
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

PECAN: Personalizing Robot Behaviors through a Learned
Canonical Space

HERAMB NEMLEKAR, ROBERT RAMIREZ SANCHEZ, and DYLAN P. LOSEY, Virginia
Tech, USA

Robots should personalize how they perform tasks to match the needs of individual human users. Today’s
robot achieve this personalization by asking for the human’s feedback in the task space. For example, an
autonomous car might show the human two different ways to decelerate at stoplights, and ask the human
which of these motions they prefer. This current approach to personalization is indirect: based on the behaviors
the human selects (e.g., decelerating slowly), the robot tries to infer their underlying preference (e.g., defensive
driving). By contrast, our paper develops a learning and interface-based approach that enables humans to
directly indicate their desired style. We do this by learning an abstract, low-dimensional, and continuous
canonical space from human demonstration data. Each point in the canonical space corresponds to a different
style (e.g., defensive or aggressive driving), and users can directly personalize the robot’s behavior by simply
clicking on a point. Given the human’s selection, the robot then decodes this canonical style across each task
in the dataset — e.g., if the human selects a defensive style, the autonomous car personalizes its behavior to
drive defensively when decelerating, passing other cars, or merging onto highways. We refer to our resulting
approach as PECAN: Personalizing Robot Behaviors through a Learned Canonical Space. Our simulations
and user studies suggest that humans prefer using PECAN to directly personalize robot behavior (particularly
when those users become familiar with PECAN), and that users find the learned canonical space to be intuitive
and consistent. See videos here: https://youtu.be/wRJpyr23PKI

1 INTRODUCTION
Over its lifetime, a robot will likely interact with multiple different humans. Each of these humans
has their own personal preferences for how the robot should behave. For example, consider an
autonomous car that drives a human passenger. One passenger might prefer for the autonomous
car to be especially defensive, while another passenger may want the car to drive more aggressively.
In order to account for this personalization, we recognize that it is not sufficient for a robot to just
learn the desired tasks it should perform. We also need robots that adapt the way they perform
those tasks (i.e., adapt their style) to match the current user’s preferences.
Existing research often tries to address this problem by collecting human feedback in the task

space. Here the human can demonstrate their desired trajectory, correct the robot’s motion, or rank
the robot’s behavior [3, 12, 17, 20–22, 25, 27, 30, 36]. The robot then uses this feedback to update
its estimate of what style the human truly wants: for example, if a human passenger shows the
autonomous car that it should gradually decelerate at red lights, the autonomous car might infer
that the human prefers defensive driving. Unfortunately, this task-space approach is fundamentally
limited because it results in indirect personalization. The human user is not able to directly convey
their desired style (e.g., defensive driving). Instead, the human must show behaviors that exhibit
their desired style in the task space (e.g., gradually decelerating), and hope that the robot infers the
correct style from this data.
By contrast, in this paper we enable humans to directly personalize the robot’s behavior across

multiple tasks with a single click. We achieve this shift by lifting human-robot interaction from the
task space into the style space. More specifically, we hypothesize that:

Styles are often shared across tasks, and these

This work is supported in part by NSF Grant #2246446.
Authors’ address: Heramb Nemlekar, hnemlekar@vt.edu; Robert Ramirez Sanchez, robetjrs03@vt.edu; Dylan P. Losey,
losey@vt.edu, Virginia Tech, Department of Mechanical Engineering, 635 Prices Fork Rd, Blacksburg, VA, 24060, USA.

https://youtu.be/wRJpyr23PKI

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

Highway

Query N

Robot estimates style

Robot applies style
to multiple tasks

User clicks on style

other

robot

Direct
Approach

(PECAN)

Indirect
Approach

Intersection

Query 1

User specifies preferred behavior

Canonical space

Fig. 1. User personalizing the driving style of an autonomous car. With existing methods, the user provides
feedback about their preferred behavior, and the robot indirectly estimates their style based on this feedback.
We propose a direct approach where users select their style in a canonical space, and the robot applies this
user-chosen style across each task it encounters.

common styles can be captured by a canonical space.
We leverage our insight to introduce PECAN: Personalizing Robot Behaviors through a Learned
Canonical Space. At training time, this algorithm collects human demonstrations of diverse tasks
(e.g., decelerating at a red light, yielding at an intersection). The robot then leverages our proposed
representation learning approach to autonomously extract a high-level canonical space from the
task demonstrations. This learned canonical space is an abstract but user-friendly manifold: each
point in the manifold corresponds to a different underlying style. At run time, humans select a
point from this canonical space (i.e., each user can choose their own desired style), and the robot
decodes that point into consistent behaviors across each task in the dataset. For example, if the
current passenger selects a point that corresponds to defensive driving, the autonomous car will
apply this canonical style to each individual task: decelerating gradually at stop lights, staying far
from other vehicles on the highway, and yielding the right of way at intersections.
Overall, PECAN enables humans to rapidly personalize the way a robot behaves by directly

specifying their preferred style. We make the following contributions:
Learning a Canonical Space of Styles. We introduce an approach for learning a high-level
representation of robot behaviors through weak supervision. Given data of diverse human demon-
strations and a few labels for demonstrations with similar styles, the robot encodes information
about the tasks and styles into separate spaces. This allows users to choose their preferred style
independent of the tasks.
Forming a User-Friendly Canonical Space.We propose characteristics of the canonical space
— such as consistency and monotonicity — that make it easy for users to understand how the
styles are encoded and select their preferred style. The robot induces these characteristics by using
demonstrations that represent the extremes of the style spectrum.
Evaluating with Real Users. We compare our approach to state-of-the-art baselines in two user
studies: one using a robot arm and another focusing on an autonomous driving scenario. Our
results suggest that participants find it easier to personalize robot behaviors using an interface

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 3

that leverages our approach. They also prefer PECAN over the baselines, stating that it is more
consistent and intuitive. These results become more pronounced as the users gain experience using
PECAN, suggesting that familiarization is an important factor in our method’s effectiveness.

2 RELATEDWORK
Preference Learning. Humans can personalize a robot by providing feedback about its behaviors.
This includes demonstrating the desired motion [22, 25], correcting the robot’s actions [16, 17, 30],
selecting their preferred trajectory from options presented by the robot [27, 32, 36], or some
combination of these feedback types [3, 13, 20, 21]. These works parameterize the robot’s behavior
with user-defined features, such as the speed of an autonomous car or its distance from other cars
in a driving scenario. The parameters or weights for these features are then estimated based on
the human’s feedback. Together, the weights and features determine the robot’s style (i.e., how it
performs the given task) [26].
Specifying the correct set of features for modeling complex styles can be challenging [6]. To

overcome this, previous research has also proposed deep reinforcement learning from human
feedback [9, 12], which bypasses the need to specify such features. However, this approach is often
time-consuming, as users may have to provide feedback hundreds or even thousands of times
throughout the learning process.

Our work is different from these approaches in two ways. First, we do not pre-define the styles or
features. Instead, we learn a latent representation of the styles from offline human demonstrations.
Second, we do not collect more data from users in the task space. Instead, we design a canonical space
that allows users to select their preferred style by simply clicking on the learned representation.

Multi-task Personalization. The methods discussed so far involve a single robot model that
learns both the task and the user’s preferred way of performing it. However, our insight is that
these style preferences are often shared across diverse tasks. For instance, humans tend to prefer
similar navigation styles across different search and rescue scenarios [11]. Some recent methods
account for this by separately learning the user styles from the task-specific objective [2, 7, 33].
However, these works still assume that the relevant features are known. Our approach will also
separate the learning of user styles from the tasks, but without assuming any features.
Specifically, we propose to construct a canonical representation of styles that is shared across

multiple tasks. Previous research in multi-task learning has similarly explored how robots can
learn canonical representations over several tasks [1, 19, 24, 28]. For example, in [19, 24], the robot
learns a common visual representation of various tasks, and in [1], the robot learns a latent action
representation that applies to a family of tasks. Our approach differs from these works because —
in addition to learning multiple tasks — we also learn a canonical space that captures the different
styles with which these tasks can be performed.

Learning a Canonical Style Space.Most relevant to our approach are methods like [18, 23, 29, 34]
that learn a canonical representation of robot skills or styles over several tasks.

In [18], the robot embeds action sequences into a latent space of task-agnostic skills. The robot
then executes these skills on a continuous range of tasks that are specified by their start and end
states. When the set of tasks is finite, [23] learns a latent space comprised of discrete and continuous
portions. The discrete variables capture the tasks and the continuous variables capture the latent
styles. Both these methods employ Variational Autoencoders (VAEs) to train the latent spaces in an
unsupervised manner. However, [18] assumes that the tasks are specified by the user, while [23]
does not guarantee that the respective latent spaces will exclusively capture the tasks and styles
present in the data.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

To address this, [34] utilizes a small set of labels for trajectories that belong to the same task and
for trajectories that correspond to the same skill. These labels are used to train Gated VAEs [31]
which encode the task and skill knowledge into separate latent spaces. In contrast, [29] encodes
classes (i.e., tasks) and styles as a Gaussian mixture within a single continuous latent space. Each
Gaussian represents a class and its variance captures the styles. As opposed to [34], this method
only requires the task labels for a subset of the inputs.

