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Learning from humans is challenging because people are imperfect teachers. When everyday humans show
the robot a new task they want it to perform, humans inevitably make errors (e.g., inputting noisy actions)
and provide suboptimal examples (e.g., overshooting the goal). Existing methods learn by mimicking the
exact behaviors the human teacher provides — but this approach is fundamentally limited because the
demonstrations themselves are imperfect. In this work we advance offline imitation learning by enabling
robots to extrapolate what the human teacher meant, instead of only considering what the human actually
showed. We achieve this by hypothesizing that all of the human’s demonstrations are trying to convey a
single, consistent policy, while the noise and sub-optimality within their behaviors obfuscates the data and
introduces unintentional complexity. To recover the underlying policy and learn what the human teacher
meant, we introduce Counter-BC, a generalized version of behavior cloning. Counter-BC expands the given
dataset to include actions close to behaviors the human demonstrated (i.e., counterfactual actions that the
human teacher could have intended, but did not actually show). During training Counter-BC autonomously
modifies the human’s demonstrations within this expanded region to reach a simple and consistent policy that
explains the underlying trends in the human’s dataset. Theoretically, we prove that Counter-BC can extract the
desired policy from imperfect data, multiple users, and teachers of varying skill levels. Empirically, we compare
Counter-BC to state-of-the-art alternatives in simulated and real-world settings with noisy demonstrations,
standardized datasets, and real human teachers. Overall, we find that extrapolating what the human teacher
meant — as opposed to rigorously following what the human actually demonstrated — leads to more proficient
learning from humans. See videos of our work here: https://youtu.be/XaeOZWhTt68
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1 INTRODUCTION
Robots can learn new tasks by imitating human examples. Consider the system in Figure 1: by
watching how a human plays air hockey, this robot arm should learn how to block and hit the
puck. But one fundamental limitation when learning from humans is that people are imperfect
teachers. Human demonstrations of the task will inevitably contain mistakes, noise, and suboptimal
actions, particularly in real-world settings with inexperienced human operators. For instance,
when teaching the robot how to play hockey the human might accidentally miss the puck, press
the wrong buttons on the joystick, or take convoluted paths towards the target. These imperfect
demonstrations are a problem because — when robots mimic suboptimal examples — they learn to
perform the task incorrectly (e.g., only hitting the puck occasionally).
To advance learning from humans we need robots that imitate what the user actually meant,

not just what the human showed. This is inherently challenging because the human is the teacher:
the robot infers its task based on behaviors the human demonstrates. If we acknowledge that
human teachers make mistakes, then how should the robot reason over their potentially incorrect
demonstrations in order to extract the intended task? Recent research attempts to resolve this
question by introducing additional human guidance [15, 21, 22, 24, 38, 39, 42–44, 47] and by
iteratively testing policies in the environment [6, 7, 9, 16, 23, 34, 40, 41, 46]. Within these prior
works the robot asks a human expert to label the quality of some or all of their demonstrations. If the
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Fig. 1. Learning from imperfect human demonstrations. (Left) The human teaches a robot arm to play air
hockey by showing examples of hitting the puck. (Right) The robot learns a control policy based on the
human’s data. Within the state-of-the-art, the robot trains its policy offline to exactly mimic the actions
demonstrated by the human — but this approach is fundamentally limited when human teachers make
mistakes (like missing the puck). Counter-BC tries to imitate what the humanmeant, not necessarily what the
human showed. More specifically, Counter-BC can modify the human’s demonstrations within counterfactual
sets in order to match underlying behaviors across the entire dataset. This leads to robots that reach simple,
consistent explanations of the human’s demonstrations, e.g., learning to hit the puck at every state.

robot knows which trajectories are proficient and which contain errors, then it can bias its learning
to mimic the high-quality examples while ignoring low-quality behaviors. Unfortunately, asking
people to watch and label demonstrations is time consuming and subjective — particularly for
large-scale datasets that contain thousands of examples collected across diverse scenarios [4, 20, 35].
This brings us back to the fundamental problem: given only a dataset of human examples, how
should the robot extract a control policy to autonomously complete the desired task?

