balanced datasets. Some subtasks are overrepresented

https://collab.me.vt.edu/data_curation/
https://collab.me.vt.edu/data_curation/

2 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

Task 2
if bulb is on, open the drawer

Task 1
if bulb is off, move slider left

Human teaches a robot by
providing demonstrations

<There are more demos
for Task 1 than Task 2

How can I learn from
imbalanced datasets?

If the robot treats each datapoint as equally important,
it may ignore underrepresented behavior

Fig. 1 Robot learning how to open a drawer and move a slider from offline human demonstrations. Standard imitation
learning equally weights each state-action pair. This results in a policy that imitates the dominant movement patterns seen in
the dataset. When the dataset represents one behavior more commonly, imitation learning will learn that behavior at the cost
of the other. However, the underrepresented behaviors may not necessarily be unimportant. For instance, opening a drawer
and moving the slider require the robot to execute very different motions in different parts of the state space. When the dataset
has disproportionately more demonstrations for opening drawer, by imitating the dominant behavior the robot learns to open
the drawer but can struggle with moving the slider. So, how do we learn a balanced policy from imbalanced datasets?

in these datasets, while other subtasks are underrep-

resented. For instance, driving datasets predominantly

contain everyday on-road conditions with very few rare

yet safety-critical scenarios, such as occluded and jay-

walking pedestrians [34].

As we will show — when using standard imitation

learning algorithms — robots trained on imbalanced

datasets learn to focus on the commonly represented

movement patterns, often ignoring the infrequent be-

haviors. Returning to our desk example: if the robot

sees a disproportionately large number of demos for

opening the drawer, but very few for moving the slider,

the robot may overfit to the drawer task while failing

to move the slider (see Figure 1). This is a practical is-

sue even when the robot is learning a single task. Take

the case of picking up objects: if majority of the hu-

man’s demonstrations are for picking up objects that

are placed on the left side of the table, the common be-

havior would be for the robot arm to move to towards

the left. A robot trained on this dataset could grasp the

common behavior (e.g., left objects), but struggle when

it encounters objects on the right. Other instances of

data imbalance include learning tasks with constraints

(e.g., reaching a goal while avoiding obstacle regions),

or when learning from multiple human teachers with

different skill levels (e.g., some users provide optimal

demonstrations while others are noisy).

This issue has been known to practitioners and is

particularly relevant to recent efforts in collecting large-

scale robot datasets containing multiple tasks [30,23].
However, there is little theoretical understanding of how

data imbalance affects the robot’s policy and how it can

be effectively mitigated — practitioners often balance

their data manually based on intuition to ensure equal

learning of all behaviors [36].

In this paper, we theoretically investigate the funda-

mental problem of imitation learning from imbalanced

datasets. We begin by showing that the problem arises

from a key assumption in standard imitation learning

algorithms that each data point contributes equally to

the learning process. Specifically, we theorize that:

Equally weighing each state-action pair in an

imbalanced dataset leads to imbalanced learning.

We then explore different strategies for weighing the

data samples to learn a more balanced policy. Our anal-

ysis indicates that the optimal balance depends on two

factors: the relative difficulty of learning the behaviors

in the dataset and how accurately we want to learn each

behavior. Based on these findings, we highlight the lim-

Towards Balanced Behavior Cloning from Imbalanced Datasets 3

itations of current methods for automatically balancing

robot datasets and introduce a new meta-gradient ap-

proach to address them.

Overall, we make the following contributions:

Formalizing Behaviors. We formalize the dataset of

demonstrations as a collection of sub-policies. Each sub-

policy represents distinct behaviors required to com-

plete the overall task. For a robot to perform effectively,

it must learn each sub-policy regardless of any imbal-

ance in the dataset.

Theoretical Analysis of Imbalanced Learning.We

theoretically demonstrate that training on an imbal-

anced dataset leads to policies that are biased towards

more frequently occurring behaviors. We validate these

findings through experiments, empirically showing that

imbalance can impair the robot’s ability to generalize

across all behaviors in the dataset.

Important Considerations for Balancing Datasets.

We provide a theoretical examination of existing ap-

proaches that balance datasets and demonstrate exper-

iments highlighting their limitations. Further, we pro-

vide insights into the important considerations for bal-

ancing datasets.

Meta-Gradient Method for Balancing. To over-

come the limitations of prior methods, we introduce

a meta-gradient approach for balancing datasets. This

method iteratively calculates the best possible perfor-

mance achievable for each behaviors and leverages that

to balance the dataset, enabling the policy to learn rare

behaviors without overfitting to frequent ones.

2 Related Work

Imitation learning enables robots to acquire new skills

by mimicking the demonstrations of a human expert

and potentially generalizing beyond what was shown

[29]. However, its effectiveness is heavily dependent on

the quality of the data that is provided to the robot [34,

18]. In this section, we first review prior work that ex-

amines how different data attributes impact the learned

robot behavior, and then focus on approaches that ad-

dress the challenge of learning from imbalanced datasets

containing a mixture of behaviors.

2.1 Assessing Data Quality in Imitation Learning

Previous research has proposed various metrics to quan-

tify what makes a good dataset for imitation learning.

One well-known factor is data optimality, i.e., whether

the demonstrations accurately depict the desired be-

havior [16,33,39]. Another closely related property is

consistency in the demonstrated actions, which reduces

the ambiguity in how a behavior must be performed

[15]. Both these attributes determine how well the robot

can imitate the demonstrated behavior.

However, simply replicating what is shown in the

demonstrations is not enough — one of the main goals

in imitation learning is to transfer the learned behavior

to new situations. To make this possible, the dataset

needs to cover a wide variety of states or scenarios [4,

35]. This need for diversity has led to a push for creating

large-scale robot datasets [30,23] that include demon-

strations from many different tasks and environments.

Yet, when these datasets are directly utilized with stan-

dard imitation learning algorithms, they do not always

lead to improved performance unless the data is hand-

selected, for example, when training OpenVLA [24] the

DROID dataset [23] was significantly downsampled to

improve policy performance.

Recent work suggests this may be caused by com-

mon, repetitive behaviors in the dataset that dominate

the learning process [17], forcing designers to manu-

ally reduce their weightage [36]. This indicates that

diversity itself is not sufficient: another important as-

pect of the training data is the relative proportion of

data points representing distinct behaviors. While fac-

tors such as optimality and diversity have received sig-

nificant attention, the effects of varying proportions of

different behaviors within a dataset remain underex-

plored. We therefore seek to analyze how these propor-

tions influence the robot’s learning process, and explore

how robots can learn more effectively even when the

data is imbalanced.

2.2 Learning from Imbalanced Data

The challenge of learning from imbalanced data has

been widely studied outside of the robotics domain,

in image classification tasks [12]. Existing methods ad-

dress this issue by adjusting the data proportions or

their learning costs [21,2]. Data-level approaches in-

clude undersampling the majority classes [9,25,26] or

oversampling the minority class to balance the data

[13,6,10]. On the algorithm side, cost-sensitive learning

methods achieve balance by assigning higher weights or

penalties to rare, often misclassified, samples to increase

their importance during training [22]. In theory, upsam-

pling the data is equivalent to increasing its weight in

the learning objective [28].

While the problem of data imbalance has been ex-

tensively studied in classification problems, it has not

4 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

achieve the same rigorous examination in robotics, specif-

ically, imitation learning. Imitation learning being a re-

gression problem where we must iteratively predict an

action (or a distribution over the action space in the

case of stochastic policies) differs fundamentally from

classification where we learn a decision boundary to

group data into categories. Consequently, the meth-

ods to address data imbalance must be tailored to the

robotics domain. There have been some research that

focuses on balancing the data and these existing ap-

proaches fall into two categories. Some assume prior

knowledge of the distinct behaviors in the training data

[17,1], while others learn to recognize the behaviors us-

ing a small, additional labeled dataset [14,38,11,20].

For instance, [38,41] trains a discriminator to distin-

guish between optimal and sub-optimal demonstrations

in a large unlabeled dataset using a small amount of ex-

pert data for supervision. Once the behaviors are iden-

tified, the dataset is balanced by either collecting addi-

tional data to fill the gaps [19,40], or by re-weighting

the existing data [17,5]. In [38], the discriminator out-

put is used to weigh the behavior cloning loss for each

data sample.

A central challenge across these methods is decid-

ing the desired balance — e.g., selecting appropriate

weights for each behavior or determining how frequently

each behavior should be sampled. Furthermore, most

prior work focuses on data imbalance in terms of data

optimality — the dataset contains a few optimal demon-

strations and a large number of suboptimal demonstra-

tions. Recently, though, new research has emerged that

explicitly addresses data imbalance with respect to be-

haviors. We next review these strategies.

2.3 Determining the Desired Balance

Deciding how the different behaviors in a dataset should

be weighed requires quantifying their ‘goodness’ with

respect to some target domain. A straightforward ap-

proach is to execute the current policy in the real world

and change weights based on observed performance [3,

1,5]. Alternatively, we can determine weights based on

some reference data [38] or by assuming access to an

advantage function for rating the demonstrated actions

[37]. While effective, these approaches can be costly and

impractical due to their reliance on real-world evalua-

tions or specialized domain knowledge.