A major limitation of all these methods is that the encoded styles are not consistent across tasks.
The same latent value can produce different styles depending on the task — making the interface
unintuitive for humans. Ideally, users should be able to select their preferred style with a single
click and produce similar robot behaviors across all tasks.
Similar to approaches like [23], we utilize separate discrete and continuous latent spaces to

encode the task and style information. The latent style space becomes our canonical space. To
ensure that the canonical space is consistent across tasks, we use a small set of labels for trajectories
having similar styles but in different tasks. Unlike [34] and [29], our approach does not require any
task labels. Instead, we capture the actual tasks and styles with their respective latent spaces by
only using labels for trajectories with similar styles.

3 PROBLEM STATEMENT
We explore how robotic systems (such as robot arms or autonomous vehicles) can learn a canon-
ical space for personalizing their behaviors. We assume that the robot is given a dataset with
demonstrations of diverse tasks and ways of performing those tasks. From this dataset the robot
needs to extract a low-dimensional and user-friendly manifold that embeds the styles shared across
tasks (e.g., driving an autonomous car defensively or aggressively). Importantly, we do not assume
that the styles are predefined or that the tasks are known. Instead, the system must learn these
underlying styles to autonomously construct the canonical space.
Trajectories. Let 𝑠 ∈ S be the system state and let 𝑎 ∈ A be a robot action. For example, in
our driving scenario the state 𝑠 includes the position and heading of the autonomous car and any
other nearby vehicles, and 𝑎 is the robot’s steering and acceleration inputs. A trajectory 𝜉 ∈ Ξ is a
sequence of𝑇 state-action pairs: 𝜉 = {(𝑠1, 𝑎1), . . . (𝑠𝑇 , 𝑎𝑇)}. We obtain trajectories by rolling out the
robot’s learned behaviors in the environment, or by collecting demonstrations from humans.
Dataset. At training time the robot is given a dataset with 𝑁 demonstrations from one or more
human teachers. Each demonstration is a trajectory, so that the dataset consists of:D = {𝜉1, . . . , 𝜉𝑁 }.
The trajectories within D show examples of multiple tasks, and perform those tasks with a variety
of different styles. Let 𝜏 ∈ T be the space of tasks and let 𝜃 ∈ R𝑑𝜃 be the space of styles. We assume
that there are a discrete set of tasks (e.g., slowing for a red light, passing on the highway, crossing
an intersection), but the manifold of styles is continuous. Returning to our driving example, the
human can provide trajectories that slow for a red light (i.e., the task) along a spectrum from very
gradually to very abruptly (i.e., the style). Overall, each demonstration 𝜉 ∈ D corresponds to some
task 𝜏 and style 𝜃 .
Labels. In practice, however, we do not assume that the robot knows the task or style for any
trajectory 𝜉 ∈ D. This is partially because it is difficult for humans to quantify the style of their
demonstrations [15]. Imagine a person showing an autonomous car how to smoothly slow down
for a red light; what numerical value of 𝜃 should the human give to that behavior? Rather than
asking humans to provide 𝜃 , we instead ask users to label trajectories that have similar styles. For
our driving example, perhaps in 𝜉1 the autonomous car brakes late for a red light, and in 𝜉2 the
autonomous car tailgates directly behind another vehicle. A human teacher might label 𝜉1 and 𝜉2
as having similar styles, since in both trajectories the robot drives aggressively. More generally, it

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 5

Fig. 2. Proposed architecture for Personalizing Robot Behaviors through a LearnedCanonical Space (PECAN).
(Left) The robot uses a task encoder𝜓𝜏 and a style encoder𝜓𝜃 to embed input demonstrations 𝜉 ∈ D into
two low-dimensional spaces: a latent task space 𝑍𝜏 and a latent style space 𝑍𝜃 . A decoder network 𝜙

takes the combined latent tasks and styles as input and reproduces the input demonstrations. For labeled
demonstrations, a classifier network Δ predicts the class labels from their latent styles. We train both the
encoders and the decoder to accurately reconstruct the demonstrations. Simultaneously, we also train the
style encoder along with the classifier such that it assigns similar latent values to trajectories with the same
label. (Right) We show that when labeled demonstrations represent the extreme ends of the style spectrum,
the canonical space is organized so that the latent styles of these extremes are positioned at the corners. This
arrangement allows users to interpolate between the extremes by choosing intermediate latent values.

is up to the human teacher(s) to decide what the styles are, and what groups of trajectories they
think have similar styles. As a result of this process the robot is given labels Y. Each label 𝑦𝑖 ∈ Y
contains a set of trajectories 𝑦𝑖 = {𝜉1, 𝜉2, . . .} that all have similar styles (as determined by the
human teachers). Every trajectory 𝜉 ∈ 𝑦 belongs to the dataset D; however, not all trajectories
𝜉 ∈ D need to be labeled in Y.

Overall, the robot’s objective is to leverage the dataset D and labelsY to learn a canonical space
of styles that allows users to easily personalize the robot’s behavior across tasks.

4 LEARNING A CANONICAL STYLE SPACE
Wewant to enable people to select their preferred style 𝜃 for completing a collection of tasks T with
just a few clicks. This personalization is challenging because the robot has no explicit knowledge
of either the tasks or styles. However — recalling our motivating hypothesis — we recognize that
styles are often shared across tasks, and so we can try to capture these underlying styles with a
learned canonical space.
In this section we outline our approach for constructing this canonical space (see Figure 2).

First, in Section 4.1, we introduce an autoencoder architecture that extracts the task and style
information from the demonstrated trajectories. Our architecture encodes the tasks and styles into
distinct latent spaces; the latent style space becomes our canonical manifold. Next, in Section 4.2,
we propose characteristics that make the canonical space user-friendly, so that humans can easily
interact with that space to search for and select their preferred styles. Finally, in Section 4.3, we
describe our training process, focusing on how we learn a canonical space that effectively captures
the styles in dataset D while also exhibiting user-friendly characteristics.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

4.1 Separately Encoding Tasks and Styles
As defined in Section 3, each robot trajectory corresponds to a specific task 𝜏 ∈ T and style 𝜃 ∈ R𝑑𝜃 .
For example, a robot arm could perform tasks like placing a cup in front of the user or pouring
coffee into that cup. Different users may prefer different styles for these tasks (see Figure 2): perhaps
one user provides demonstrations where the robot follows the shortest path, while another user
shows demonstrations that take an exaggerated path to maintain a safe distance from the human.

Our insight is that these underlying styles are often consistent across tasks. We therefore want
to learn a style space that is independent of the tasks, so that users can select their preferred style
from this space and obtain the corresponding robot trajectory across each task. To facilitate this,
we propose an autoencoder architecture with two encoders: a task encoder 𝜓𝜏 and a style encoder
𝜓𝜃 , as well as one trajectory decoder 𝜙 .
Task Encoder. The task encoder maps input trajectories 𝜉 ∈ Ξ to a latent space of tasks 𝑍𝜏 .

𝜓𝜏 : Ξ ↦→ 𝑍𝜏

This latent space encodes the tasks present in our dataset. We assume that data consists of a
finite number of discrete tasks T . To capture these tasks, we want the latent task space to also be
discrete such that each 𝑧𝜏 ∈ 𝑍𝜏 corresponds to a task 𝜏 ∈ T . Therefore, we discretize the output
of the task encoder by applying the Straight-Through Gumbel Estimator [14]. This technique
constrains 𝑧𝜏 to be a one-hot vector of dimensions 𝑑𝜏 = |T |. For instance, in the example shown
in Figure 2, the task of placing the cup could be mapped to 𝑧𝜏 = [0, 1] while the task of pouring
coffee is mapped to 𝑧𝜏 = [1, 0]. In our experiments we will assume that the number of tasks |T | is
known, but unsupervised metrics such as Normalised Mutual Information (NMI) can also be used
to autonomously estimate the number of discrete tasks in the dataset [38].
Style Encoder. The style encoder𝜓𝜃 maps input trajectories 𝜉 ∈ Ξ to a latent space of styles 𝑍𝜃 .
We will refer to this latent style space as our canonical space:

𝜓𝜃 : Ξ ↦→ 𝑍𝜃

Unlike the discrete space of tasks, we recognize that the robot styles can be continuous. For example,
the robot trajectory in Figure 2 can vary along a continuous spectrum from straight goal-directed
paths to exaggerated motions that stay far from the human. Accordingly, our canonical space 𝑍𝜃

is a continuous manifold. In our experiments we use a 𝑇𝑎𝑛ℎ(·) activation function at the final
layer to bound the canonical space within [−1, 1]𝑑𝜃 , so that our resulting canonical space is a
𝑑𝜃 -dimensional cube.
Trajectory Decoder. Our goal is to let users choose a latent style 𝑧𝜃 from the canonical space and
have the robot perform trajectories aligned with that style in each task 𝑧𝜏 ∈ 𝑍𝜏 . To achieve this, we
include a decoder network 𝜙 that takes both the task and style encodings as input and reconstructs
the corresponding robot trajectories:

𝜙 : 𝑍𝜏 × 𝑍𝜃 ↦→ Ξ

We train the decoder to accurately reconstruct a trajectory 𝜉 given the values for its latent task 𝑧𝜏
and latent style 𝑧𝜃 by minimizing the following loss:

L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =
∑︁
𝜉∈D

| | 𝜉 − 𝜙 (𝜓𝜏 (𝜉), 𝜓𝜃 (𝜉)) | |2 (1)

When this loss is minimized, it indirectly encourages the task and style encoders to capture sufficient
representations of the trajectories in the dataset. However, this still does not guarantee that the
representation captured in 𝑍𝜏 aligns with the actual tasks T , or — along the same lines — that the
representation in 𝑍𝜃 aligns with the styles 𝜃 .