In this work we propose a shift in perspective when learning from imperfect humans. Instead of
trying to determine how good or bad each individual human demonstration is, we recognize that
the human teacher has an underlying policy that all of their examples are trying to convey. The
human’s imperfect teaching obfuscates this policy — i.e., makes it seem more complex or variable
than it really is — by unintentionally adding noise and suboptimal actions into the dataset. To
recover what the human actually meant, we accordingly hypothesize that:

The robot learner should adjust the human teacher’s demonstrations
to reach a policy that simply and clearly explains their underlying trends.

Applying this hypothesis we introduce Counter-BC, a variant of behavior cloning that learns from
noisy and imperfect human teachers. Our offline imitation learning approach does not require
additional human labels or knowledge about the environment. Instead, Counter-BC automatically
expands the demonstrations to consider nearby actions. These counterfactual actions capture the



Counterfactual Behavior Cloning: Offline Imitation Learning from Imperfect Human Demonstrations 3

behaviors an imperfect human teacher might have been trying to show the robot. Returning to
our hockey example in Figure 1, if the human inputs a motion that hits the puck off-center, the
counterfactuals could include all actions within a radius Δ of that motion (including actions that
miss the puck or hit the puck’s center). Equipped with counterfactual actions, the robot can now
modify the human’s demonstrations (i.e., hypothesize that the human meant to show slightly
different actions) in order to reach a simple and consistent explanation of the given dataset. This
results in control policies that align with the underlying behaviors the human teacher intended to
convey, instead of trying to copy the noisy and suboptimal actions the human actually demonstrated.
For instance: a robot arm trained with Counter-BC learns to hit the puck at each iteration, even
though our given demonstrations occasionally missed that puck.

Overall, this work is a step towards robots that learn proficient policies from datasets provided
by everyday human teachers. We make the following contributions:
Generalizing Behavior Cloning.We analyze the loss function used to train the robot’s policy
in standard behavior cloning algorithms, and show why that loss is ill-posed when learning from
imperfect human data. To address this issue, we generalize the loss to include both counterfactual
actions that expand the human’s demonstrations and a classifier that determines which counterfac-
tual actions the robot learner should emulate. State-of-the-art approaches — including standard
behavior cloning — can be viewed as simplified instances of this more general loss.
Deriving Counter-BC. Given the generalized loss function, we next derive our Counter-BC
algorithm by selecting the counterfactuals and classifier. Our choices here cause the robot to learn
a control policy which simultaneously does two things: i) the learned policy minimizes entropy to
confidently output actions at each state, while ii) constraining those actions to remain close to the
behaviors demonstrated by the imperfect human. We provide implementation details and public
code for Counter-BC, and highlight that this offline imitation learning algorithm does not require
any additional information beyond the human’s demonstrations.
Finding Simple Explanations. A key feature of Counter-BC is the size of the counterfactual set.
Designers can tune this size along a continuous spectrum by adjusting its radius Δ. We theoretically
and empirically prove that increasing Δ (i.e., making the counterfactual sets larger) causes the robot
to learn simpler policies, but these policies may increasingly diverge from the behaviors the human
provided. When learning from expert users, we decrease Δ to closely mimic the demonstrated
actions; when learning from inexperienced users we increase Δ to extrapolate underlying patterns.
Testing with Synthetic Demonstrations. We compare Counter-BC to state-of-the-art baselines
across multiple environments. Within these tests we first collect synthetic human demonstrations
with controlled noise distributions (e.g., Gaussian, uniform). We then explore how effectively
Counter-BC and the baselines learn the desired task as we vary the noise within the human’s
demonstrations. In general, we find that Counter-BC outperforms existing methods regardless of
what type of noise or suboptimal actions the synthetic human provides.
Learning from Real Humans.We conclude by learning from actual human data across simulated
environments, standardized datasets, and an air hockey experiment. We again compare Counter-BC
to existing offline imitation learning methods, and study how proficiently the robot learns the
desired task based on examples from 𝑁 = 20 human demonstrators. Our results indicate that robots
which try to extrapolate what the human teacher meant (as opposed to copying or ignoring what
the human actually did) are able to learn more effective policies from real human data.