This raises the question of whether biases in the ini-

tial training dataset can be mitigated without relying

on additional task-specific feedback. Prior works have

suggested reweighting the data based on training per-

formance [17,8]. Specifically, [8] uses held-out demon-

strations to track training progress and increases the

learning weights of samples that perform poorly. On

the other hand, [17] computes training loss with re-

spect to a reference policy that is trained on the origi-

nal, unweighted dataset. Each of these approaches has

limitations. For example, the latter approach fails to

learn a good reference when a small proportion of the

dataset is sub-optimal, while the former is susceptible

to distribution shift issues typical of imitation learning.

Hence, in this work, we characterize various forms of

balance that can be achieved through monitoring train-

ing loss. Building on this, we propose a novel meta-

gradient approach to learn each behavior equally well

with respect to its best possible training performance.

Overall, our work provides insights into the theoretical

and practical benefits of different approaches for bal-

ancing robot data in the absence of target information.

3 Problem Statement

We consider settings where a human teaches a robot.

The human provides demonstrations, and the robot

learns a policy from these demonstrations. Each demon-

stration is a sequence of state-action pairs, i.e., at a

given state, the human shows the robot which action

to take. Typically, these state-action pairs do not fol-

low a single pattern or behavior as the human can have

different reasons for choosing actions in different states.

Their decisions are influenced by various factors such as

the task they are demonstrating (in multi-task demon-

strations), by the constraints in the environment (e.g.,

an obstacle they must avoid), their skill level (how opti-

mally can they demonstrate), etc. As an example, when

demonstrating how to pick up an object from the ta-

ble, the human’s behavior is dictated by the location of

the object. Consequently, the human would take differ-

ent actions depending on whether the object is on the

left side or the right side of the table. To imitate the

intended task, the robot must capture all the different

behaviors present in the demonstrations. In this section,

we formalize these different behaviors as sub-policies of

the human, and discuss how existing methods learn a

policy from the human’s data.

Robot. Let s ∈ S be the system state and let a ∈ A be

the the robot’s action. The state updates according to

the dynamics: s′ = T (s, a). We can observe the system

state s, but we do not have access to the dynamics T .

Human. The human teacher demonstrates their de-

sired behaviors to the robot learner. Specifically, the

human provides an offline dataset of expert state-action

pairs: D = {(s1, a1) . . . (sN , aN)}.
When providing these demonstrations, the human

has some overall policy πh(a | s) in mind. This policy

Towards Balanced Behavior Cloning from Imbalanced Datasets 5

models the primary task they want the robot to per-

form (e.g., picking up an object) as well as additional

conditions that the robot should satisfy (e.g., do not

run into the table). Alternatively, the human may want

to teach multiple tasks to the robot, in which case the

policy may choose different actions in a state depend-

ing on the task (e.g., open a drawer and move a slider).

Without loss of generality, we can write πh(a | s) as a

combination of k different components or sub-policies

πi that represent the distinct behaviors that humans

exhibit in different subsets of the state space Si ⊆ S.

πh(a | s) = πi(a | si), where si ∈ Si

We assume that the state spaces for each sub-policy

are disjoint, i.e.,
k⋂

i=1

Si = ∅. For example, the human

would choose to move to the left is states S1 where the

object is placed on the left, and then take actions to

move right in states S2 where the object is placed on

the right. In case the human is suboptimal and chooses

to move right even when the object is on the left, we can

consider them as a third subset S3. Conversely, if the

data does not contain multiple subtasks or there are no

special conditions to be met (e.g., thee object is always

in the same location), the human policy πh(a | s) will

reduce to a single sub-policy over the states Si = S.

Policy. The robot learns a control policy πθ(a | s) from
dataset D. This policy is instantiated as a neural net-

work with weights θ. Ideally, this learned policy should

match the expert’s policy πh(a | s). Since we formulate

πh(a | s) as a combination of k sub-policies, the learned

policy should match all k sub-policies of the expert to
effectively imitate each demonstrated task. Typically,

imitation learning is formulated as a supervised learn-

ing problem where we maximize the likelihood of action

a observed in the dataset given state s

L(θ) = − E
(s,a)∈D

log πθ(a | s) (1)

Optimizing this objective is equivalent to minimizing

the KL divergence between the human policy and the

robot policy. This is shown below:

DKL(πh(a | s) || πθ(a | s)) = E
(s,a)∈D

log
πh(a | s)
πθ(a | s)

= E
(s,a)∈D

log πh(a | s)− log πθ(a | s)

= − E
(s,a)∈D

log πθ(a | s)

We can ignore the log πh(a | s) term since it does not

depend on θ. Hence, to learn the weights θ, we minimize

the KL divergence between the human and the robot

policy, i.e., the objective for imitation learning is:

LBC = E
(s,a)∈D

DKL(πh(a | s) || πθ(a | s)) (2)

This expectation is calculated by equally weighing

each state-action pair in the dataset. Minimizing this

objective allows the robot policy to match the human’s

policy πh(a | s) and mimic the human’s actions across

all states in S. But how well does the policy learn

to mimic each of the human’s individual sub-policies

πi(a | s)? Remember that the dataset can be imbal-

anced with some states si occurring more frequently

than others. In the following section, we theoretically

examine whether a robot policy trained using standard

behavior cloning objective can correctly imitate all be-

haviors in the dataset.

4 Learning from Heterogeneous Data

We examine the problem of learning a policy from an

offline dataset D of state-action pairs. As we defined

in the previous section, this dataset is obtained from

human teachers who act based on a combination of k

behaviors or sub-policies. Particularly, each sub-policy

πi(a|s) governs the human’s behavior in a distinct re-

gion of the state space Si. So each state-action pair in D
is associated with a specific sub-policy. In general, the

dataset may contain different amounts of state-action

samples for each sub-policy. In this section, we use ρi to

denote the proportion of dataset samples that belong

to a sub-policy πi, and analyze how these proportions

impact the robot’s learning. Specifically, we first de-

termine how the parameters of the robot’s policy are

biased by an unequal distribution of behaviors when

using standard behavior cloning. We then conduct ex-

periments to show how data distribution impacts per-

formance in a simulated robot manipulation task.

4.1 How does Data Imbalance Affect Policy

Parameters?

We begin by deriving the policy learned by the robot

when applying standard behavior cloning approaches

to the dataset D. Consider the behavior cloning objec-

tive from Equation (2). To understand how this objec-

tive is related to the behavior proportions ρi, we will

unpack the expectation term as follows. The expecta-

tion is evaluated over all state-action pairs (s, a), i.e., it

weighs each sample with the joint probability p(s, a) of

observing it in the dataset. We can rewrite this equa-

tion by expanding the expectation and decomposing the

6 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

human policy into a mixture of multiple sub-policies as:

LBC =
∑

(s,a)∈D

p(s, a)DKL(πh(a|s) || πθ(a|s))

=

k∑
i=1

∑
(s,a)∈Di

p(s, a)DKL(πi || πθ) (3)

The second step follows from the observation that the

human employs each sub-policy in a distinct region of

the state space, and so we divide the dataset into sub-

sets Di containing states and actions corresponding to

sub-policies πi. Here we use πi and πθ as simplified no-

tations for πi(a|s) and πθ(a|s).
We can further break this down by applying Bayes’

rule to express the joint probability as a product of the

probability of a state-action pair belonging to a sub-

policy subset p(Di), and the conditional probability of

observing that sample given that subset, p(s, a|Di).

LBC =

k∑
i=1

∑
(s,a)∈Di

p(s, a|Di)p(Di)DKL(πi || πθ)

=

k∑
i=1

ρi E
(s,a)∈Di

DKL(πi || πθ) (4)

Here we recognize that p(Di) represents the propor-

tion ρi of data samples that belong to the sub-policy

πi. The expectation in Equation (4) is now over the

subset Di rather than over the entire data as in Equa-

tion (2). From this objective, we see that standard be-

havior cloning weighs the divergence between the robot’s

policy πθ and the sub-policy πi by the frequency of

observing that sub-policy. But how does this weighted

objective affect the learned policy?

We theorize that a policy trained on this objective

is more likely to mimic the prominent behaviors in the

dataset while ignoring less frequent ones. To formal-

ize this intuition, we analytically calculate the optimal

parameters of the robot policy for standard behavior

cloning. Specifically, we adopt a univariate Gaussian

model for both human and robot policies and present

the following result:

Proposition 1 Let the robot’s policy πθ and the hu-

man’s k sub-policies be Gaussian with parameters (θ, σ)

and (θi, σi):

πθ(a|s) = N (θs, σ), where s ∈ S
πi(a|s) = N (θisi, σi), where si ∈ Si ⊂ S

Then, using standard behavior cloning, the learned pa-

rameters θ of the robot’s policy are a weighted sum of

the sub-policy parameters θi, where each weight ρi is

the joint probability of states and actions from the sub-

policy πi.

θ =

k∑
i=1

ρi · θi

Hence, the behavior cloning objective biases the robot’s

policy towards more frequently observed sub-policies.

Proof We start with the behavior cloning loss in Equa-

tion (4) and use the analytical form of KL-divergence

for Gaussian distributions to express it as a function of

the policy parameters.

LBC =

k∑
i=1

ρi E
(s,a)∈Di

(
log

σ

σi
+

σ2
i + (θis− θs)2

2σ2
− 1

2

)

∝
k∑

i=1

ρi E
(s,a)∈Di

(θis− θs)2 (5)

We obtain the second step by dropping all terms that

are not dependent on the learnable parameters θ. Since

KL-divergence is convex, we can now derive the optimal

parameters by taking the gradient of the simplified ob-

jective in Equation (5) with respect to θ and equating

it to zero.