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 7

To address this, we propose using a small set of labels Y for trajectories in the dataset. These
labels identify trajectories from different tasks that share similar styles. In Section 4.3, we will
introduce an additional loss function that leverages these labels to ensure that the representation
captured in 𝑍𝜃 aligns with the styles 𝜃 . Further, we will show that by minimizing this loss together
with L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 , we can also ensure that the latent tasks 𝑧𝜏 align with the actual tasks 𝜏 .

4.2 Characteristics of a User-Friendly Canonical Space
So far we have discussed how our approach can accurately reconstruct robot trajectories using
latent representations of the tasks and styles. However, merely learning latent spaces that can map
to the correct behavior is not sufficient, since — by themselves — these latent spaces may not be
easy for humans to interact with. Our goal is to learn a canonical space where the human can
intuitively click around the manifold to specify their desired style. For instance, given a range of
values from −1 to +1 as shown in Figure 2, how will the user know which regions of the canonical
space correspond to straight or exaggerated trajectories? We now propose ways to structure the
robot’s learning so that the resulting canonical space is more user-friendly.
One way users can build an understanding of the canonical space is by selecting 𝑧𝜃 values and

then visualizing the resulting robot trajectories across tasks 𝑧𝜏 . For example, in Figure 2 the human
might click on 𝑧𝜃 = +1 in the learned canonical space, and then observe how the robot arm moves
in a straight line to its goal. But for this interactive approach to be effective, the canonical space
needs to be organized such that users can quickly find their desired style by visualizing as few 𝑧𝜃
values as possible. We therefore propose structuring the canonical style space to have the following
user-friendly characteristics:

• Consistency. The latent values should result in consistent robot styles 𝜃 across tasks. For
example, if 𝑧𝜃 = +1 corresponds to a straight line path for the task of placing a cup, the
same 𝑧𝜃 should also result in a straight line path for the task of pouring coffee. Therefore,
for any 𝑧𝜃 ∈ 𝑍𝜃 :

𝜃 (𝜙 (𝑧𝜏 , 𝑧𝜃)) ≈ 𝜃 (𝜙 (𝑧′𝜏 , 𝑧𝜃)) ∀ 𝑧𝜏 , 𝑧
′
𝜏 ∈ 𝑍𝜏 (2)

This will allow users to customize the robot’s style across all tasks by setting the desired
latent style just once.

• Monotonicity. The styles should vary monotonically as we move from one point in the
latent space to another. For example, decreasing the latent style value from 𝑧𝜃 = +1 to
𝑧𝜃 = −1 should gradually change the robot’s style from straight-line paths to increasingly
exaggerated arm motions. Therefore, for all 𝑧𝜃 , 𝑧′𝜃 ∈ 𝑍𝜃 :

(𝑧𝜃 − 𝑧′
𝜃
) (𝜃 (𝜙 (𝑧𝜏 , 𝑧𝜃)) − 𝜃 (𝜙 (𝑧𝜏 , 𝑧′𝜃))) ≥ 0 (3)

This will enable users to easily find their desired style by interpolating between the extreme
ends of the canonical space.

4.3 Semi-supervised Learning
We now present our complete training process for learning latent representations of the actual
tasks and styles in our dataset, and inducing the user-friendly characteristics — consistency and
monotonicity — in the learned canonical space.
Labeling Style Extremes.We first obtain a small set of labels Y for trajectories having similar
styles but from different tasks. Specifically, we only obtain labels for trajectories that represent
the extremes of the style range, e.g., the most or least exaggerated arm motions in Figure 2. We
believe that labeling the extremes is easier than labeling intermediate styles. For instance, users
find it difficult to distinguish between slightly different arm motions [4]. Note that we do not ask

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

users to specify the actual style of a trajectory. We only assume that trajectories with the same
label have similar styles, and correspond to one of the extremes of the canonical space.
Style Classifier.Minimizing the loss L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 introduced in Section 4.1 trains the decoder to
accurately reconstruct trajectories. Here we include an additional loss to ensure that the canonical
space captures the actual styles and is consistent across tasks and monotonic along each axis.
We consider each 𝑦𝑖 ∈ Y to be a separate class with one-hot labels 𝑐 (𝑦𝑖), where Y contains

𝑚 classes. At training time, we pass the labeled trajectories 𝜉 𝑗 ∈ 𝑦𝑖 through the style encoder𝜓𝜃

to obtain their latent styles 𝑧𝜃,𝑗 . We then feed the latent styles into a classifier network Δ that
maps each latent value to a𝑚-dimensional vector of class probabilities 𝑝 𝑗 = [𝑝1, . . . , 𝑝𝑚] such that∑𝑚

𝑘=1 𝑝 𝑗,𝑘 = 1 for any 𝑝 𝑗 ∈ P.
Δ : 𝑍𝜃 ↦→ P

The classifier consists of a single fully-connected layer followed by a softmax layer. We train the
style encoder and classifier to predict the class labels by minimizing the cross-entropy loss:

L𝑐𝑒 = −
∑︁
𝑦𝑖 ∈Y

∑︁
𝜉 𝑗 ∈𝑦𝑖

𝑚∑︁
𝑘=1

𝑐𝑘 (𝑦𝑖) log(𝑝 𝑗,𝑘) (4)

The subscript 𝑘 refers to the 𝑘-th index in the 𝑚-dimensional vectors of class labels and their
probabilities. Intuitively, this loss encourages trajectories with the same style label 𝑦 to encode to
nearby values within the canonical space, and trajectories with different labels to map to values far
from one other in the canonical space. Particularly, since we only obtain labels for trajectories that
represent the extremes of the styles spectrum, the latent style for each extreme will be placed in
opposite corners of the canonical space.

We apply the following theorem from prior work [10] to show that when theL𝑐𝑒 loss is minimized,
trajectories with the same label are encoded to the same latent value and the value for each label is
positioned in a different corner of the latent space.
Theorem. Consider a latent space 𝑍 = {𝑧 ∈ R𝑑 : | |𝑧 | | ≤ 𝜌𝑍 } with a radius of 𝜌𝑍 > 0 and a linear
classifier with weights𝑊 ∈ R𝑚×𝑑 . Given 𝑁 latent values 𝑍 = {𝑧1, . . . , 𝑧𝑁 } from this space and a
balanced set of labels 𝑌 , the cross-entropy loss L𝑐𝑒 is bounded as:

L𝑐𝑒 (𝑍,𝑊 ;𝑌) ≥ log
(
1 + (𝑚 − 1) exp

(
−𝜌𝑍

√
𝑚

𝑚 − 1
| |𝑊 | |𝐹

))
(5)

This bound is tight if there are points 𝜁1, . . . , 𝜁𝑚 ∈ R𝑑 that satisfy the following conditions [10]:
(1) ∀𝑛 ∈ [𝑁] : 𝑧𝑛 = 𝜁𝑦𝑛

(2) {𝜁𝑦}𝑦 form a 𝜌Z-sphere-inscribed regular simplex

(3) ∃𝜌W > 0 : ∀𝑦 ∈ Y : 𝑤𝑦 =
𝜌W
𝜌𝑍

𝜁𝑦

Condition (1) states that loss L𝑐𝑒 is minimized when latent values 𝑧𝑛 with the same label 𝑦𝑛
converge to a common point 𝜁𝑦𝑛 in the latent space. This means that trajectories with the same
style label will be encoded to the same latent style value even if they belong to different tasks.
Conditions (2) and (3) state that the points 𝜁1, . . . , 𝜁𝑚 and weights corresponding to each class

must inscribe a regular simplex in the latent space. This means that the latent values will be
positioned at the edges of the latent space, with the points for different labels being equally distant
from one another. For instance, consider the 1D canonical space illustrated in Fig. 2. If we have
labels for𝑚 = 2 classes representing the style extremes, the latent values for the labeled trajectories
will converge to two distinct points (𝜁1, 𝜁2) — one for the most exaggerated trajectories and one for
the least. A regular simplex inscribed in this canonical space would be a line between end-points

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 9

𝜁1 = −1 and 𝜁2 = +1. Therefore, when L𝑐𝑒 is minimized, the latent values for the style extremes
will be pushed to the opposite ends of the canonical space.

We take advantage of these conditions to learn a canonical space that captures the actual styles
and exhibits the desired user-friendly characteristics as follows:
Combined Loss. We simultaneously train all networks by minimizing the combined loss L.

L = L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 + L𝑐𝑒 (6)

First, we examine how minimizing L allows us to represent the actual tasks and styles in the
data using their respective latent spaces. According to condition (1), minimizing the L𝑐𝑒 loss
causes all trajectories with the same label to be encoded to the same latent value. For example,
consider a label with two trajectories, 𝑦𝑖 = {𝜉1, 𝜉2}. When L𝑐𝑒 is minimized, the style encoder𝜓𝜃

will map both trajectories to the same latent style, i.e.,𝜓𝜃 (𝜉1) = 𝜓𝜃 (𝜉2) = 𝑧𝜃,𝑖 . To simultaneously
minimize L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 , the decoder 𝜙 must reconstruct the trajectories from this same latent style
value. Recall that we assume each label has trajectories with similar styles but from different tasks,
meaning 𝜉1 ≠ 𝜉2. To output two different trajectories given the same latent style as input, i.e.,
𝜙 (𝜓𝜏 (𝜉1), 𝑧𝜃,𝑖) ≠ 𝜙 (𝜓𝜏 (𝜉2), 𝑧𝜃,𝑖), the decoder will require the trajectories to have different latent
task values. Therefore, the task encoder must learn to map these trajectories to distinct values in
the latent task space, i.e.,𝜓𝜏 (𝜉1) ≠ 𝜓𝜏 (𝜉2). In this way, we can train the task and style encoders to
embed the actual tasks and styles in their respective latent spaces.