2 RELATEDWORK
Learning from noisy and imperfect human demonstrations is a core challenge for imitation learning
[3, 27, 45]. Humans inevitably make errors when they show robots how to perform tasks — if robots
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naively mimic these mistakes, they will learn to perform the tasks incorrectly. The emergence of
large-scale datasets for robot learning has made this issue increasingly important. To collect vast
amounts of data, systems such as [4, 20, 35] rely on multiple human teachers of varying skill and
proficiency. Given a heterogeneous dataset, how should the robot extract the correct behavior?
Improving Human Teaching. One approach is to help the human become a better teacher. By
giving the human offline guidance before they demonstrate the task, or real-time feedback during
their demonstration, the robot may improve the quality of the human’s examples [11, 17, 31].
For instance, the robot can indicate when the human’s current trajectory deviates from previous
behaviors. Related works have accordingly leveraged augmented reality [29], haptic interfaces [37],
physical markers [12], or computer screens [14] to assist the human teacher. Once demonstrations
are collected, the robot can also post-process the resulting data to filter out poor examples and
human errors [8, 18]. Overall, these works are complementary but orthogonal to our efforts: instead
of assisting the human, we will advance how the robot learns from a human-provided dataset.
A variety of learning algorithms have already been proposed for imperfect human demonstra-

tions. Below we divide this related research into three groups: methods that rely on environment
interactions, methods that rely on rankings, and methods that only consider the offline dataset.
Leveraging Environment Interactions. The first way in which robots can learn from noisy
demonstrations is by extracting a reward [6, 9, 34] or discriminator [7, 40, 41, 46] from those
demonstrations. The robot then interacts with the environment online (i.e., the robot arm attempts
to complete the task) using reinforcement learning algorithms [6, 9, 34] or adversarial networks
[7, 40, 41, 46]. Through these interactions the robot finds policies which maximize the reward,
or which the discriminator cannot distinguish from expert human examples. One advantage of
this paradigm is that — given ranked demonstrations — the robot can learn behaviors that are
better than the best human demonstrations [6, 9]. But the downside is that this approach is online,
and requires access to the environment dynamics through simulations or real-world rollouts. For
practical implementation, we instead focus on imitation learning algorithms which are purely
offline, and do not require any environment interactions during training.
Leveraging Supervised Labels. Some research achieves offline imitation learning from imperfect
demonstrations by labeling (or scoring) the dataset. These labels reflect the relative quality of an
example: e.g., a trajectory that goes precisely to the goal might be labeled as an “expert” demonstra-
tion and given a high score, while a trajectory that overshoots the goal could be labeled as “novice”
and given a low score. Based on this labeled dataset, the robot learns a policy offline which aligns
with high-quality demonstrations while down-weighting or ignoring low-quality inputs. The key
challenge here is how to label the dataset; i.e., how to discern expert and novice demonstrations.
When the robot has access to its reward function, this process is straightforward [16, 23]; trajecto-
ries with higher rewards are higher quality. More generally, recent works focus on settings where
a portion of the dataset is labeled, and the rest is unlabeled [15, 21, 22, 24, 38, 39, 42–44, 47]. The
exact way that the labels are collected can vary. For instance, in [38] it is assumed that a human has
marked some subset of the data as “expert.” Alternatively, in [22] the human indicates the relative
quality of a few demonstrations along a continuous or discrete scale. Regardless of how the labels
are obtained, these works leverage the known labels to autonomously determine the quality of
the remainder of the (unlabeled) dataset, and then train a policy to align with the high-quality
examples. Of course, the downside to this framework is that labeling the demonstrations takes time
and effort; a human expert must watch multiple demonstrations to grade their relative quality. We
therefore seek a method which does not require any additional human inputs, rankings, or labels.
Leveraging Only Human Demonstrations. Most related to our proposed approach are methods
that learn a policy given only the human’s noisy and imperfect demonstrations. These methods
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do not assume access to environment interactions or supervised labels; instead, they seek to
extrapolate what the human meant based only on trends in the human’s data. In [30] the authors
modify behavior cloning so that the robot’s learned policy concentrates on the modes of the
human’s demonstrations. Put another way, the robot learns to consistently mimic the behaviors
which are most common in the dataset. When these modes are correct, the robot learns the desired
task — but if the majority of the dataset is not expert behavior, [30] falls short. Similarly, [2] assumes
that human demonstrations are high-quality when those demonstrations output a consistent action
at a given state, and low-quality when the demonstrated actions have high variance. We will
experimentally compare our proposed algorithm to both of these state-of-the-art baselines. In
general, the key difference between our method and [30] or [2] is that we enable the robot to
incorporate counterfactuals (i.e., actions that the imperfect human could have intended, but did not
actually demonstrate) to build a control policy that consistently explains the data. We note that [33]
also uses counterfactuals, but applies them in settings where the robot has access to expert labels.