∇θLBC = 0

k∑
i=1

ρi E
(s,a)∈Di

2(θ − θi)s
2 = 0

θ

k∑
i=1

ρi

(
E

(s,a)∈Di

s2
)
−

k∑
i=1

ρiθi

(
E

(s,a)∈Di

s2
)

= 0

In the last step, we take θ outside the expectation since
it is independent of the states and actions. The s2 term

represents the magnitude of the task states. In practice,

we can normalize the state values such that E(s,a)∈Di
s2 =

1. With this assumption and knowing that the relative

proportions sum to one (i.e.,
∑k

i=1 ρi = 1), we can re-

arrange the terms to calculate the optimal parameters

as:

θ =

k∑
i=1

ρi · θi (6)

Therefore, we find that the learned policy parameters

are a weighted sum of the parameters of each individ-

ual sub-policy, where the weights ρi are the probability

density of the states and actions associated with that

sub-policy.

Proposition 1 demonstrates how the relative pro-

portions of behaviors in the dataset can influence the

robot’s policy when using standard behavior cloning. If

Towards Balanced Behavior Cloning from Imbalanced Datasets 7

the data contains more state-action pairs for a partic-

ular sub-policy than others, that behavior will have a

higher weight ρi and will thus play a greater role in de-

ciding the robot’s actions. On one hand, this is reason-

able because we want the robot to be better at the be-

haviors that it encounters more often. But on the other

hand, the frequency of a sub-policy may not necessar-

ily indicate its importance; e.g., the underrepresented

sub-policies may encode safety-critical behaviors that

are equally important to the task performance.

So far, our analysis has assumed Gaussian policies

with linear parameters. However, our insights can be ex-

tended to non-linear policies modeled using neural net-

works. We do this by evaluating the worst-case expected

loss for each sub-policy in Equation (4). Let LBC = L

be the loss at which the training converges. The worst

case for a sub-policy πi will be when this loss is entirely

because of that sub-policy, while all other sub-policies

are learned perfectly such that DKL(πj ̸=i||πθ) → 0 and:

L = ρi · E(s,a)∈Di
DKL(πi||πθ)

More generally, the training loss for each sub-policy will

be bounded as:

E(s,a)∈Di
DKL(πi||πθ) ≤

LBC

ρi
(7)

This upper bound increases as we decrease the propor-

tion ρi of samples, making it difficult in practice to

accurately learn the underrepresented behaviors.

Overall, Equation (6) and Equation (7) define how

the dataset proportions bias the policy learned by the

robot when using standard behavior cloning. In what

follows, we will experimentally demonstrate how this

can negatively impact the policy performance.

4.2 Experiments with Imbalanced Data

Our analysis established how the policy learned with

standard behavior cloning is affected by the relative

proportions of behaviors in the training dataset. When

these proportions are imbalanced, we expect the pol-

icy to under-perform on the underrepresented behav-

iors, leading to asymmetric rollouts. Here we empiri-

cally demonstrate this effect through controlled simu-

lation experiments.

Environment and Task.We conduct our experiments

in the CALVIN environment [27], an open-source plat-

form that simulates visually rich, tabletop manipulation

tasks. CALVIN is used as a benchmark simulation for

learning long-horizon manipulation tasks. As illustrated

in Figure 2, the environment includes a 7 degrees-of-

freedom (DoF) Franka Emika Panda robot arm and a

variety of interactive objects, including sliders, work-

bench, differently-colored blocks, buttons and switches

for operating lights, and drawers.

We design two experiments in this environment. First,

a picking experiment in which the robot is required to

reach for a red block placed on the workbench, grasp

it, and lift it to a predefined height. Next, we design

a multi-task experiment opening where the robot ei-

ther opens a drawer or moves a slider on the table. We

generate demonstration data by executing a pre-trained

expert policy [31] in the environment. At the beginning

of each demonstration, the objects — including the red

block — are initialized in random configuration. Specif-

ically, in the first task, the red block’s position is sam-

pled from three distinct spatial regions: the left, the

middle, and the right areas of the robot’s workspace,

refer to Figure 2 (left). In the second task, the drawer

and slider locations are fixed, however to condition the

policy on the task data, we utilize the state of the light

bulb: if the light bulb is on, the robot opens a drawer.

If the light bulb is off, the robot instead moves a sliding

door, see Figure 2 (right).

Sub-policies. In the picking experiment, although the

expert policy is trained to solve the task regardless of

the block’s initial position, its behavior can be decom-

posed into three distinct motion strategies, each corre-

sponding to one of the spatial regions: moving to the

left (πp
1), moving to the center (πp

2), and moving to the

right (πp
3). These three sub-policies reflect meaningful

variations in the robot’s motion and form the core be-

haviors that we seek to evaluate.

In the opening experiment, the behavior of the ex-

pert policy can be decomposed into two distinct be-

haviors corresponding to moving the slider door (πo
1)

and opening the drawer (πo
2). While the policy needs to

learn both these behaviors, either of the two behaviors

are distinct from one another on account of the region

of the space the robot must visit as well as the type of

motion it must execute to complete the task. For in-

stance, opening the drawer requires the robot to move

to the drawer handle from the top and pull it towards

it, whereas moving the slider requires the robot to move

straight to the slider door and pull it to the side.

Demonstrations. Each demonstration is recorded as

a sequence of observation-state-action tuples: ξ =

{(o1, s1, a1), (o2, s2, a2), · · · , (on, sn, an)}. Observations

contain a static RGB image ostatic ∈ R200×200×3 from

a fixed camera overlooking the entire workspace, an

egocentric RGB image oego ∈ R84×84×3 from a cam-

era mounted on the robot gripper, and a robot state

s ∈ R8 comprising of the robot’s 7 joint angles and a

binary gripper state. The action a ∈ R7 represents the

8 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

Picking Opening

Fig. 2 The manipulation tasks we perform in our experiments. On the left, we see picking where the robot must learn to
grasp and pick up a red block to a certain height. The red block is initialized at a position that is sampled randomly from
three regions: left side of the table, middle of the table, and right side of the table. The possible initialization locations of the
red block are shown by transparent overlays. On the right is opening which consists of two tasks conditioned on the state of
the environment. If the bulb is off, the robot must move a slider to the left and if the bulb is on, the robot must open the
drawer. All the objects irrelevant to the task are initialized randomly.

6-dimensional linear and angular velocity of the robot’s

end-effector and a binary gripper actuation command.

Procedure. To quantify the effect of dataset imbal-

ance, we begin by constructing a balanced dataset con-

taining an equal number of demonstrations for each

sub-policy (πp
1 , π

p
2 , π

p
3 in picking and πo

1, π
o
2 in opening).

Specifically, in picking we collect 21 demonstrations per

sub-policy, resulting in a total of 63 demonstrations. In

opening we collect 15 demonstrations per sub-policy, re-

sulting in a total of 30 demonstrations. We train a stan-

dard behavior cloning policy on this balanced dataset

which serves as a baseline for comparison. To introduce

imbalance, we selectively reduce the number of demon-

strations corresponding to one sub-policy while keep-

ing the total demonstration count fixed. More partic-

ularly, in picking we selectively reduce the demonstra-

tions to 9 for one sub-policy and increase the demon-

strations for other sub-policies to 27. This ensures that

the total number of demonstrations remains the same

as 63. In opening we reduce the demonstrations to 10

for one sub-policy at a time while increasing it to 20

demonstrations for the other sub-policy keeping the to-

tal at 30. This process is applied independently to each

of the sub-policies in the dataset, yielding three and

two distinct imbalanced datasets for picking and open-

ing, respectively. For each imbalanced dataset, we train

a separate behavior cloning policy. These policies are

then evaluated on test scenarios that uniformly cover

all three behaviors. To ensure statistical robustness, we

repeat the training and evaluation process 10 times per

dataset. We report the average success rate for each

behavior along with the standard deviation.

Results. Figure 3 summarizes the results of our ex-

periments. The three plots on the left show the suc-

cess rate for the cases where the initial position of the

block is in the region on the left, middle, and right, re-

spectively. The gray bar in each plot shows the success

rate when the policy is trained on the balanced dataset.

The orange bar shows the success rate when the policy

is trained on an imbalanced dataset where the specific

sub-policy is underrepresented. The performance of the

policy trained on the imbalanced dataset, where the

specific behavior is under-represented, is significantly

lower than the policy trained on the balanced dataset

(left: t = −2.601, p < 0.05, middle: t = −2.344, p <

0.05, right: t = −2.893, p < 0.01).

The two plots on the right in Figure 3 summarize

the results for the opening experiment. The plot on the

left shows the success rate of moving the slider when the

bulb is off and the plot on the right shows the success

rate of opening the drawer when the bulb is on. We

find that the success rate significantly drops when the

dataset is imbalanced (moving the slider: t = −3.728,

p < 0.01, opening drawer: t = −6.657, p < 0.001).