Next, we explore how condition (1) enables the style encoder to construct a consistent canonical
space. Following the previous example, we see that minimizing L𝑐𝑒 trains the style encoder to map
trajectories from different tasks to the same latent value. Since these trajectories belong to the same
label, they have the same actual style. This results in a consistent canonical space where a given
latent value corresponds to trajectories with similar styles across different tasks.

Lastly, according to condition (2), minimizing L𝑐𝑒 places the latent values for the extreme styles
at the opposite ends of the canonical space. In practice, we find that training the style encoder to
minimize both L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 and L𝑐𝑒 causes the latent values of trajectories with intermediate styles
to be placed monotonically between the extremes.
Summary. At training time, our architecture leverages a dataset of user demonstrations D and a
small set of labelsY to learn a latent task space 𝑍𝜏 and a canonical space of styles 𝑍𝜃 . We structure
the canonical space to be consistent and monotonic by optimizing the combined loss in Equation (6).
At runtime, the user selects a latent style 𝑧𝜃 from the learned canonical space. The decoder 𝜙 then
takes this latent style as input and reconstructs the corresponding robot trajectory for each 𝑧𝜏 ∈ 𝑍𝜏 .

In the following sections we will experimentally demonstrate the ability of our proposed archi-
tecture to learn distinct latent spaces for tasks and styles. We will also evaluate the accuracy of the
trajectories generated from these latent representations, and assess whether the learned canonical
space maintains our desired, user-friendly characteristics.

5 SIMULATION EXPERIMENTS
Here we perform controlled simulations to analyze the contributions of each component of PECAN.
We compare the performance of our proposed approach to a state-of-the-art baseline for learning
latent style representations [29] and ablations of our method in two environments: autonomous
driving and robot manipulation (see Figure 3).
Environments. In the first environment we personalize the driving style of an autonomous car
across two tasks,Highway and Intersection. In Highway the autonomous car follows another car
on a highway. In Intersection the autonomous car waits for another car to pass before safely crossing
an intersection. In both tasks, we consider 2D styles 𝜃 = [𝜃1, 𝜃2] that define how aggressively or

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

defensively the car drives. Here 𝜃1 corresponds to the maximum speed the car achieves in an empty
section of the road, and 𝜃2 represents the minimum distance that the car keeps from other vehicles
on the road. For example, some users may prefer a high speed of 𝜃1 = 100 km/h until their car is
within 𝜃2 = 30 feet of the next car. Other users may prefer a slow speed of 𝜃1 = 40 km/h but get as
close as 𝜃2 = 10 feet of the next car. We implement these tasks using the CARLO simulator [8].
In the robot environment we move away from the conventional meaning of tasks and styles

to showcase the versatility of our approach. We consider three different robot platforms as the
tasks: a Kuka, Panda, and UR5. In each task (i.e., for each type of robot) the goal is to transfer a
cereal box from one bin to another. The styles are three dimensional 𝜃 = [𝜃1, 𝜃2, 𝜃3], and represent
variations in environment. The variable 𝜃1 is the orientation of the cereal box, while 𝜃2 and 𝜃3 mark
the position of the target bin along the 𝑥 and 𝑧 axis respectively. We implement this environment
using Robosuite [37].
Baselines. We compare PECAN to the following methods:

• Ours-L: An ablation of our approach that does not use any labeled data and only trains
using the L𝑡𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 loss. Since it does use labels for trajectories with similar styles, we
expect this approach to learn a canonical space that is not consistent across tasks, similar
to prior work [23].

• Ours-X: An ablation of our approach that uses labels for trajectories with intermediate
styles, instead of the style extremes. We expect such an approach to learn a canonical space
that is consistent but not monotonous.

• SeGMA: A state-of-the-art approach for learning latent styles across multiple classes [29].
Instead of learning two separate task and style spaces, this method learns one combined
latent space where the classes (i.e., tasks) are represented as Gaussians and their variance
captures the styles. A latent style 𝑧𝑠 can be transferred from one task centered at 𝜇𝑠 to
another task centered at 𝜇𝑡 by:

𝑧𝑡 = 𝑧𝑠 + (𝜇𝑡 − 𝜇𝑠)
This approach uses task labels instead of labels for trajectories with similar styles. Therefore
we do not expect the latent styles to be consistent across tasks.

Training. In each environment we obtain a set of trajectories Ξ, where every trajectory 𝜉 ∈ Ξ
corresponds to a different task and style (𝜏, 𝜃). In the driving environment, the trajectories are
generated by simulated humanswith different styles, while in the robot environment, the trajectories
are teleoperated by an expert user. Next, we sample a small set of demonstrations D from the full
set of trajectories Ξ to train the methods. In the driving environment, we create a training dataset
of 16 demonstrations from a set of 352 trajectories such that 8 demonstrations belong to Highway
and 8 belong to Intersection. Four trajectories in each task correspond to the extreme styles — [high
𝜃1, high 𝜃2], [high 𝜃1, low 𝜃2], [low 𝜃1, high 𝜃2], and [low 𝜃1, low 𝜃2] — while the other four are
randomly sampled. In the robot environment, we sample a training dataset of 27 demonstrations
from a set of 60 trajectories. The data is balanced across the three tasks. Of the 9 demonstrations in
a task, 8 represent the style extremes and 1 is randomly sampled.
For Ours-X, all trajectories in a task are randomly sampled. We train all approaches, except

Ours-L, with the same amount of labeled data. SeGMA requires labels for trajectories that belong to
the same task. In contrast,Ours-X and PECAN do not require any task labels and only use labels for
trajectories with similar styles. Our code can be found here: https://github.com/VT-Collab/PECAN.
Testing.We test the performance of each method using the entire set of trajectories Ξ. Specifically,
we measure the accuracy of encoding the tasks (Task Accuracy), the error in reconstructing the
trajectories (Trajectory Error), and the Consistency and Monotonicity of the latent style space.

https://github.com/VT-Collab/PECAN

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 11

PECANOurs-L

Highway

Kuka Panda UR5

Intersection

Robot manipulation

Autonomous driving

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.0

1.0

1.5

1.75

1.25

0.75

0.25

1.2

0.0

0.2

0.4

0.6

0.7

0.8

*

0.0

0.10.1

0.3

0.5

0.3

0.2

0.4

0.5

0.6

0.7

T
as

k
 A

cc
u

ra
cy

T
as

k
 A

cc
u

ra
cy

T
ra

je
ct

o
ry

 E
rr

o
r

In
co

n
si

st
en

cy
In

co
n

si
st

en
cy

M
o

n
o

to
n

ic
it

y
M

o
n

o
to

n
ic

it
y

T
ra

je
ct

o
ry

 E
rr

o
r

Ours-X SeGMA

0.2

0.0

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

e-1

0.0

0.1

0.15

0.05

0.2

0.25

*

* *

*

* *

Fig. 3. Simulation results for autonomous driving (Top row) and robot manipulation (Bottom row) environ-
ments. We compare our proposed approach, PECAN, to a state-of-the-art baseline, SeGMA, and ablations of
our approach, Ours-L and Ours-X. While SeGMA uses task labels, PECAN uses labels for trajectories with
similar styles (specifically the style extremes). Both ablations use the same architecture as PECAN, however,
Ours-L does not train with any labels, whereas Ours-X uses labels for trajectories with intermediate styles
(instead of the style extremes). In both environments, PECAN achieves comparable Task Accuracy to SeGMA.
Although PECAN has significantly lower Trajectory Error in the robot environment, its performance is similar
to the baselines in the driving environment. The main advantage of PECAN over the baseline methods is that
the canonical spaces learned by our approach are more consistent and monotonic (i.e., more user friendly).
An asterisk (*) denotes statistical significance.