3 PROBLEM FORMULATION
We consider scenarios where a robot is learning a new task from one or more human teachers.
Offline, the human teacher(s) provide examples of how the robot should complete the desired task.
Because humans are noisy and imperfect, their demonstrations will inevitably contain mistakes
(i.e., suboptimal actions that they do not want the robot to imitate). The robot’s goal is to learn
how to perform the task correctly, despite imperfect or suboptimal examples in the dataset.

Robot. Let 𝑠 ∈ S be the system state and let 𝑎 ∈ A be the robot’s action. For instance, within our
motivating example 𝑠 contains the robot’s joint position, end-effector pose, and an image of the
hockey table; the action 𝑎 is the robot’s joint velocity. The robot’s actions cause the system state to
transition according its dynamics. We do not assume access to these environment dynamics. Put
another way, when the robot arm moves to hit the hockey puck, the robot cannot explicitly model
or simulate of how the puck will respond to its actions.

Human. The human has in mind a task they want the robot to learn. To teach the robot, the
human demonstrates how to complete that task. Prior works have established multiple forms of
demonstration: the human might kinesthetically guide the robot through the desired motion [1],
teleoperate the robot along a trajectory [26], or employ graphical user interfaces, augmented reality,
or natural language inputs to indicate the correct action at various states [10]. Regardless of how
they are collected, the human’s demonstrations result in a datasetD of examples.Within this dataset
the human teacher labels each system state 𝑠 with an action 𝑎, such thatD = {(𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)}
is a collection of 𝑛 state-action pairs. In our experiments we will focus on offline datasets (i.e.,
datasets collected prior to robot learning), but our approach also applies to settings where the
human shows new state-action pairs online as the robot attempts to complete its task [32].

It is inevitable that the human will make mistakes when giving demonstrations. These mistakes
may occur because the task is hard to perform, because the human is distracted or moving quickly, or
because it is challenging to perfectly orchestrate the motion of a dexterous robot arm [5, 11, 25, 31].
To formulate teaching errors we define 𝑎∗ as the ideal action the human meant to show the robot. If
the human acted perfectly, they would have provided an ideal dataset D∗ = {(𝑠1, 𝑎∗1), . . . , (𝑠𝑛, 𝑎∗𝑛)}.
In practice, however, the noisy human actually demonstrates suboptimal actions 𝑎:

𝑎 = 𝑎∗ + 𝜖, 𝜖 ∼ 𝑃 (· | 𝑠) (1)

where 𝜖 is the error between the ideal action 𝑎∗ and the actual action 𝑎. At each state in the collected
dataset D this action error is sampled from some unknown distribution 𝑃 (𝜖 | 𝑠).
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Policy. Despite the noise inherent in the human’s examples, the robot’s objective is to learn a
control policy that autonomously completes the demonstrated task. This control policy is a mapping
from observed states 𝑠 to robot actions 𝑎:

𝑎 ∼ 𝜋𝜃 (· | 𝑠) (2)

We instantiate the control policy 𝜋 as a model (e.g., a neural network) parameterized by weights
𝜃 ∈ Θ. In practice, there are three different control policies that our formulation must consider: i)
the ideal policy 𝜋∗ that the human is trying to convey to the robot, ii) the noisy and imperfect policy
𝜋 that the human actually follows when providing demonstrations, and iii) the robot’s learned
policy 𝜋𝜃 . Ideal actions 𝑎∗ and the ideal dataset D∗ are sampled from the ideal policy 𝜋∗, while
the demonstrated actions 𝑎 = 𝑎∗ + 𝜖 and the collected dataset D are sampled from the imperfect
policy 𝜋 . We emphasize that the robot does not know either 𝜋∗ or 𝜋 . Instead, based on the dataset
D induced by 𝜋 , the robot seeks to learn a control policy 𝜋𝜃 that matches the ideal policy 𝜋∗.