These results support Proposition 1, which states

that when the dataset consists of multiple behaviors,

the proportion of each behavior significantly affects how

well the policy can learn each task. When the behaviors

are disproportionately represented in the dataset, the

underrepresented behaviors are difficult for the policy

to learn reliably. However, when the dataset is balanced,

Towards Balanced Behavior Cloning from Imbalanced Datasets 9

RightLeft

*
*

Middle

*
*

Open DrawerMove Slider

picking opening

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0
Balanced

Imbalanced

*

Fig. 3 Results of our experiments from Section 4.2. We compare the performance of a policy trained on a balanced dataset
with one trained on an imbalanced dataset. The balanced dataset contains 21 demonstrations for each of the three sub-policies
in picking totaling 63 demonstrations. In opening the balanced dataset contains 15 demonstrations for each of the two sub-
policies totaling 30 demonstrations. We introduce imbalance by reducing the number of demonstrations for one sub-policy at
a time. We train a separate policy for each of the imbalanced datasets as well as a policy that is trained on the balanced
dataset. The plots compare the success rate of the policies across 100 rollouts. The gray bars represent the success rate for the
balanced policy and the orange bars represent the success rate of the imbalanced policy for each case. (Left) Results for the
three behaviors in picking: lifting up the red block that is on the left side, the middle, and the right side of the table. (Right)
Results for the two behaviors in opening: moving the slider to the left when the bulb is off and opening the drawer when the
bulb is on. The vertical bars show the standard deviation and ∗ indicates statistical significance.

the policy can achieve better results corresponding to

each behavior.

5 Balancing the Dataset

In the previous section we theoretically and empirically

showed that training the robot on a mixed dataset can

bias the robot’s learning towards behaviors that are

more prominent in the dataset. This can lead to poor

performance on scarce behaviors that may be equally

important. From Equation (7), we observe that we can

ensure that a sub-policy πi is effectively learned by in-

creasing its weight ρi. However, since the weights rep-
resent the relative proportion of data, increasing the

weight for one behavior would decrease the weights for

the others. So how do we balance the data to ensure

that each behavior is effectively learned? Balancing in

the context of our problem refers to re-weighting the

dataset to enhance the policy’s overall performance. In

this section we analyze different methods that can be

employed to balance a heterogeneous dataset. Addition-

ally, we discuss the possible applications and limitations

of each of these approaches.

5.1 Equally Weighing Each Behavior

Following the classification literature [13,9], we can em-

ploy the common practice of undersampling the over-

represented behaviors or oversampling the underrepre-

sented behaviors. This leads to a simple, perhaps naive,

approach where we assign equal weights to each sub-

policy in the dataset:

Leq−w =
1

k

k∑
i=1

E
(s,a)∈Di

DKL(πi || π) (8)

In this objective, we effectively change the propor-

tional weighting in Equation (4) to a uniform weight-

ing, i.e., we replace ρi with weights αi = 1/k for i =

1, 2, · · · , k. To compare this balanced objective with the

original behavior cloning objective of Equation (3), we

reintroduce the sum over state-action pairs and apply

Bayes’ rule to re-write the objective as

Leq−w =
1

k

k∑
i=1

∑
(s,a)∈Di

p(s, a)

ρi
DKL(πi || π) (9)

Equation (9) implies that, for the robot to learn

each sub-policy equally well, the sampling probability

for each state-action pair must be scaled down by the

frequency of its sub-policy. This is equivalent to sam-

pling the data from a new data distribution q(s, a) =

p(s, a)/ρi. We can prove that this objective enables the

robot to learn unbiased parameters by following the

same steps as in Proposition 1 to get:

θ =

k∑
i=1

1

k
θi (10)

In the non-linear case, this corresponds to having the

same worst-case training loss for each sub-policy:

E(s,a)∈Di
DKL(πi||πθ) ≤ kLeq−w ∀i ∈ {1, . . . , k} (11)

Therefore, balance in this case refers to ensuring a

common lower-bound on the learning accuracy for each

behavior. As we will demonstrate later in this section,

10 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

applying Leq−w for the manipulation task described in

Section 4.2 results in improved success on both picking

and opening experiments (see Figure 4).

Limitation. This approach is founded upon two as-

sumptions that limit its scope: (1) we want the same

bound on training performance for each behavior, and

(2) it is equally easy to learn each behavior.

As a counterexample, consider a dataset containing

two sub-tasks of varying difficulty: throwing a ball at a

moving target (hard) and dropping the ball into a large

stationary bin (easy). Typically, the robot would re-

quire more data and training iterations to learn the first

subtask than the second. Due to this, when we train the

robot using Equation (8), despite giving equal weight to

both subtasks, the robot may still learn to drop the ball

more accurately than throwing, such that E[Ldrop] → 0

and E[Lthrow] → 2Leq−w. In this case, we can continue

training until Leq−w → 0 to get better at throwing the

ball, but this may lead the robot to overfit to the drop-

ping subtask. Another point of consideration is that the

same training loss may not guarantee success in both

subtasks. For instance, we require greater accuracy to

hit the target with the ball than to drop it in a large bin

— thus, we may actually want different training losses

for each behavior.

One way we can address both these concerns is by

assigning a higher weight to the throwing subtask to

learn it more accurately. While this could increase the

training loss for the dropping subtask, if done carefully,

it may not affect its success rate due to the greater mar-

gin of error provided by the size of the static bin. We

next discuss how to achieve such balance that accounts
for both the relative difficulty and precision require-

ment of the behaviors in the training dataset.

5.2 Equally Learning Each Behavior (Relatively)

As discussed in the above example, we may not always

want to weigh each behavior equally. In general, we may

want some weights α = [α1, . . . , αk] that account for

how difficult it is to learn a behavior and how accurately

we want to learn it. We now present an approach for

balancing the training data, taking these considerations

into account.

From our analysis in Section 4, we know that if we

want to learn a behavior more accurately, we should in-

crease its relative proportion, i.e., its weight. We can use

this insight to dynamically change the weights α during

training. Specifically, we increase the weights for sub-

policies that have a higher expected loss by maximizing

the following objective:

Leq−l =

k∑
i=1

αi

(
E(s,a)∼Di

DKL(πi||πθ)− Lref
i

)
(12)

Here, Lref
i is the reference loss for each sub-policy and

represents its desired accuracy. The difference:

δi =
(
E(s,a)∼Di

DKL(πi||πθ)− Lref
i

)
measures how good or bad the current policy is com-

pared to the target. If the current loss is much higher

than the reference (i.e., δi is high), the learner will try

to raise its αi to maximize Equation (12). Choosing

a lower reference loss would indicate that we desire

greater accuracy for that behavior and vice versa. In

the simplest case, this reference can be set to zero (i.e.,

Lref
i = 0 for i ∈ {1, . . . , k}), indicating that we desire

the same training accuracy across all behaviors.

To converge to the optimal weights, we must itera-

tively update the policy πθ with the changing weights.

This results in a min-max operation where we alternate

between two steps: maximizing Leq−l to update α while

keeping θ constant, and then minimizing Leq−l with re-

spect to θ while keeping the updated α fixed. We can

derive the convergence condition for the maximization

step by first taking its gradient with respect to α:

∇αLeq−l = [δ1 + λ, . . . , δk + λ] (13)

where λ = − 1
k

∑k
i=1 δi is a Lagrange multiplier which

projects the gradients to keep α within the valid space

∆ = {α |
∑k

i=1 αi = 1} of relative proportions. A more

detailed derivation of the gradients is provided in Ap-

pendix A.1. Equating ∇αLeq−l = 0 results in the fol-

lowing balanced state at which the weights α converge:

δ1 = . . . = δk (14)

This means that the robot will try to learn weights

that make the difference term δi equal for all behav-

iors. Therefore, balance in this case refers to ensuring

that each behavior is learned equally well relative to its

corresponding reference Lref
i . This method of balanc-

ing the dataset has been empirically validated in prior

work [17], with varying assumptions about the refer-

ence loss. Our contribution supplements these findings

by providing a theoretical understanding of the type of

balance achieved with this approach.

Limitation. While Leq−l addresses the fundamental

limitations of the Leq−w, the effectiveness of Leq−l de-

pends on the choice of Lref
i . An overly conservative tar-

get makes the difference term smaller, giving less weight

Towards Balanced Behavior Cloning from Imbalanced Datasets 11

to that behavior and causing the robot to learn it less

accurately. By contrast, an overoptimistic target causes

the robot to only focus on that behavior, ignoring other

behaviors in the process. In the following experiments

we analyze how this reference loss impacts the robot’s

learning in the simulated manipulation task.

5.3 Experiments Comparing Data Balancing

In this section we empirically examine the effect of bal-

ancing the dataset on the policy’s performance. We con-

duct two experiments, picking and opening that we de-

tail in Section 5.3, in the CALVIN environment. To

examine the effect of balancing, we perform a series

of tests. First, we examine whether uniformly weighing

each sub-policy can achieve the same performance as

a policy that is trained on a balanced dataset. Next,

we examine an existing method Remix [17] that re-

weights the dataset using min-max optimization dis-

cussed in Section 5.2. Specifically, this method uses a

reference policy as the target loss Lref . This reference

policy is trained on the original imbalanced dataset.

Finally, we demonstrate a case that limits the applica-

bility of a reference policy as the target loss.

Procedure. In our first set of tests, we want to see if

uniformly weighting the data can help the policy learn

all the behaviors effectively. As a baseline, we train a

policy on a balanced dataset that has equal proportion

of each sub-policy. For picking the dataset contains 21

demos for each of the three sub-policies and for opening

the dataset consists of 15 demos for each of the two

sub-policies. Same as in the previous experiments, we

introduce imbalance by underrepresenting one of the

sub-policies to have 9 demos in picking and 10 demos

in opening. To ensure the total number of demos is the

same, we increase the number of demonstrations for

other sub-policies to 27 in picking and 20 in opening.

We manually upsample the underrepresented demos to

uniformly balance the proportion of data. We train a

new policy on this manually balanced dataset for our

test.