Task Accuracy is 1 if trajectories that belong to the same task are encoded to the same value in
the latent task space, with distinct latent values for trajectories in different tasks. If all trajectories
are mapped to the same latent task, the Task Accuracy is 1/|T |. Trajectory Error is the mean squared
error between the original trajectory and the trajectory reconstructed from the latent style space.
Next, as a proxy for measuring the Consistency of the canonical space, we measure its Inconsistency
by computing the difference between the latent style values of trajectories that have similar styles
but in different tasks. Inconsistency is defined as:

E𝜉1,𝜉2∈Ξ | |𝜓𝜃 (𝜉1) −𝜓𝜃 (𝜉2) | | if 𝜃 (𝜉1) = 𝜃 (𝜉2) and 𝜏 (𝜉1) ≠ 𝜏 (𝜉2) (7)

Here we do not compute Consistency directly using Equation (2) because it requires access to a
function 𝜃 (·) that maps reconstructed trajectories to their actual style values. In our simulations,
we only know the actual tasks and styles for the trajectories in the dataset Ξ, and not for their
reconstructions. Lastly, we measure the Monotonicity of the canonical spaces by computing the
correlation between the latent values and the actual styles of trajectories in Ξ. In a monotonous
space, the difference in latent values of trajectories should be correlated to the difference in their
styles. We measure this using Spearman’s rank correlation coefficient [35]. A coefficient of 1 or −1
indicates perfect correlation, while 0 means that the styles and their latent values are uncorrelated.
We take the absolute value of this coefficient as the Monotonicity of the canonical space.
Results. Our results are displayed in Figure 3. We calculated these results over 20 training runs,
each starting with randomly initialized network weights. We performed one-way ANOVA tests and

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

found that the choice of method had a significant effect on Task Accuracy in the autonomous driving
(𝐹 (3, 76) = 58.7, 𝑝 < 0.01) and robot manipulation (𝐹 (3, 76) = 313.1, 𝑝 < 0.01) environments. In
both environments, SeGMA achieved a high Task Accuracy, while Ours-L achieved the lowest.
This is likely because SeGMA is trained with labels for the tasks, whereas Ours-L operates without
any labels. PECAN, on the other hand, does not use task labels like SeGMA. Yet it achieved
a comparable Task Accuracy by leveraging labels for trajectories with similar styles. Post-hoc
comparisons indicated a statistically significant difference (𝑝 < 0.01) between the Task Accuracy of
PECAN and Ours-L in both environments. On the other hand, there was no significant difference
in the Task Accuracy of PECAN and SeGMA in the autonomous driving (𝑝 = 0.57) and robot
manipulation (𝑝 = 0.64) environments.

Our-X also attains high Task Accuracy in the driving environment by leveraging the style labels
similarly to PECAN (𝑝 = 0.07). However, in the robot environment, Ours-X has a significantly
lower Task Accuracy (𝑝 < 0.01) due to a high error in its reconstructed trajectories. These findings
demonstrate that to learn the correct task representation by only using labels for trajectories with
similar styles, it is crucial to optimize both the reconstruction loss and the cross-entropy loss, as
we theoretically suggested in Section 4.3.

Next, we observed that the canonical spaces learned by PECAN are more consistent and monot-
onous than those learned by any of the baselines. One-way ANOVA tests revealed that the choice
of method had a significant effect on the Consistency (𝐹 (3, 76) = 27.5, 𝑝 < 0.01) and Monotonicity
(𝐹 (3, 76) = 30.3, 𝑝 < 0.01) of the canonical space in the driving environment. Post-hoc comparisons
indicated that the spaces learned by Ours-L show comparable Monotonicity (𝑝 = 0.53) to PECAN
but lack Consistency (𝑝 < 0.01) because of not using any labels. In contrast, Ours-X manages
to learn a consistent latent space by using the style labels similar to PECAN (𝑝 = 0.99) in the
driving environment. However, it lacks Monotonicity (𝑝 < 0.01) because it obtains labels for the
intermediate styles rather than the style extremes. SeGMA does not leverage any style labels and
thus has a lower consistency (𝑝 < 0.01) and monotonicity (𝑝 < 0.01) than PECAN.

Takeaways. These results demonstrate that PECAN can successfully learn the task and style
encodings by only using labels for trajectories with similar styles. While SeGMA achieves similar
accuracy in encoding the tasks and reconstructing trajectories by using task labels, unlike PECAN, it
does not learn a consistent andmonotonic canonical space.We hypothesize that these characteristics
make the canonical space intuitive for users to understand, enabling them to easily find a latent
value corresponding to their preferred style.

Our ablations highlight that each component of PECAN is critical for constructing a user-
friendly canonical space. The style labels ensure that PECAN learns a consistent canonical space
and obtaining these labels for trajectories with extreme styles helps in making the space monotonic.
Conversely, the canonical space learned by Ours-L is inconsistent because it does not use any labels,
while the canonical space learned by Ours-X is consistent but not monotonic because it uses labels
for intermediate styles as opposed to the style extremes.

6 USER STUDY
Our simulated experiments indicate that our proposed approach learns a consistent and monotonic
space of styles. In this section, we will investigate whether these characteristics actually make
the canonical spaces user-friendly, and whether users are able to leverage these spaces to directly
personalize robot behaviors.

We conducted two in-person user studies to evaluate the effectiveness of PECAN with real users.
In the first study, we compare two direct approaches for personalizing the trajectory of a robot
arm using learned canonical spaces. Specifically, we test whether the consistent and monotonic

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 13

Pybullet Simulation

Robot Study Interface

Canonical spaces

Car Study Interface

Fig. 4. Interfaces for personalizing the behavior of the robot (Left) and the autonomous car (Right) in our user
studies. In the robot study, the canonical space was a 1D line which represented the distance that the robot
maintains from the user. Users personalized the style of the robot’s trajectory by moving the slider along the
line. For tasks 1 and 2, users could visualize the robot’s trajectory in a Pybullet simulation before executing
it on the robot in the real world. In the car study, the canonical space was a 2D square which captured the
maximum speed of the autonomous car and the minimum distance it maintains from other cars on the road.
Users personalized the car’s driving style by selecting different points inside the square. Since the driving
environment was entirely in simulation, there was no need to visualize the car’s trajectory separately before
execution. Figure 3 shows examples of the simulated car in the Highway and Intersection tasks.

spaces learned by PECAN are more intuitive to users than the spaces learned by the state-of-the-
art baseline, SeGMA. In the second study, we address the overarching question of how to best
personalize robot styles: through direct selection in a style space, or via indirect methods that learn
from user feedback. We compare our direct approach, PECAN, with a standard indirect method
from prior work [27]. We test these approaches in the context of customizing the driving style of
an autonomous car and assess the pros and cons of each method.

6.1 Learning User-Friendly Canonical Spaces
In our first user study, we tested if structuring the canonical spaces to be consistent and monotonic
makes them more user-friendly for personalizing robot styles. A user-friendly space should be
intuitive and easy to use, enabling users to quickly find their desired style. We compared two
approaches for learning a canonical space of robot styles: PECAN and SeGMA [29]. Our simulations
in Section 5 showed that both approaches effectively learned latent representations of the tasks and
styles from robot trajectories. However, the spaces learned by PECAN were more consistent and
monotonic as compared to those learned by SeGMA. Therefore, we hypothesized that users would
find PECAN to be more intuitive and easier to use than SeGMA for personalizing robot styles.

Experimental Setup. Participants in this study interacted with a 6-DoF UR5 robot arm in three
manipulation tasks: (i) handing over a plate to the user (Handover Plate), (ii) placing a cup in
front of the user (Place Cup), and (iii) pouring coffee into the cup (Pour Coffee). In each task, the
robot’s style was defined by the distance it maintained from the user. At one extreme, the robot
could follow a straight-line path that comes very close to the user, while at the other extreme, it
could take a curved path that stays as far from the user as possible. To personalize the robot’s
trajectory, each user interacted with an interface containing a canonical space of the robot’s styles.
The interface featured a task selection menu, a slider for choosing the latent style (as shown in
Fig. 4-Left), and buttons to execute the trajectory corresponding to the chosen style in a Pybullet
simulation and on the real robot. We pre-programmed the robot to pick up the objects for each task

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

Table 1. Survey questions (Likert scales with 7-option response format). We grouped questions into five scales
and tested their reliability using Cronbach’s 𝛼 . The reliability scores presented in the table are based on the
responses recorded in the robot user study.

Questionnaire item Reliability
Easy
- It was easy to personalize the robot trajectory using this interface. 0.89
- It was challenging to personalize the robot trajectory using this interface.
Intuitive
- I was able to understand how moving the slider changed the robot trajectory.
- It was difficult to understand how the robot trajectory would change by moving the slider. 0.94
- The interface was intuitive to use for personalizing the robot trajectory.
- I did not find the interface intuitive for personalizing the robot trajectory.
Accurate
- In the end, I was able to accurately personalize the robot trajectory. 0.88
- In the end, I was unable to personalize the robot trajectory accurately.
Easy (No Visuals)
- It was easy to personalize the robot trajectory in the third task based on the first two tasks. 0.93
- It was challenging to personalize the robot trajectory in the third task based on the first two tasks.
Prefer
- Overall, I would prefer to use this interface to personalize the robot trajectory. 0.85
- Overall, I would not like to use this interface to personalize the robot trajectory.