Behavior Cloning. Recent works have found that methods founded on behavior cloning are a
promising way to learn 𝜋𝜃 from suboptimal demonstrations [13, 27, 28, 30]. To better understand
these baselines — and set the stage for our own approach — we here derive the loss function used
to train the robot’s policy in behavior cloning algorithms. Intuitively, the robot seeks to learn 𝜃
such that its control policy 𝜋𝜃 matches the expert policy 𝜋∗. We can measure the distance between
distribution 𝜋𝜃 and distribution 𝜋∗ using Kullback–Leibler (KL) divergence. Applying KL divergence
to conditional probabilities, we reach:

𝐷𝐾𝐿 (𝜋∗, 𝜋𝜃 ) = 𝐶 −
∫
𝑠∈S

∫
𝑎∈A

[
𝜌∗ (𝑠)𝜋∗ (𝑎 | 𝑠) log𝜋𝜃 (𝑎 | 𝑠)

]
(3)

= 𝐶 − E𝑠∼𝜌∗ ( ·),𝑎∗∼𝜋∗ ( · |𝑠 )
[
log𝜋𝜃 (𝑎∗ | 𝑠)

]
(4)

where 𝐶 is a constant term that does not depend on 𝜃 , and 𝜌∗ (𝑠) is the distribution over states
induced by the expert policy 𝜋∗ (𝑎 | 𝑠). Accordingly, to reduce the error between 𝜋𝜃 and 𝜋∗ the
robot should update 𝜃 to minimize the right side of Equation (4). This leads to the loss function:

L(𝜃 ) = E𝑠∼𝜌∗ ( ·),𝑎∗∼𝜋∗ ( · |𝑠 )
[
− log𝜋𝜃 (𝑎∗ | 𝑠)

]
(5)

Approximating this expectation by sampling from the expert policy, Equation (5) becomes:

L(𝜃 ) ∝
∑︁

(𝑠,𝑎∗ ) ∈D∗

[
− log𝜋𝜃 (𝑎∗ | 𝑠)

]
(6)

which forms the standard loss function for behavior cloning algorithms [3, 19, 30] Training the
model weights 𝜃 to minimize the loss in Equation (6) corresponds to learning a control policy 𝜋𝜃
that matches the expert policy 𝜋∗ across states in the dataset.

Unfortunately, this standard behavior cloning loss has a significant issue when applied to noisy
and imperfect data. Based on the derivation in Equation (6), to learn the intended policy the robot
should reason over the ideal datasetD∗. But in reality the robot does not have access toD∗. Instead,
humans provideD — a dataset with noisy, imperfect, and suboptimal examples. One naive solution
is just to replace D∗ with D in Equation (6) and then train the robot’s policy (we test this baseline
in our experiments). However, doing so means that our robot is being trained to imitate incorrect
human examples as opposed to the desired behaviors. We must therefore develop an approach that
modifies Equation (6) to extrapolate from the noisy human demonstrations in dataset D.
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4 COUNTERFACTUAL BEHAVIOR CLONING
In this section we present counterfactual behavior cloning (Counter-BC), a modification of behavior
cloning designed to learn from noisy and imperfect human demonstrations. Our core hypothesis is
that human teachers have in mind an underlying control policy they are trying to convey, and the
noise in their demonstrations obfuscates this control policy by introducing additional variation and
complexity. As such, robot learners should reason over the human’s demonstrations — and even
modify those demonstrations — in order to reach a simple explanation of the given data. Counter-BC
achieves this by expanding the demonstrations to include counterfactual actions: i.e., actions that
the suboptimal human did not actually demonstrate, but may have intended to show the system.
The robot learns a policy that minimizes entropy over these counterfactual actions; this policy is a
simple explanation because the learned function is confident about what action to take at each state
in the dataset (preventing the robot from overfitting to the variability and complexity introduced
by the human’s noisy behavior). In Section 4.1 we expand the standard behavior cloning loss to
now account for counterfactual actions, and explain how this generalizes methods from prior work.
Next, in Section 4.2 we derive the key terms of the new loss function, and show how the resulting
policy selects counterfactuals that lead to minimal entropy. Finally, in Section 4.3 we outline the
Counter-BC algorithm and practical implementation details.