Results. Figure 4 summarizes the results of the exper-

iments. The plots show the success rate for the different

sub-policies in the dataset. The first three plots show

the results for picking, and the last two plots show the

results for opening. In each plot, the gray bar shows the

success rate of a policy that was trained on a balanced

dataset, and the orange bar represents the success rate

of a policy trained on the upsampled dataset, where un-

derrepresented sub-policies were manually upsampled

to achieve an equal proportion of data. Overall, the

performance is comparable in both cases. We did not

observe any statistically significant difference in suc-

cess rates between the balanced and upsampled policies,

except in one case: for picking, performance decreases

when the red block is on the right (t = 8.663, p < 0.001)

This can be attributed to the relative difficulty of the

behaviors. Picking up the red block from the right is

more difficult because of the switch which often ob-

structs the robot’s path. In this case, successful learn-

ing requires more diverse demonstrations, and naive up-

sampling of the same data can lead to overfitting and

subsequently poorer performance.

From these results we conclude that upsampling un-

derrepresented sub-policies can achieve performance com-

parable to a policy trained on a balanced dataset, but

only when all behaviors are relatively of similar dif-

ficulty. Furthermore, this naive approach treats sub-

policies as independent, i.e., it ignores the potential

overlap in behaviors. For instance, in the picking task

demonstrations for picking the block from the left and

right locations still provide useful information for learn-

ing to pick it from the middle [7]. Ideally, we would

want to weight the different demonstrations based on

how much they contribute to learning the behaviors

they represent. As discussed in Section 5.2, this can be

achieved by comparing how the demonstrations for the

different sub-policies affect learning relative to a target

loss Lref .

Procedure. In this next experiment, we want to see

the effectiveness of the method Remix [17] in balanc-

ing the dataset. Remix uses distributionally robust op-

timization [32] to solve the min-max problem and uses

a reference policy as the target loss Lref . This refer-

ence policy is trained on the given imbalanced dataset.

As in the previous experiments, we collect an imbal-

anced dataset where there are certain behaviors that are

underrepresented. Particularly, in picking the dataset

consisted of 27, 9, and 27 demonstrations for the sub-

policies πp
1 , π

p
2 , π

p
3 , respectively; in opening the dataset

consisted of 10, 20 demonstrations for πo
1, π

o
2 respec-

tively. We follow the procedure discussed by the au-

thors in their paper for reweighting the dataset. After

reweighting the data we train a robot policy on the

balanced dataset. Additionally, we train two baseline

policies — one on the imbalanced dataset and one on a

dataset that has equal proportions of different behav-

iors. We compare the performance of the policy trained

on the remix weighted dataset with these baselines.

Results. We summarize the results of our experiments

in Figure 5. The plots compare the success rate of the

policies trained on the imbalanced, balanced, and re-

weighted datasets. We see that after reweighting the

dataset usingRemix there is an overall improvement in

12 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

picking

RightMiddle Open DrawerMove Slider

opening

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0
Balanced

Upsampled

Left

*

Fig. 4 Results of the experiment demonstrating the benefits of upsampling data. We compare the performance of a policy
trained on an imbalanced dataset with a policy trained on an upsampled dataset. In the imbalanced dataset one of the sub-
policies is underrepresented with fewer demonstrations that the other sub-policies. In the upsampled dataset, we resample
the fewer demonstrations to make the proportions of each sub-policy equal such that all sub-policies are equally represented.
The plots compare the success rate of the trained policies across 100 rollouts. Th gray bars represent the success rate for the
imbalanced policy and the orange bars represent the success rate for the upsampled policies. (Left) The results for the three
sub-policies in picking. (Right) Results for the two sub-policies in opening. The vertical bars show the standard deviation and
∗ indicates statistical significance.

*
* *

RightLeft Middle Open DrawerMove Slider

picking opening
Balanced

Remix

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Imbalanced

Fig. 5 Results of the experiment testing existing approaches for reweighting/balancing datasets. We train three policies. First
policy is trained on the imbalanced dataset, In picking, the imbalanced dataset contains 27 demonstrations for the left and
right positions of the red block and 9 demonstrations for the middle position of the block. In opening the imbalanced dataset
contains 10 demonstrations for moving the slider and 20 demonstrations for opening the drawer. We train a second policy on
a balanced dataset that contains equal proportions of demonstrations for all sub-policies, i.e., 21 for all three block positions
and 15 for both opening sims. These two policies serve as baselines for comparing the performance of reweighting algorithm
Remix [17]. Finally, we use Remix to balance the dataset and train a third policy on it. We compare the success rates of the
three trained policies across 100 rollouts. For reliable results we perform the experiments for 10 trials. The first three plots
show the success rates in picking and the last two plot show the success rates of the three policies in opening. The vertical
bars show the standard deviation and ∗ indicates statistical significance.

performance across all the sub-policies in both picking

and opening tasks. Particularly, in picking the policy

trained on the reweighted dataset is able to better learn

each of the three sub-policies (left: t = −2.789, p <

0.05). Interestingly, reweighting the data is also able to

outperform the policy trained on the balanced dataset

for some sub-policies. In opening, since the first sub-

policy was underrepresented in the imbalanced dataset,

the imbalanced policy is not able to adequately learn

that behavior and the second sub-policy dominates.

However, the policy trained on the reweighted dataset

can learn the first sub-policy significantly better (com-

parison with imbalanced: t = −10.785, p < 0.001, com-

parison with balanced: t = −7.565, p < 0.001). The

reweighted policy is also able to achieve better per-

formance than the balanced policy. However, this does

come at the cost of a detriment in performance in the

second behavior (comparison with imbalanced: t = 3.247,

p < 0.05, comparison with balanced: t = 4.023, p <

0.01).

These results demonstrate the merits of methods

like remix that can balance the dataset to re-weight

demonstrations that are more difficult to learn. This

can enhance the policy’s ability to learn every behav-

ior present in the dataset regardless of whether they

are under-represented. Moreover, it can also utilize the

dataset more efficiently by learning behaviors that are

common across all demonstrations, for example goal-

reaching actions. But this is contingent on the choice of

the reference target Lref . In these experiments, since

Lref is trained on an imbalanced dataset, it is un-

able to learn the under-represented sub-policy correctly.

This increases the excess loss for the corresponding sub-

policy allowing Remix to re-weight the dataset appro-

priately, i.e., it can help equally represent the corre-

sponding behavior in the final policy. However, there is

Towards Balanced Behavior Cloning from Imbalanced Datasets 13

*

*

*

RightLeft Middle

picking opening
Imbalanced

Remix

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0 *

Move Slider Open Drawer

0.0

0.5

1.0

0.0

0.5

1.0

Fig. 6 Results of the experiment that highlight limitations of existing balancing approaches. We have an imbalanced dataset
that contains optimal and suboptimal demonstrations: in picking the dataset contains 100 optimal and 50 suboptimal demon-
strations. In these demonstrations the block is uniformly sampled from the three locations. In opening the dataset contains 20
optimal and 10 suboptimal demonstrations for each of the two sub-policies totaling 60 demonstrations. We use Remix [17] to
balance the dataset. We train a policy on the imbalanced dataset as a reference and another policy on the balanced dataset.
We perform this for 10 trials. To compare the performance of these two learned policies we measure the success rate across
100 rollouts. The vertical bars show the standard deviation and ∗ indicates statistical significance.

a limitation to such an approach — when the imbal-

anced dataset contains a small amount of suboptimal

data Lref can produce counter-intuitive results by in-

creasing the excess loss for the suboptimal data.

Procedure. To demonstrate this, we conduct another

set of experiments in the picking and opening settings.

We utilize an imbalanced dataset with majority optimal

data and a small amount of suboptimal data. Specifi-

cally, for picking we supply 100 optimal trajectories and

50 suboptimal demonstrations where the block is ran-

domly initialized in one of the three regions. In opening,

we use 20 optimal and 10 suboptimal demonstrations

for both πo
1 and πo

2 resulting in a total of 60 demonstra-

tions. We repeat the previous procedure with this new

mixture of data for the two experiments.

Results. We present the results in Figure 6. The three

plots on the left correspond to the success rate of the

three behaviors in picking, while the two plots on the

right correspond to the two behaviors observed in open-

ing. The gray bars show the success rates of the policy

trained on the imbalanced data and the brown bars

show the success rates of the policy trained on the re-

weighted data. We see that there is a drop in perfor-

mance for all the behaviors in the two experiments. We

found statistical significance for all cases except the be-

havior of opening a drawer (left: t = 5.978, p < 0.001,

middle: t = 11.026, p < 0.001, right: t = 8.164, p <

0.001, move the slider: t = 2.407, p < 0.05).

These results present the failure case of Remix;

when the dataset contains a small amount of subop-

timal data, the reference policy trained on the imbal-

anced dataset is biased by the optimal data which is rel-

atively abundant. In other words, the reference policy

is able to reliably learn the behaviors. When using such

a reference policy as the target loss Lref , the min-max

optimization is compelled to down-weight the optimal

data and up-weight the suboptimal data. Consequently,

a policy trained on a dataset balanced by Remix results

in poorer performance than the policy trained on the

imbalanced dataset.

6 Learning Desired Balance

Based on related works within and outside of robotics

we have discussed two ways of balancing a dataset.