(i.e., plate, cup, or kettle) from their initial positions. The robot then performed the tasks according
to the style selected by the user. See videos here: https://youtu.be/wRJpyr23PKI

Participants performed the three tasks in the order given above. In the first two tasks, Handover
Plate and Place Cup, they could preview the robot’s trajectory in the Pybullet simulation before
executing it in the real world. However, they did not have this option in the third task of Pour
Coffee and had to find their target style based on their experience of using the interface in the first
two tasks. We did this to determine if users could build an accurate understanding of the canonical
space, enabling them to effectively transfer it to new tasks. Therefore, we treated the first two tasks
as familiarization tasks and evaluated the user performances in the Pour Coffee task. We anticipated
that a consistent and monotonic canonical space would be easier for users to learn and apply across
new tasks without the need to visualize the robot’s behavior.
Independent Variables. We compared our proposed approach (PECAN) to a state-of-the-art
baseline for generating latent style representations (SeGMA). To train these methods, we provided
3 demonstrations each in the Handover Plate and Place Cup tasks. Two of those demonstrations
represented the extreme styles in that task — trajectories with the maximum and minimum distance
to the user. Additionally, we asked each participant to provide 2 demonstrations in the Pour Coffee
task, one for each of the extreme styles. In total, we trained PECAN and SeGMA using a dataset of
8 demonstrations with labels for the trajectories with extreme styles. For PECAN, we assigned the
same label to trajectories with similar styles across the tasks. On the other hand, we provided the
same label for trajectories in the same task when training SeGMA.
Participants and Procedure.We recruited 14 participants (3 female, average age 28 ± 5 years)
from the Virginia Tech community. Participants gave informed written consent under IRB #23-
1237. At the start of the experiment, users kinesthetically guided the robot arm to demonstrate
trajectories for the extreme styles in the Pour Coffee task. We then trained both methods on the
user demonstrations along with the six previously collected demonstrations. Users interacted with

https://youtu.be/wRJpyr23PKI

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 15

the robot in all three tasks — once with each method. They completed the tasks in a fixed order but
the ordering of the methods was counterbalanced: half of the users started with PECAN and the
other half started with SeGMA.
In the Handover Plate and Place Cup tasks, users personalized the robot’s trajectory once to

match distinct target styles. Then, in the Pour Coffee task, users personalized the robot’s motion
twice to achieve two additional target styles. We randomly sampled the four target styles for each
user. For each style, users had 3 attempts to perform the task on the real robot while ensuring that
its trajectory stayed within a small tolerance of the desired distance. To help users gauge the actual
style of the robot’s trajectory, we displayed its maximum distance from the user on the interface.
Dependent Variables. For each task we recorded the number of attempts that users took to achieve
the target style on the real robot (Real Attempts). We also recorded the number of times users
visualized the latent styles in simulation before executing them in the real world (Sim Attempts)
for the Handover Plate and Place Cup tasks. A higher number of attempts indicated that it was
difficult for users to identify their desired styles in the learned canonical space. Specifically, in
the Pour Coffee task, where users did not have the option to simulate the styles, a higher number
of attempts indicated that the interface was not intuitive and consistent across tasks. We also
measured the error in the distance (Style Error) and final position (Task Error) of the trajectories
executed by users in their last attempt for each target style.

After working with each interface users answered a 7-point Likert scale survey (see Table 1). This
survey measured their subjective responses along five scales: the Intuitiveness of the interface, how
Easy it was to personalize the robot’s style with that interface, how easy it was to personalize the
robot’s style without visual information (No Visuals), the Accuracy of the reconstructed trajectories,
and if they Preferred using that interface. Users also detailed their experience after using each
interface in an open-ended response.
Hypothesis. We had the following hypotheses:

H1. Users will find interfaces that use PECAN to be easier and more intuitive than
those that use SeGMA for personalizing the robot trajectory.
H2. Users will subjectively prefer using canonical spaces learned by PECAN over those
learned by SeGMA.

Results. Our results are presented in Fig. 5. In the first two tasks users required a similar number of
real attempts for both methods. This was because they could spend ample time refining their desired
style in simulation before executing it on the real robot. Therefore, we tested our first hypothesis by
comparing the performance of the two methods in the Pour Coffee task. A two-tailed paired t-test
showed a significant difference in the number of real attempts (𝑝 < 0.01) with PECAN and SeGMA.
This suggests that PECAN is more intuitive and consistent than SeGMA, making it easier for users
to find their target style. Subjectively, users reported that it was easier to personalize the robot with
PECAN than SeGMA, especially in the third task where they had no visual information (𝑝 < 0.05).
Users also reported that they found PECAN to be more intuitive than the baseline. A two-tailed
paired t-test showed a significant difference in the combined ratings of the Easy (𝑝 < 0.05) and
Intuitive (𝑝 < 0.05) scales for PECAN and SeGMA. This result supported hypothesis H1.
In total, 11 out of 14 users stated that they preferred working with interfaces trained using

PECAN, giving it a significantly higher rating than SeGMA on the Prefer scale (𝑝 < 0.05). This
result supported H2.
Takeaways. Overall, these results demonstrate that the consistent and monotonous spaces learned
by our approach are more intuitive for users, making it easy for them to personalize the robot,
especially when they cannot simulate the robot’s motion before executing it in the real world. In

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

θ = 0.83

θ = 0.78

z
θ
 =

 0
.7

5
z
θ
 =

 0
.5

1

θ = -0.02

θ = 0.83

Place Cup Pour Coffee

SeGMA PECAN

0

1

4

S
im

 A
�

em
p

ts

Handover
Plate

Place
Cup

2

3

5

Easy Accurate PreferIntuitive Easy
(No Visuals)

3

4

5

6

2

1

0

U
se

r
R

a
ti

n
g

S
ty

le
 E

rr
o

r
[c

m
]

0.0

0.5

1.0

1.5

2.0

2.5

T
a

sk
 E

rr
o

r
[c

m
]

10.0

15.0

17.5

12.5

0.0

7.5

5.0

2.5

Pour
Coffee

R
ea

l
A
�

em
p

ts

1.5

0.5

0.0

2.0

2.5

1.0

*

* * * *

Fig. 5. Objective and subjective results from the robot user study. (Left) User applies the same latent value
𝑧𝜃 from Place Cup to Pour Coffee expecting a similar style across both tasks. PECAN produces trajectories
with similar distances 𝜃 for Place Cup and Pour Coffee, but SeGMA generates a straight line trajectory for
Pour Coffee. (Top Right) When using PECAN participants had lower task error, style error, and fewer real
attempts (t(13) = -3.12, p < 0.01) performing new tasks without visual information. (Bottom Right) Subjectively
participants prefer (t(13) = 2.55, p < 0.05) working with PECAN compared to SeGMA, as they found PECAN
more intuitive (t(13) = 3.35, p < 0.01), and easy (t(13) = 2.68, p < 0.05) especially without visual information
(t(13) = 2.76, p < 0.05). An asterisk (*) denotes statistical significance.

their open-ended response, five users stated that the slider (i.e., canonical space) for the baseline
approach, SeGMA, was inconsistent across tasks. For example, one user wrote that “this one [SeGMA]
appeared to change for each task, which made it hard to get to understand the slider”. Therefore, users
needed more attempts to achieve their target style in the Pour Coffee task with SeGMA as compared
to PECAN. We also observed that users achieved a lower task and style error in the Pour Coffee
task when using PECAN, although the difference was not statistically significant.

6.2 Direct vs. Indirect Personalization
In the second user study we determined the pros and cons of directly selecting the robot’s style
compared to indirect methods that estimate the style from user feedback (e.g., ranking robot trajec-
tories). Participants were presented with two fundamentally different approaches for modifying an
autonomous car’s driving style — our direct approach, PECAN, and an established approach for
indirectly learning from human preferences [27].
Independent Variables. Specifically, we compared PECAN to an active preference-based learning
approach, which we refer to as APReL. We implemented this approach based on the code provided
in [5]. At each step, APReL presented two trajectories to the users, each representing a different
style, and asked them to choose their preferred trajectory. Based on their choices, APReL inferred
the individual user styles. It strategically selected these trajectories to maximize the information it
gained about the user’s style from their choice. For example, showing trajectories with distinctly
different speeds, such as one high-speed and one low-speed, is more informative than showing
two trajectories with similar speeds. In our implementation, APReL selected the trajectories from
a discrete space of 176 uniformly sampled styles. We trained PECAN with 24 demonstrations: 8
demonstrations corresponded to the extreme styles and 16 were sampled randomly, as explained in
Section 5. It is important to note that, unlike our approach, APReL has direct access to the features
that parameterize the driving style of the autonomous car. Therefore, we might expect this baseline

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 17

to outperform our approach because it knows the actual styles, while our approach must learn
these styles from user demonstrations.
Experimental Setup. The driving simulation in this study was the same as in Section 5. We
had two tasks, Highway and Intersection, and 2D styles that depended on the speed of the
autonomous car and the minimum distance that it maintains from other vehicles. For PECAN,
users selected their preferred style by clicking on a point in a 2D canonical space as shown in
Figure 4-Right. In contrast, APReL showed simulations of two car trajectories and asked users to
select the trajectory that best matched their preferred style.
Participants and Procedure. We recruited 10 participants (2 female and 1 undisclosed, average
age 27 ± 5 years) from the Virginia Tech community. None of these participants took part in our
first user study. Participants gave informed written consent under IRB #23-1237.

We asked each user to personalize the driving style of the autonomous car to a randomly sampled
style (i.e., car speed and following distance) across both tasks. Users customized the car’s style using
both direct (PECAN) and indirect (APReL) approaches. We counterbalanced the ordering of these
approaches. When using PECAN, users clicked on points in the canonical space and visualized the
car behavior until they found their target style. Importantly, we did not describe how the styles
are distributed in this space. We only showed users the car’s behavior for the latent values in each
corner. For APReL, we explained that the interface will present two options and users must select
the best option that trains the car to achieve their target style. After each selection, the interface
updated its estimate of the user’s style and showed the learned behavior. For both methods, users
had to achieve the desired style within a tolerance of ±15 km/h speed and ±5 feet distance.
Dependent Variables. For the indirect approach (APReL) we recorded the total number of queries
that users had to answer for personalizing the car’s behavior. For the direct approach (PECAN)
we counted the total number of points that users had to visualize for finding their preferred style.
We collected the subjective responses of users for the same scales as in Table 1. We also added
another scale for measuring if users perceived that they required fewer attempts (clicks or queries)
to personalize the robot as they gained more experience with each method (Learn).
Hypothesis. We hypothesized that:

H3. Users will find it easier to personalize the driving style of the autonomous car with
our direct approach (PECAN) as compared to the indirect baseline (APReL).
H4. Users will prefer using our direct approach (PECAN) over the indirect baseline
(APReL) for personalizing the driving style of the autonomous car.