4.1 Generalizing the Loss with Counterfactuals
Human teachers inevitably provide imperfect and suboptimal demonstrations. In Equation (1) we
formulated the impact of those demonstrations: instead of showing actions 𝑎∗ (sampled from the
ideal policy 𝜋∗), everyday users input actions 𝑎 (sampled from their suboptimal policy 𝜋 ). Put
another way, at each (𝑠, 𝑎) pair in the datasetD the human may have actually meant to show some
other behavior. Our proposed method captures these alternative actions through counterfactual sets.
Given a state-action pair, let 𝑎′ ∈ C(𝑠, 𝑎) be the set of counterfactual actions that the human could
have intended to demonstrate. By leveraging counterfactual sets C we can expand the standard
behavior cloning loss from Equation (6) into a more general form:

L(𝜃 ) ∝
∑︁
(𝑠,𝑎) ∈D

∑︁
𝑎′∈C(𝑠,𝑎)

[
− 𝑅(𝑠, 𝑎′) · log𝜋𝜃 (𝑎′ | 𝑠)

]
(7)

Here C iterates through the actions the human might have wanted to show, and 𝑅(𝑠, 𝑎) ∈ [0, 1]
classifies these hypothetical actions along a continuous spectrum from expert (𝑅 → 1) to non-expert
(𝑅 → 0). Equation (7) reduces to Equation (6) when: i) the counterfactuals include the ideal action
𝑎∗ ∈ C(𝑠, 𝑎) at each state, and ii) 𝑅(𝑠, 𝑎) = 1 for 𝑎 = 𝑎∗, and 𝑅(𝑠, 𝑎) = 0 otherwise. Introducing
counterfactual actions is a shift in the robot’s perspective: instead of strictly learning to match the
behaviors in D demonstrated by the imperfect human teacher, now the robot can learn to mimic
actions in C(𝑠, 𝑎) which the human never actually showed.

We highlight that the loss functions used by related works can also be viewed as simplifications
of Equation (7). As summarized below, we reach these simplifications by making different choices
for the counterfactual sets C or the classifier 𝑅 in Equation (7):
• Behavior cloning [19]: C(𝑠, 𝑎) = {𝑎}, 𝑅(𝑠, 𝑎) = 1 for all states.
• Advantage-filtered behavior cloning [16, 23]: C(𝑠, 𝑎) = {𝑎}, 𝑅(𝑠, 𝑎) is based on the
advantage function or value associated with each state-action pair.
• Discriminator-weighted behavior cloning [42]: C(𝑠, 𝑎) = {𝑎}, 𝑅(𝑠, 𝑎) is a discriminator
that assigns 𝑅(𝑠, 𝑎) → 1 to expert behavior and 𝑅(𝑠, 𝑎) → 0 to novice behavior.
• ILEED [2]: C(𝑠, 𝑎) = {𝑎}, 𝑅(𝑠, 𝑎) is the expertise level of the current human teacher where
𝑅(𝑠, 𝑎) → 1 when the human is an expert at the current state.
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• Sasaki and Yamashina [30]: C(𝑠, 𝑎) = {𝑎}, 𝑅(𝑠, 𝑎) = 𝜋𝑝𝑟𝑒𝑣 (𝑎 | 𝑠) is the learned control
policy from the previous training iteration.

One trend we observe is that — across each of these state-of-the-art methods — the robot always
sets C(𝑠, 𝑎) = {𝑎}. This means that no actions besides the ones demonstrated by the human teacher
can be explicitly treated as “expert” behavior (i.e., the robot does not reason over counterfactuals).
As we will show, using counterfactuals is a fundamental change that enables the robot to interpret
and explain the human’s demonstrations in ways not available when the system is constrained to
only imitating (𝑅 → 1) or ignoring (𝑅 → 0) the behaviors provided by the human teacher.

4.2 Learning Policies that Consistently Explain the Counterfactuals
Given the generalized loss in Equation (7), our next steps are to select the counterfactual set C
and classifier 𝑅 used by our algorithm. Our choices of C and 𝑅 should enable the robot learner to
reason over the counterfactuals and reach a simple explanation of the underlying control policy.