The first is a straightforward method that assigns equal

weight to each behavior in the dataset. While this can

be effective, it fails to recognize that some behaviors

are inherently easier to learn than others. We then de-

scribed a more general approach that dynamically weighs

the behaviors based on their training loss to account

for differences in their learning difficulty. This method

requires specifying a reference loss that represents the

desired level of accuracy for each behavior. Although

prior research proposes reasonable assumptions for this

reference, we experimentally show that these can be

counterproductive in certain instances. To address this

limitation, we now discuss how the target accuracy can

be determined in a more principled manner.

6.1 Learning Reference Loss

As we demonstrated in the experiments in Section 5.3,

overestimating the target can cause the learner to solely

focus on the hardest behavior — either making desir-

able progress on it or, undesirably, degrading the per-

formance on easier behaviors, until they all converge to

the same accuracy. On the other hand, setting a con-

servative target may prevent the robot from improving

on that behavior by increasing its weight.

Instead of relying on practical assumptions, we pro-

pose estimating the lowest achievable training loss for

14 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

αi ℒi ∀ i=[1,n]

ℒ ref
j = ℒj

πθ

πθ

πθnew

𝒟1

𝒟2
𝒟n

𝒟1

𝒟2

𝒟j

𝒟n

∇αℒi(θnew)

∇θℒα(θ)

∇θℒ

α-weighted

Calculate ℒ ref

Balance Dataset

Learn Policy π

-log πθ + ℒ ref

... α1

α2

αj

αn

.

.

α-weighted

𝒟1

𝒟2

𝒟j

𝒟n

α1

α2

αj

αn

.

.

Fig. 7 Schematic diagram of our method. The left side shows the workflow of our approach. Given an imbalanced dataset
collected using multiple sub-policies or behaviors, we first aim to learn a target loss Lref

j corresponding to each sub-policy
j∀j = 1, · · · , n. Here n is the number of sub-policies used to collect the imbalanced dataset. First, we must train a policy that
achieves the best possible performance on sub-policy j. To this end, we optimize the objective given in Equation (15) to find
the best possible α∗

j corresponding to the sub-policy j. In our meta-gradient approach, we first update the parameters θ of the
robot policy and use the updated policy to calculate the loss corresponding to all sub-policies. The meta-gradient of this loss
is then sued to update the weights α. The arrows indicate how the gradients pass through the different parameters. Once we
have calculated the target loss for each of the sub-policies, we balance the dataset by optimizing Equation (12) and using our
calculated Lref . Finally, we train a robot policy on the balanced dataset.

each behavior and setting it as its reference. We start

by defining the expected loss for behavior πi:

Li = E(s,a)∼Di
DKL(πi||πθα) (15)

Here πθα represents the policy trained on dataset D
using weights α by optimizing:

Lα(θ) =

k∑
i=1

αi

(
E(s,a)∼Di

DKL(πi||πθα)
)

(16)

To determine the minimum value for Equation (15),

we must find weights α∗ that make the best use of the

entire dataset for learning πi. Note that α∗ may not nec-

essarily assign full weight to the data Di for that behav-

ior, i.e., the weights need not be α∗
i = 1 and α∗

i ̸=i = 0.

In many cases, incorporating information from other

behaviors can actually improve the robot’s ability to

learn the target behavior. To learn these weights and

compute the reference loss for each behavior, we employ

the following meta-gradient approach:

We first update the policy parameters using the loss

in Equation (16) for one (or a few) gradient step(s):

θnew = θ − β1∇θLα(θ) (17)

Next, we update the weights by computing the gradi-

ents based on Equation (15) and passing them back

through the previous steps in Equation (17):

αnew = α− β2∇αLi(θnew) (18)

Our proposed approach is summarized in Figure 7.

We use the converged weights αnew = α∗ to compute

Lmin
i and set it as the reference Lref

i for that behavior.

The reference losses Lmin
1 , . . . ,Lmin

k computed by our

approach represent the best training performance for

each behavior, avoiding the pitfalls of overestimating

or underestimating the targets. Plugging these target

losses back into the objective in Equation (12) yields a

balance where the robot’s policy imitates each behav-

ior with an equal margin of error from its best-possible

loss. The following experiments demonstrate how our

approach improves upon previous methods for balanc-

ing datasets based on training loss.

6.2 Comparing with Baselines

In this section we test our proposed method for calcu-

lating the target Lref for different sub-policies present

Towards Balanced Behavior Cloning from Imbalanced Datasets 15

RightLeft Middle
Open DrawerMove Slider

picking opening

0.0

0.5

1.0

0.0

0.5

1.0

Imbalanced Zero

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Remix Our

*

*

*

Fig. 8 Testing our proposed approach against the baselines. We train four policies on a mixed dataset containing optimal and
suboptimal demonstrations. The Imbalanced policy is trained on the original dataset without any modifications. In picking,
the imbalanced dataset contains 30 suboptimal demonstrations and 60 optimal demonstrations. In these demonstrations the
initial position of the red block is uniformly sampled from the three regions. In opening the imbalanced dataset contains 10
suboptimal and 20 optimal demonstrations for moving the slider and opening the drawer. We use different target loss Lref

in the objective given in Equation (12) to balance the dataset and learn a policy. For Zero we set the target loss to be zero,
i.e., Lref = 0. For Remix we follow the procedure given in [17] and use a reference policy for calculating the target loss.
This reference policy is trained on the given imbalanced dataset. Finally, we train a policy on the dataset balanced using
Our proposed meta-gradient approach. We compare the performance of the four policies using success rate as the metric.
Specifically, perform 10 trials and execute each of the trained policy for a 100 rollouts to calculate the success rates. The plots
show the success rate of the four policies — imbalanced, Zero, Remix, and Our — in picking (first three plots) and opening
(last two plots). The vertical bars show the standard deviation and ∗ indicates statistical significance.

in the dataset. We intend to examine how the choice

of Lref affects the data balancing scheme and the final

policy’s performance.

Procedure. We use the two experiments picking and

opening from the previous sections. To train a policy,

we collect a dataset with a small amount of suboptimal

data. Particularly, in the case of picking the dataset

contains 60 optimal demonstrations and 30 suboptimal

demonstrations, and for opening the dataset contains

20 optimal demonstrations and 10 suboptimal demon-

strations for the two behaviors — opening a drawer and

moving a slider. We first train a policy on the imbal-

anced dataset, then use different approaches to balance

the data and subsequently train a policy on this bal-

anced dataset.

Independent Variables. We compare three different

ways of calculating the target loss. First, we use Our

method which uses a meta-gradient approach to calcu-

late the target loss Lref . We compare this with Remix

and Zero. As mentioned previously, Remix uses a ref-

erence policy that is trained on the imbalanced dataset

as the target loss. On the other hand, Zero does not

use a target loss for the sub-policies, i.e., Lref = 0.

Results. We summarize the results of our experiments

int Figure 8. The plots illustrate the success rate achieved

by the policy for the different sub-policies present in the

dataset in the picking experiments (three plots on the

left) and in the opening experiment (two plots on the

right). We see that Our method is able to achieve bet-

ter performance than the baselines: while Our method

improves the performance of the policy compared to

the imbalanced policy, the baselines see a reduction

in the performance. A repeated measures ANOVA re-

vealed that the methods had a significant effect on the

success rate in picking (F (3, 27) = 11.045, p < 0.001),

but not in opening (F (3, 27) = 1.739, p = 0.183). In

picking, Our saw a significantly better performance for

all three sub-policies than Zero (left: p < 0.05, mid-

dle: p < 0.05, right: p < 0.001), whereas compared

to Remix our method only saw significance for left

(p < 0.001) and right locations (p < 0.001). In opening,

while we did not find statistical significance, we do see

that Our method is able to achieve higher performance

than the baselines.

Additionally, we report the weights and the tar-

get losses for the optimal and suboptimal datasets in

Table 1. We see that the baselines Zero and Remix

assign equal weights to the optimal and suboptimal

data, which leads to poor performance when trained

on the reweighted data. In contrast, Our method up-

weights the optimal data, resulting in a policy that

achieves higher performance than the baselines. From

the weights it is evident that Our method relies on

nearly all of the optimal data while using very little of

the suboptimal data. This explains the improvement in

performance of our policy compared to the imbalanced

policy. The lack of significant improvement in opening

could be attributed to the simplicity of the tasks: since

the desired object (slider and drawer) are always at the

same location, the negative impact of a small amount of

suboptimal data is not that prominent. Consequently,

there is only a slight improvement after balancing.

16 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

Method Suboptimal Data Optimal Data

α Lref α Lref

picking

Imbalanced 0.33 - 0.67 -

Zero 0.5 0 0.5 0

Remix 0.5348 0.520 0.4652 0.9337

Our 0.0633 1.893 0.9367 1.505

opening

Imbalanced 0.333 - 0.667 -

Zero 0.516 0 0.484 0

Remix 0.5 0.089 0.5 0.0574

Our 0.0563 2.018 0.9437 1.626

Table 1 The table shows the assigned weights learned by Our method and the baselines. Additionally, it shows the calculated
target loss Lref corresponding to the optimal and suboptimal demonstrations. This target loss is used to determine the relative
accuracy we want to achieve corresponding to the different behaviors in the dataset. A lower value of Lref means we want to
achieve a higher accuracy on the respective behavior.

6.3 Limitations of Offline Data Balancing

Our approach advances the capabilities of current data

balancing approaches by automatically determining the

desired accuracy for each dataset behavior. However,

the results in Section 6.2 indicate that there is still some

gap between the performance achieved using manually

selected weights and the learned weights.