Results. Our results are summarized in Figure 6. Users were able to successfully personalize the
style of the autonomous car with both direct (PECAN) and indirect (APReL) approaches. When
using PECAN, 6 out of 10 users were able to personalize the car’s style with a single click in at least
one of the driving tasks! By contrast, there was only one instance when APReL learned the target
style after a single query. Although users required fewer attempts (clicks or queries) on average to
achieve their target style with PECAN (𝑀 = 6.1, 𝑆𝐸 = 0.87) than with APReL (𝑀 = 7.2, 𝑆𝐸 = 1.05),
a two-tailed paired t-test did not show a significant difference (𝑡 (9) = −1.14, 𝑝 = 0.28).

Overall, 7 out of 10 users stated in the survey that they preferred using our direct approach. While
they gave a higher rating for PECAN (𝑀 = 5.6, 𝑆𝐸 = 0.57) than APReL (𝑀 = 4.9, 𝑆𝐸 = 0.45) on the
Prefer scale, the difference was not statistically significant. We only saw a significant difference in
their subjective ratings for Learn (𝑡 (9) = 2.67, 𝑝 < 0.05).
Discussion. While a majority of the users performed slightly better with our direct approach
(PECAN) and preferred it over the indirect approach (APReL), the differences were not sufficient to
support either hypothesis. There are two potential reasons for this result:

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

APReL (Indirect) PECAN (Direct)

0

1

2

3

4

5

6

Easy Intuitive Accurate Learn Prefer

*7

U
se

r
R

at
in

g
s

0

1

2

3

4

5

6

7

A
�

em
p

ts

8

S
ty

le
 E

rr
o

r

0.00

0.01

0.02

0.03

0.04

0.05

Fig. 6. Objective and subjective results for the second user study. (Left) The average error in the style of the
personalized car trajectory in both tasks. (Center) The total number of attempts (queries or clicks) required
by users to personalize the car in both tasks. (Right) Users found both the direct and indirect approaches to
be intuitive, accurate, and easy to use. In particular, they perceived that they needed fewer clicks to find their
desired style as they gained more experience with our direct approach.

First, users may have individual preferences for how they personalize the robot’s behavior. For
example, most users preferred PECAN because they liked that they could quickly change the car’s
behavior without waiting for it to learn, stating that it was “quicker at learning and took fewer
attempts”. On the other hand, some users preferred APReL since they found it more convenient to
passively respond to queries than actively selecting their style, even if it took more time, stating
that they liked to “just observe and then decide on the preferred trajectory".
Second, the baseline had direct access to the features that define the car’s style. By contrast,

our approach had to learn a representation of the styles from data. This meant that while the
baseline could directly reason about the car’s driving style, users had to spend some time with our
interface to understand how the latent values mapped to actual styles. Notably, in this study, users
did not have any practice time before using the interfaces. They only interacted with the interfaces
6-7 times on average. Based on the subjective responses of users for the Learn scale, we think
that people can do better with more experience using PECAN. Hence, we conducted a follow-up
study to further validate our findings and develop a better understanding of the advantages and
disadvantages of using direct and indirect methods for personalizing robot behaviors.

6.3 Follow-up Study: Direct vs. Indirect Personalization
Participants in the second user study reported that they needed fewer attempts to personalize
the car’s behavior as they gained more experience with our direct approach. Therefore, in our
follow-up study we compared our direct approach, PECAN, to the indirect baseline, APReL, with
users who have practiced with both approaches.
We recruited 10 new participants (1 female, average age 20 ± 1 years) from the Virginia Tech

community. None of these participants were involved in the first two studies. We followed the same
procedure as the previous study with the following changes: (i) Before starting the experiment, we
gave the participants 10 minutes with each approach to practice personalizing the driving style of
the autonomous car. (ii) To obtain a more consistent measurement of their objective performance,

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 19

APReL (Indirect) PECAN (Direct)

U
se

r
R

at
in

g
s

Easy Intuitive Accurate Learn Prefer
0

1

2

3

4

5

6

*

A
�

em
p

ts

0

1

2

3

4

*

S
ty

le
 E

rr
o

r

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Objective and subjective results for the follow-up study comparing direct and indirect approaches for
personalizing robot styles with experienced users. (Left) The average error in the style of the personalized
car trajectory in both tasks. (Center) The average number of attempts (queries or clicks) required by users
to personalize the car for each target style across both tasks. After practicing with both approaches for 10
minutes, users were able to achieve their target style more accurately with our direct approach, PECAN, and
needed fewer attempts to do so than the indirect baseline, APReL. (Right) Subjectively, experienced users
found PECAN to be more intuitive, accurate, and easy to use than APReL. Consequently, they preferred it
over the indirect baseline for personalizing the car’s trajectory across tasks.

we asked the participants to personalize the car’s trajectory for four distinct target styles, as
compared to just one target style in Section 6.2. For each target, users were given a maximum of
ten attempts (i.e., clicks or queries).
Hypothesis. We extended H3 and H4 to obtain the following hypotheses:

H5. After gaining experience with both approaches, users will find it easier to person-
alize the autonomous car’s driving style with our direct approach (PECAN) than the
indirect baseline (APReL).
H6. After gaining experience with both approaches, users will prefer using our direct
approach (PECAN) to the indirect baseline (APReL) for personalizing the car’s style.

Results. The results of the follow-up study are shown in Figure 7. After practicing with both
approaches, we observed that users required significantly fewer clicks or queries to personalize
the autonomous car’s style with PECAN than with APReL. A two-tailed paired t-test showed
a statistically significant difference (𝑡 (9) = −3.28, 𝑝 < 0.01) between the average number of
attempts required by users per style with PECAN (𝑀 = 2.1, 𝑆𝐸 = 0.33) and APReL (𝑀 = 3.9,
𝑆𝐸 = 0.48). Subjectively, experienced users found our direct approach, PECAN, to be significantly
easier (𝑝 < 0.01) and intuitive (𝑝 < 0.01) than the indirect approach, APReL. This result supported
our hypothesis H5.
Overall, 9 out of 10 users stated that they preferred to directly specify the style instead of

providing indirect feedback, and gave a significantly higher rating (𝑡 (9) = 3.98, 𝑝 < 0.01) for
PECAN (𝑀 = 5.7, 𝑆𝐸 = 0.48) than APReL (𝑀 = 2.1, 𝑆𝐸 = 0.48) on the Prefer scale. This result
supported our hypothesis H6.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

Table 2. Open-ended responses from participants in the follow-up study that highlight the pros and cons of
direct and indirect approaches for personalizing robot behaviors.

Direct (PECAN) Indirect (APReL)
Pros:

"This interface felt more intuitive and made the experience
feel more personable."
"I liked the interface as I was able to get closer to the
optimal point easily and quickly."
"I liked that it was relatively easy to place points on the
graph and see what reaction they had on the scenario."
"Having an array of options rather than a binary decision
made it feel much more personal and easy to use."

Pros:

"I liked how the two options for trajectory that were
given were different."
"I thought that it was relatively easy to make changes."

Cons:

"Definitely a bit tricky at first but once there were a few data
points to base my entries off of it became much easier."
"One thing I did not like about the interface was how the
values were not on the grid."
"I did not like that the axes of the graph were not labeled."
"The one thing I struggled with is how the grid is not linear ."

Cons:

"It took manymore tries for me to get the speed
and distance close to the target."
"I overall did not like this as it seemed to give me
substantially less control over what was happening."
"Sometimes I couldnt understand why the
trajectory didnt change in the way I wanted."
"I did not like that I was unable to tune speed or
distance independently."

Takeaways. In this follow-up study users had the opportunity to practice personalizing the car’s
driving style with both direct (PECAN) and indirect (APReL) approaches. We did not describe
how the styles were distributed in the canonical space for PECAN nor did we explain how APReL
learned from the user’s choices. After just 10 minutes of practice, users found PECAN to be easier
and more intuitive than APReL, enabling them to achieve the target styles in fewer attempts.

Each user was tasked with personalizing the car’s motion for four different target styles, allowing
them to interact with each approach more times than in the previous study. Here we observed that
in a few instances, APReL presented users with two trajectory options, neither of which aligned
with their target style. For example, one user stated that “often, my options were to increase my speed
and distance or decrease the speed and distance when I needed to tune them opposite of each other".
Such instances were confusing for users, causing them to not achieve their target styles within ten
attempts. Therefore, users had a significantly higher style error with APReL than with PECAN.
We summarize the feedback provided by users on the advantages and disadvantages of both

approaches in Table 2. We have included all comments: we only omit redundant comments and
surplus details for clarity. Overall, users found that directly personalizing the car’s style using
PECAN was more intuitive, easy, quick, and personable. Although understanding how the latent
values mapped to actual styles was initially tricky, users reported that it became much easier after
a few tries. Conversely, while users appreciated the options presented by the indirect approach
(APReL), they felt they had less control over its learning process and sometimes struggled to
understand how their choices affected the car’s learned behavior.