Counterfactual Set. The counterfactual set accounts for noise and error in the human’s demon-
strations by considering alternative actions that are close to the human’s actual behavior. For each
(𝑠, 𝑎) ∈ D, let C(𝑠, 𝑎) contain all actions within a radius Δ of the demonstrated 𝑎:

C(𝑠, 𝑎) = {𝑎′ | ∥𝑎 − 𝑎′∥ − Δ ≤ 0} (8)

The radius Δ ≥ 0 in Equation (8) is a hyperparameter specified by the designer. If the robot is
learning from an expert human teacher, the designer should set Δ→ 0 since it is likely that the
ideal action 𝑎∗ is close to the expert’s demonstrated action 𝑎 (i.e., the robot learner should trust
the expert’s examples). By contrast — if the robot is learning from a novice teacher — the designer
should increase Δ→ 2𝑎𝑚𝑎𝑥 , where 𝑎𝑚𝑎𝑥 is the magnitude of the largest action. Increasing Δ enables
the robot to treat an larger range of actions as if they were the human’s intended behavior (i.e.,
although the human showed 𝑎, the robot thinks the human meant 𝑎′).

Classifier. The classifier 𝑅 : S × A → [0, 1] determines which actions the control policy should
emulate. Given a proposed counterfactual 𝑎′, increasing 𝑅(𝑠, 𝑎′) indicates that 𝑎′ is likely the
intended human action. Interesting, we have already introduced a term that operates similarly to
𝑅(𝑠, 𝑎): the control policy 𝜋𝜃 (𝑎 | 𝑠) estimates the likelihood that a given action is part of the desired
policy at state 𝑠 . Recognizing this alignment, we define the classifier as a restriction of probability
distribution 𝜋𝜃 with support over the counterfactual set:

𝑅(𝑠, 𝑎) = 𝜋𝜃 (𝑎 | 𝑠), 𝜋𝜃 (𝑎 | 𝑠) =
𝜋𝜃 (𝑎 | 𝑠)∑

𝑎′∈C(𝑠,𝑎) 𝜋𝜃 (𝑎′ | 𝑠)
(9)

Because the normalizer of 𝜋𝜃 considers only the counterfactual set C, by definition 𝜋𝜃 is a probability
distribution that sums to one across the counterfactuals. Put another way, 𝑅(𝑠, 𝑎′) in Equation (9)
expresses the probability that counterfactual 𝑎′ is really the action 𝑎∗ the human teacher meant
to demonstrate. For instance: in the special case where C(𝑠, 𝑎) = {𝑎} and the robot does not
consider counterfactuals, then 𝑅(𝑠, 𝑎) = 1 and the robot is confident that the demonstrated action
𝑎 is the intended action 𝑎∗. In what follows we will prove that this choice for classifier 𝑅 (when
combined with counterfactual sets C) biases the robot learner towards policies that provide simple
explanations for the human’s noisy demonstrations.

Counter-BC Loss. To derive the loss function for Counter-BCwe plug Equation (8) and Equation (9)
back into Equation (7). Starting with our given choices of the counterfactual set and classifier, and
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Fig. 2. Visualizing the loss in Equation (13) for a single state. Here the actions are two dimensional (i.e., in an
𝑥-𝑦 plane), and the demonstrated human action is at the origin. The counterfactual set lies within the dashed
white circle (Δ = 0.5). We show the probability distribution over actions for four different policies 𝜋𝜃 (𝑎 | 𝑠),
where lighter regions indicate that the action is more likely. (Far Left) The maximum loss occurs when the
policy confidently predicts an action outside the counterfactual. (Far Right) The minimum loss occurs when
policy confidently predicts an action inside the counterfactual. Note that the predicted action does not need
to be the demonstrated action; specifying any action within C(𝑠, 𝑎) can minimize the proposed loss.

then manipulating the terms, we eventually reach the cross entropy between 𝜋𝜃 and 𝜋𝜃 :

𝐿(𝜃 ) ∝
∑︁
(𝑠,𝑎) ∈D

∑︁
𝑎′∈C(𝑠,𝑎)