This lack of performance highlights a key limita-

tion of offline data curation approaches. Without access

to task-level evaluations, existing approaches, including

our proposed method, are limited to evaluating the ac-

curacy of imitating the data samples. However, imita-

tion accuracy is not always proportional to task success.

Returning to the example of dropping a ball into a large

bin versus throwing it at a moving target: even if the ac-

tions for the dropping task are learned less accurately

during training, we may be able to perform the task

successfully at test time. In contrast, even minimal im-

itation errors may lead to failures in the throwing task.

Ideally, instead of equalizing training loss across be-

haviors, we would balance their test performance (i.e.,

the performance of the policy during rollouts). Achiev-

ing this offline would require either real-world deploy-

ment, a high-fidelity simulator, or a reliable task-level

value function — resources that are typically expen-

sive or impractical. We therefore advocate for future

efforts that focus on efficiently utilizing real-world in-

teractions. One promising direction is to start with a

conservative reference and iteratively relax it based on

human feedback. If the reference remains above Lmin
i ,

we set the target to be Lref
i = Lsuccess

i . Otherwise, we

retain the original target, i.e., Lref
i = Lmin

i to prevent

the robot from overestimating its learning capacity. We

look forward to future efforts that address this gap by

developing methods that support task-level refinement

with minimal supervision.

7 Conclusion

Within this manuscript we argue that imitation learn-

ing is affected by the distribution of the training data.

Specifically, we explore settings where the robot is learn-

ing complex, multi-part behaviors from human demon-

strations. These multi-part behaviors could be based

on constraints: e.g., teaching the robot to reach a goal

while avoiding obstacle regions. Alternatively, these be-

haviors could be composed of multiple tasks: e.g., teach-

ing the robot to manipulate a cup at different locations

on a table. In either case, real-world human demonstra-

tions are inevitably imbalanced. The human provides

more state-action pairs for some parts of the task than

others. Returning to our example, perhaps the human

provides twice as many state-action pairs that move to-

wards the goal than state-action pairs which move away

from the constraint regions.

Existing imitation learning paradigms largely ignore

this dataset imbalance. Within behavior cloning — for

instance — every state-action pair is given equal weight

by the loss function. We theoretically prove that this de-

fault approach results in imbalanced policies, where the

robot overly focuses on the most represented behaviors,

and may fail to learn behaviors the human shows less

frequently. Our experimental results support this con-

clusion, and highlight how — even in simple settings

— dataset imbalance can cause state-of-the-art learn-

ing methods to fall short. We next analyze algorithms

that autonomously rebalance the dataset without hu-

man intervention. These algorithms adjust the ratio (or

weight) of elements of an offline dataset, and do not

require any new data gathering. Our theoretical and

empirical results show that autonomously reweighting

the dataset has the potential to improve learned pol-

icy performance without changing the robot’s learning

algorithm. But we also find that the best method to

reweight the dataset depends on several factors. Our

Towards Balanced Behavior Cloning from Imbalanced Datasets 17

work formulates the pros and cons of different autonomous

approaches for reweighting, providing guidelines for fu-

ture designers. We conclude by introducing a novel meta-

gradient approach for autonomously rebalancing offline

datasets. This approach addresses the primary limita-

tions of current methods, and our experiments highlight

that the meta-gradient method improves downstream

robot learning.

Future Work. We see this work as a first step towards

understanding the dataset characteristics necessary for

effective imitation learning. We argue that dataset im-

balance is a fundamental and practical issue, and this

issue is not fully explored by prior works. In our future

research, we are looking into extending this analysis

to large-scale datasets and applying our approach to

automatically balance these datasets for more effective

generalist policies.

8 Declarations

Funding. This research was supported in part by the

USDA National Institute of Food and Agriculture, Grant

2022-67021-37868.

Conflict of Interest. The authors declare that they

have no conflicts of interest.

Author Contribution. S.P.: Conceptualization, In-

vestigation, Software, Methodology, Formal analysis, Writ-

ing - original draft. H.N.: Conceptualization, Investiga-

tion, Methodology, Writing - original draft. D.L.: Con-

ceptualization, Supervision, Funding Acquisition, Writ-

ing - review and editing.

References

1. Agia, C., Sinha, R., Yang, J., Antonova, R., Pavone, M.,
Nishimura, H., Itkina, M., Bohg, J.: Cupid: Curating data
your robot loves with influence functions. arXiv preprint
arXiv:2506.19121 (2025)

2. Altalhan, M., Algarni, A., Alouane, M.T.H.: Imbalanced
data problem in machine learning: A review. IEEE Access
(2025)

3. Argall, B.D., Browning, B., Veloso, M.: Automatic weight
learning for multiple data sources when learning from
demonstration. In: 2009 IEEE International Conference
on Robotics and Automation (2009)

4. Belkhale, S., Cui, Y., Sadigh, D.: Data quality in imita-
tion learning. Advances in Neural Information Processing
Systems (2024)

5. Chen, A.S., Lessing, A.M., Liu, Y., Finn, C.: Curating
demonstrations using online experience. arXiv preprint
arXiv:2503.03707 (2025)

6. Dablain, D., Krawczyk, B., Chawla, N.V.: Deepsmote:
Fusing deep learning and smote for imbalanced data.
IEEE transactions on neural networks and learning sys-
tems (2022)

7. Dai, Y., Sanchez, R.R., Jeronimus, R., Sagheb, S.,
Nunez, C.M., Nemlekar, H., Losey, D.P.: Civil: Causal
and intuitive visual imitation learning. arXiv preprint
arXiv:2504.17959 (2025)

8. Dass, S., Khaddaj, A., Engstrom, L., Madry, A., Ilyas,
A., Mart́ın-Mart́ın, R.: Datamil: Selecting data for robot
imitation learning with datamodels. arXiv preprint
arXiv:2505.09603 (2025)

9. Devi, D., Biswas, S.K., Purkayastha, B.: A review on so-
lution to class imbalance problem: Undersampling ap-
proaches. In: 2020 international conference on computa-
tional performance evaluation (ComPE) (2020)

10. Douzas, G., Bacao, F., Last, F.: Improving imbalanced
learning through a heuristic oversampling method based
on k-means and smote. Information sciences (2018)

11. Du, M., Nair, S., Sadigh, D., Finn, C.: Behavior re-
trieval: Few-shot imitation learning by querying unla-
beled datasets. arXiv preprint arXiv:2304.08742 (2023)

12. Fernández, A., Garćıa, S., Galar, M., Prati, R.C.,
Krawczyk, B., Herrera, F.: Learning from imbalanced
data sets. Springer (2018)

13. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.:
Smote for learning from imbalanced data: progress and
challenges, marking the 15-year anniversary. Journal of
artificial intelligence research (2018)

14. Fu, H., Tang, K., Lu, Y., Qi, Y., Deng, G., Sung, F.,
Chen, C.: Ess-infogail: Semi-supervised imitation learn-
ing from imbalanced demonstrations. Advances in Neural
Information Processing Systems (2023)

15. Gandhi, K., Karamcheti, S., Liao, M., Sadigh, D.: Elic-
iting compatible demonstrations for multi-human imita-
tion learning. In: Conference on Robot Learning (2023)

16. Gavenski, N., Monteiro, J., Medronha, A., Barros, R.C.:
How resilient are imitation learning methods to sub-
optimal experts? In: Brazilian Conference on Intelligent
Systems (2022)

17. Hejna, J., Bhateja, C., Jian, Y., Pertsch, K., Sadigh, D.:
Re-Mix: Optimizing data mixtures for large scale imita-
tion learning. arXiv preprint arXiv:2408.14037 (2024)

18. Hejna, J., Mirchandani, S., Balakrishna, A., Xie, A.,
Wahid, A., Tompson, J., Sanketi, P., Shah, D., Devin, C.,
Sadigh, D.: Robot data curation with mutual information
estimators. arXiv preprint arXiv:2502.08623 (2025)

19. Hou, M., Hindriks, K., Eiben, A., Baraka, K.: Shaping
imbalance into balance: Active robot guidance of human
teachers for better learning from demonstrations. In:
2023 32nd IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN) (2023)

20. Jang, Y., Kim, G.H., Lee, J., Sohn, S., Kim, B., Lee,
H., Lee, M.: Safedice: offline safe imitation learning with
non-preferred demonstrations. Advances in Neural Infor-
mation Processing Systems (2024)

21. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep
learning with class imbalance. Journal of big data (2019)

22. Khan, S.H., Hayat, M., Bennamoun, M., Sohel, F.A.,
Togneri, R.: Cost-sensitive learning of deep feature repre-
sentations from imbalanced data. IEEE transactions on
neural networks and learning systems (2018)

23. Khazatsky, A., Pertsch, K., Nair, S., Balakrishna, A.,
Dasari, S., Karamcheti, S., Nasiriany, S., Srirama, M.K.,
Chen, L.Y., Ellis, K., et al.: Droid: A large-scale in-
the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945 (2024)

24. Kim, M.J., Pertsch, K., Karamcheti, S., Xiao, T., Balakr-
ishna, A., Nair, S., Rafailov, R., Foster, E., Lam, G., San-
keti, P., et al.: Openvla: An open-source vision-language-
action model. arXiv preprint arXiv:2406.09246 (2024)

18 Sagar Parekh, Heramb Nemlekar, and Dylan P. Losey

25. Koziarski, M.: Radial-based undersampling for imbal-
anced data classification. Pattern Recognition (2020)

26. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-
based undersampling in class-imbalanced data. Informa-
tion Sciences (2017)