A common critique of our direct approach was that users wanted the styles and axes to be labeled
in the canonical space. However, unlike the indirect approach, PECAN does not know the actual
styles. We only use weak supervision to learn the canonical space from demonstration data. To
enumerate the actual styles in the canonical space, we would need labels that specify the exact
styles of trajectories in the dataset, not just whether they have similar styles. Another critique was

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

PECAN: Personalizing Robot Behaviors through a Learned Canonical Space 21

that, although our canonical space was monotonic, users would have preferred it to be linear. This
meant that, after visualizing the car’s style for a couple of points in the canonical space, users could
estimate the direction in which their target style would lie in the space, but not the exact distance.
We aim to address this issue in future work by inducing proportionality in our canonical space.
Despite this limitation, our results show that a monotonic canonical space is sufficient for users to
find their desired style in a few clicks.

7 CONCLUSION
In this paper we enabled humans to directly personalize robot behaviors through a canonical
style space. We first introduced PECAN, a learning and interfaces algorithm that leverages weak
supervision to construct the canonical space from task demonstrations. Next, we theoretically
demonstrated why the model structure, training data, and loss functions used in PECAN help
ensure that this canonical space is intuitive and user-friendly. In practice, our approach outputs
a low-dimensional manifold; each point in the manifold corresponds to a style, and humans can
specify their desired style across each task in the dataset by simply clicking on their preferred point.
When experimentally compared to the alternatives, PECAN resulted in a more consistent interface
that participants found easier to use over repeated interactions.

REFERENCES
[1] Arthur Allshire, Roberto Martín-Martín, Charles Lin, Shawn Manuel, Silvio Savarese, and Animesh Garg. 2021. Laser:

Learning a latent action space for efficient reinforcement learning. In 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 6650–6656.

[2] Kareem Amin, Nan Jiang, and Satinder Singh. 2017. Repeated inverse reinforcement learning. In Proceedings of the
31st International Conference on Neural Information Processing Systems. 1813–1822.

[3] Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa Sadigh. 2022. Learning
reward functions from diverse sources of human feedback: Optimally integrating demonstrations and preferences.
The International Journal of Robotics Research 41, 1 (2022), 45–67.

[4] Erdem Bıyık, Malayandi Palan, Nicholas C Landolfi, Dylan P Losey, and Dorsa Sadigh. 2019. Asking easy questions: A
user-friendly approach to active reward learning. In Annual Conference on Robot Learning. 1177–1190.

[5] Erdem Bıyık, Aditi Talati, and Dorsa Sadigh. 2022. Aprel: A library for active preference-based reward learning
algorithms. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 613–617.

[6] Andreea Bobu, Andi Peng, Pulkit Agrawal, Julie A Shah, and Anca D Dragan. 2024. Aligning human and robot
representations. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. 42–54.

[7] Mahdi Bonyani, Maryam Soleymani, and Chao Wang. 2024. Style-Based Reinforcement Learning: Task Decoupling
Personalization for Human-Robot Collaboration. In International Conference on Human-Computer Interaction. Springer,
197–212.

[8] Zhangjie Cao, Erdem Biyik, Woodrow Z. Wang, Allan Raventos, Adrien Gaidon, Guy Rosman, and Dorsa Sadigh. 2020.
Reinforcement Learning based Control of Imitative Policies for Near-Accident Driving. In Proceedings of Robotics:
Science and Systems (RSS).

[9] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017. Deep reinforcement
learning from human preferences. Advances in neural information processing systems 30, 9 (2017), 4302–4310.

[10] Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. 2021. Dissecting supervised contrastive learning.
In International Conference on Machine Learning. PMLR, 3821–3830.

[11] Yue Guo, Rohit Jena, Dana Hughes, Michael Lewis, and Katia Sycara. 2021. Transfer learning for human navigation
and triage strategies prediction in a simulated urban search and rescue task. In 2021 30th IEEE International Conference
on Robot & Human Interactive Communication (RO-MAN). IEEE, 784–791.

[12] Donald Joseph Hejna III and Dorsa Sadigh. 2023. Few-shot preference learning for human-in-the-loop rl. In Conference
on Robot Learning. PMLR, 2014–2025.

[13] Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. 2015. Learning preferences for manipulation
tasks from online coactive feedback. The International Journal of Robotics Research 34, 10 (2015), 1296–1313.

[14] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with Gumbel-Softmax. In International
Conference on Learning Representations.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Heramb Nemlekar, Robert Ramirez Sanchez, and Dylan P. Losey

[15] Pallavi Koppol, Henny Admoni, and Reid G Simmons. 2021. Interaction Considerations in Learning from Humans.. In
IJCAI. 283–291.

[16] Mengxi Li, Alper Canberk, Dylan P Losey, and Dorsa Sadigh. 2021. Learning human objectives from sequences of
physical corrections. In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2877–2883.

[17] Dylan P Losey, Andrea Bajcsy, Marcia K O’Malley, and Anca D Dragan. 2022. Physical interaction as communication:
Learning robot objectives online from human corrections. The International Journal of Robotics Research 41, 1 (2022),
20–44.

[18] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre Sermanet. 2020.
Learning latent plans from play. In Conference on robot learning. PMLR, 1113–1132.

[19] Zhao Mandi, Fangchen Liu, Kimin Lee, and Pieter Abbeel. 2022. Towards more generalizable one-shot visual imitation
learning. In 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2434–2444.

[20] Shaunak A Mehta and Dylan P Losey. 2023. Unified learning from demonstrations, corrections, and preferences during
physical human-robot interaction. ACM Transactions on Human-Robot Interaction (2023).

[21] Thibaut Munzer, Marc Toussaint, and Manuel Lopes. 2017. Preference learning on the execution of collaborative
human-robot tasks. In IEEE International Conference on Robotics and Automation. 879–885.

[22] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. 2015. Efficient model learning from joint-action
demonstrations for human-robot collaborative tasks. In ACM/IEEE International Conference on Human-Robot Interaction.
189–196.

[23] Takayuki Osa and Shuehi Ikemoto. 2020. Goal-conditioned variational autoencoder trajectory primitives with
continuous and discrete latent codes. SN Computer Science 1, 5 (2020), 303.

[24] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. 2018. Vision-based multi-task
manipulation for inexpensive robots using end-to-end learning from demonstration. In 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, 3758–3765.

[25] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. 2020. Recent advances in robot
learning from demonstration. Annual review of control, robotics, and autonomous systems 3 (2020), 297–330.

[26] Sascha Rosbach, Vinit James, Simon Großjohann, Silviu Homoceanu, and Stefan Roth. 2019. Driving with style: Inverse
reinforcement learning in general-purpose planning for automated driving. In IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2658–2665.

[27] Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. 2017. Active preference-based learning of reward
functions. In Proceedings of Robotics: Science and Systems (RSS).

[28] Avi Singh, Eric Jang, Alexander Irpan, Daniel Kappler, Murtaza Dalal, Sergey Levinev, Mohi Khansari, and Chelsea Finn.
2020. Scalable multi-task imitation learning with autonomous improvement. In 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2167–2173.

[29] Marek Śmieja, Maciej Wołczyk, Jacek Tabor, and Bernhard C Geiger. 2020. Segma: Semi-supervised Gaussian mixture
autoencoder. IEEE transactions on neural networks and learning systems 32, 9 (2020), 3930–3941.

[30] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Peter Ramadge, and
Sidd Srinivasa. 2022. Expert intervention learning: An online framework for robot learning from explicit and implicit
human feedback. Autonomous Robots (2022), 1–15.

[31] Matthew J Vowels, Necati Cihan Camgoz, and Richard Bowden. 2020. Gated variational autoencoders: Incorporating
weak supervision to encourage disentanglement. In 2020 15th IEEE International Conference on Automatic Face and
Gesture Recognition (FG 2020). IEEE, 125–132.

[32] Nils Wilde, Alexandru Blidaru, Stephen L Smith, and Dana Kulić. 2020. Improving user specifications for robot
behavior through active preference learning: Framework and evaluation. The International Journal of Robotics Research
39, 6 (2020), 651–667.

[33] Bryce Woodworth, Francesco Ferrari, Teofilo E Zosa, and Laurel D Riek. 2018. Preference learning in assistive robotics:
Observational repeated inverse reinforcement learning. In Machine learning for healthcare conference. PMLR, 420–439.

[34] Bian Xihan, Oscar Mendez, and Simon Hadfield. 2022. SKILL-IL: Disentangling skill and knowledge in multitask
imitation learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 7060–7065.

[35] Jerrold H Zar. 2005. Spearman rank correlation. Vol. 7. Wiley Online Library.
[36] Huixin Zhan, Feng Tao, and Yongcan Cao. 2021. Human-guided robot behavior learning: A gan-assisted preference-

based reinforcement learning approach. IEEE Robotics and Automation Letters 6, 2 (2021), 3545–3552.
[37] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany, and Yifeng Zhu.

2020. robosuite: A Modular Simulation Framework and Benchmark for Robot Learning. arXiv preprint arXiv:2009.12293
(2020).

[38] Mark Zolotas and Yiannis Demiris. 2022. Disentangled sequence clustering for human intention inference. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 9814–9820.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Learning a Canonical Style Space
	4.1 Separately Encoding Tasks and Styles
	4.2 Characteristics of a User-Friendly Canonical Space
	4.3 Semi-supervised Learning

	5 Simulation Experiments
	6 User study
	6.1 Learning User-Friendly Canonical Spaces
	6.2 Direct vs. Indirect Personalization
	6.3 Follow-up Study: Direct vs. Indirect Personalization

	7 Conclusion
	References