27. Mees, O., Hermann, L., Rosete-Beas, E., Burgard, W.:
Calvin: A benchmark for language-conditioned policy
learning for long-horizon robot manipulation tasks. IEEE
Robotics and Automation Letters (RA-L) (2022)

28. Obuchi, T., Tanaka, T.: When resampling/reweighting
improves feature learning in imbalanced classification?: A
toy-model study. arXiv preprint arXiv:2409.05598 (2024)

29. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A.,
Abbeel, P., Peters, J., et al.: An algorithmic perspec-
tive on imitation learning. Foundations and Trends®
in Robotics (2018)

30. O’Neill, A., Rehman, A., Maddukuri, A., Gupta, A.,
Padalkar, A., Lee, A., Pooley, A., Gupta, A., Mandlekar,
A., Jain, A., et al.: Open x-embodiment: Robotic learn-
ing datasets and rt-x models: Open x-embodiment col-
laboration 0. In: 2024 IEEE International Conference on
Robotics and Automation (ICRA) (2024)

31. Reuss, M., Yağmurlu, Ö.E., Wenzel, F., Lioutikov, R.:
Multimodal diffusion transformer: Learning versatile be-
havior from multimodal goals. In: Robotics: Science and
Systems (2024)

32. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Dis-
tributionally robust neural networks for group shifts: On
the importance of regularization for worst-case general-
ization. arXiv preprint arXiv:1911.08731 (2019)

33. Sagheb, S., Losey, D.P.: Counterfactual behavior cloning:
Offline imitation learning from imperfect human demon-
strations. arXiv preprint arXiv:2505.10760 (2025)

34. Samadi, A., Koufos, K., Debattista, K., Dianati, M.:
Good data is all imitation learning needs. arXiv preprint
arXiv:2409.17605 (2024)

35. Shi, M., Chen, L., Chen, J., Lu, Y., Liu, C., Ren, G.,
Luo, P., Huang, D., Yao, M., Li, H.: Is diversity all you
need for scalable robotic manipulation? arXiv preprint
arXiv:2507.06219 (2025)

36. Team, O.M., Ghosh, D., Walke, H., Pertsch, K., Black,
K., Mees, O., Dasari, S., Hejna, J., Kreiman, T., Xu,
C., et al.: Octo: An open-source generalist robot policy.
arXiv preprint arXiv:2405.12213 (2024)

37. Wang, Q., Xiong, J., Han, L., Liu, H., Zhang, T., et al.:
Exponentially weighted imitation learning for batched
historical data. Advances in Neural Information Process-
ing Systems (2018)

38. Xu, H., Zhan, X., Yin, H., Qin, H.: Discriminator-
weighted offline imitation learning from suboptimal
demonstrations. In: International Conference on Machine
Learning (2022)

39. Zare, M., Kebria, P.M., Khosravi, A., Nahavandi, S.: A
survey of imitation learning: Algorithms, recent develop-
ments, and challenges. IEEE Transactions on Cybernet-
ics (2024)

40. Zha, L., Badithela, A., Zhang, M., Lidard, J., Bao, J.,
Zhou, E., Snyder, D., Ren, A.Z., Shah, D., Majumdar,
A.: Guiding data collection via factored scaling curves.
In: Robotics: Science and Systems (RSS) (2025)

41. Zhang, W., Xu, H., Niu, H., Cheng, P., Li, M., Zhang, H.,
Zhou, G., Zhan, X.: Discriminator-guided model-based
offline imitation learning. In: Conference on robot learn-
ing (2023)

A Appendix

A.1 Proof

In Section 5.2, we analyze how to balance a dataset by tak-
ing into consideration the relative difficulty of each behavior.
As mentioned previously, we perform a min-max operation
with the objective in Equation (12) where we iterate between
maximizing the objective to update the weights α and min-
imizing it to learn the policy parameters θ. Here we detail
how we compute the gradient of the objective with respect
to α (as shown in Equation (13)) and derive the convergence
condition for the maximization step stated in Equation (14).

We recognize that α represents the relative weights, which
makes each maximization step the following constrained op-
timization problem:

max
α

k∑
i=1

αi

(
E(s,a)∼Di

DKL(πi||πθ)− Lref
i

)

s.t.

k∑
i=1

α = 1

We solve the above problem using the method of Lagrange
multipliers, where the Lagrangian is defined as:

L(α, λ) =
k∑

i=1

αi

(
E(s,a)∼Di

DKL(πi||πθ)− Lref
i

)

+ λ

(
k∑

i=1

α− 1

)
(19)

Here λ is the Lagrange multiplier. We then take the partial
derivative of Equation (19) with respect to the weight αi of
the i-th behavior to get:

∂L
∂αi

= E(s,a)∼Di
DKL(πi||πθ)− Lref

i + λ

= δi + λ (20)

Doing so for each behavior results in Equation (13) re-
ported in Section 5.2. Next, to solve for λ, we apply the con-
straint that the new weights should also sum to 1:

k∑
i=1

αnew,i =

k∑
i=1

αi − η
∂L
∂αi

= 1

where η is the learning rate. Since the previous αi also sum
to 1, we get that:

η
k∑

i=1

∂L
∂αi

= 0

k∑
i=1

δi + λ = 0

λ = −
1

k

k∑
i=1

δi (21)

Finally to derive the convergence condition in Equation (14),
we equate the partial derivatives in Equation (20) to 0:

∂L
∂αi

= δi + λ = 0

δi = −λ (22)

In this way, we obtain the result that the maximization step
converges when all differences are equal, i.e., δ1 = . . . = δk =
1
k

∑k
i=1 δi.

Towards Balanced Behavior Cloning from Imbalanced Datasets 19

RightLeft Middle Open DrawerMove Slider

picking opening

0.0

0.5

1.0

0.0

0.5

1.0

Imbalanced Zero

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Remix Our

*
*

* **

Fig. 9 Testing our proposed approach against the baselines. We train four policies on a mixed dataset containing optimal
demonstrations. The Imbalanced policy is trained on the original dataset without any modifications. In picking, the imbal-
anced dataset contains 27 demonstrations for the left and right locations of the red block but only 9 demonstrations for the
middle location. In these demonstrations the initial position of the red block is uniformly sampled from the three regions. In
opening the imbalanced dataset contains 10 suboptimal and 20 optimal demonstrations for moving the slider and opening the
drawer. We use different target loss Lref in the objective given in Equation (12) to balance the dataset and learn a policy. For
Zero we set the target loss to be zero, i.e., Lref = 0. For Remix we follow the procedure given in [17] and use a reference
policy for calculating the target loss. This reference policy is trained on the given imbalanced dataset. Finally, we train a policy
on the dataset balanced using Our proposed meta-gradient approach. We compare the performance of the four policies using
success rate as the metric. Specifically, perform 10 trials and execute each of the trained policy for a 100 rollouts to calculate
the success rates. The plots show the success rate of the four policies — imbalanced, Zero, Remix, and Our — in picking (first
three plots) and opening (last two plots). The vertical bars show the standard deviation and ∗ indicates statistical significance.

A.2 Simulation

In Section 6.3 we perform experiments to showcase the lim-
itations of existing data balancing approaches. Specifically,
we test different metrics for the target loss Lref and show
that our meta-gradient approach outperforms the baselines.
In this section, we test our method against baselines Remix
and Zero in a setting where the dataset is optimal.

Procedure. We repeat the procedure from Section 6.3 where
we use two experiments picking and opening. We have a
dataset with optimal demonstrations: for picking there are 27
demonstrations for the left and right positions of the block
and 9 demonstrations for the middle position; for opening
there are 10 demonstrations for moving the slider and 20
demonstrations for opening the drawer. We train a policy
on the imbalanced dataset and use Zero, Remix, and Our
methods to balance the dataset. We then train a policy on
the balanced dataset and compare the performance of each
learned policy.

Results. The plots in Figure 9 summarize the results. We
compare the success rate achieved by the learned policy for
different behaviors in the two settings of picking and open-
ing. A repeated measures ANOVA revealed that the methods
had significant effect on the success rate (picking: F (3, 27) =
7.790, p < 0.001, opening: F (3, 27) = 49.407, p < 0.001).
We find that while all three methods are able to achieve
better performance than the policy trained on the imbal-
anced dataset, only Our method achieves statistical signif-
icance for all the behaviors in both experiments. Particularly,
Zero is significantly better than the imbalanced policy for
the left (p < 0.05) and right (p < 0.05) locations of the red
block but performs as poorly as the imbalanced policy when
the block is in the middle of the table. Similarly, Remix
does significantly better than the imbalanced policy for left
(p < 0.05) and middle (p < 0.05) locations of the red block
but is only slightly better for the locations on the right. In
contrast, Our method achieves significance for all three be-
haviors (p < 0.05). In opening, we see that while Remix
achieves better performance than the imbalanced policy for

both behaviors, Our method is significantly better than all
three baselines (p < 0.05).

Overall, these results suggest that not only is our method
able to balance heterogeneous optimal data to achieve bet-
ter performance, our previous experiments from Section 6.3
indicates that it can also overcome the limitations of state-
of-the-art methods like Remix.

	Introduction
	Related Work
	Problem Statement
	Learning from Heterogeneous Data
	Balancing the Dataset
	Learning Desired Balance
	Conclusion
	Declarations
	Appendix