[
− 𝜋𝜃 (𝑎′ | 𝑠) · log𝜋𝜃 (𝑎′ | 𝑠)

]
(10)

=
∑︁
(𝑠,𝑎) ∈D

∑︁
𝑎′∈C(𝑠,𝑎)

[
− 𝜋𝜃 (𝑎′ | 𝑠) · log

𝜋𝜃 (𝑎′ | 𝑠) · 𝜋𝜃 (𝑎′ | 𝑠)
𝜋𝜃 (𝑎′ | 𝑠)

]
(11)

=
∑︁
(𝑠,𝑎) ∈D

∑︁
𝑎′∈C(𝑠,𝑎)

[
− 𝜋𝜃 (𝑎′ | 𝑠) · log𝜋𝜃 (𝑎′ | 𝑠) + 𝜋𝜃 (𝑎′ | 𝑠) · log

𝜋𝜃 (𝑎′ | 𝑠)
𝜋𝜃 (𝑎′ | 𝑠)

]
(12)

=
∑︁
(𝑠,𝑎) ∈D

𝐻

(
𝜋𝜃 | 𝑠, C(𝑠, 𝑎)

)
+ 𝐷𝐾𝐿

(
𝜋𝜃 , 𝜋𝜃 | 𝑠, C(𝑠, 𝑎)

)
(13)

Here𝐻 is the conditional entropy over the restricted policy’s actions given state 𝑠 and counterfactual
set C, and 𝐷𝐾𝐿 is the KL divergence between 𝜋𝜃 and 𝜋𝜃 given state 𝑠 and counterfactual set C. In
practice, minimizing Equation (13) does two things. The first term drives our restricted policy 𝜋𝜃 to
have low entropy over the counterfactual set. The second term forces the robot’s full policy 𝜋 to
match the restricted policy 𝜋𝜃 . Putting these terms together means that the robot will learn a policy
𝜋𝜃 that confidently outputs actions (i.e., minimizes entropy), while constraining those actions to be
close to the behaviors demonstrated by the imperfect human.

To better visualize this loss function we provide an example in Figure 2. The loss is highest when
the policy 𝜋𝜃 confidently predicts an action outside of the counterfactual set (far left). Conversely,
the loss is lowest when 𝜋𝜃 confidently predicts an action within C(𝑠, 𝑎) (far right).
Intuition.Why is this loss function a good choice when learning from imperfect and noisy human
demonstrations? Viewed at a single state 𝑠 , minimizing Equation (13) results in a robot policy
𝜋𝜃 (𝑎 | 𝑠) that stochastically outputs an action 𝑎 ∈ C(𝑠, 𝑎). Viewed across the entire dataset D
of state-action pairs, minimizing Equation (13) searches for a function that can confidentially
output actions in C at each individual state. This policy seeks to explain the human’s data, and
can modify the expert actions (i.e., change the selected counterfactual) in order to reach a more
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Fig. 3. Recovering the underlying function with Counter-BC. In a 1-dimensional environment the simulated
human noisily demonstrates the absolute value function 𝑎 = |𝑠 | −0.5+𝜖 , where 𝜖 ∼ U(−0.5, +0.5). We plot the
robot’s learned policy averaged across 50 runs; shaded regions show the standard deviation. With behavior
cloning (BC) the robot tries to precisely match the noisy data, resulting in a more complex explanation of
the human’s demonstrations. (From left to right) Counter-BC with different values of hyperparameter Δ.
Increasing Δ causes Counter-BC to recover increasingly simple explanations of the data by reasoning over
larger counterfactual sets, but the resulting policies may diverge from the human’s examples.

efficient explanation of the dataset. Overall, the design of Equation (13) formalizes our hypothesis
that there is an underlying function behind the human’s behaviors, and the robot may need to
tweak the dataset in order to remove suboptimal actions and recover that intended function.
In Figure 3 we show an instance of using the Counter-BC loss to recover the underlying task

— here a simulated human is demonstrating the absolute value function. Within this example we
also highlight how tuning Δ affects the recovered policy. In general: increasing Δ means the robot
will recover a simpler function, but this function may increasingly diverge from the dataset. When
hyperparameter Δ→ 0 then C(𝑠, 𝑎) = {𝑎} and minimizing Equation (13) is equivalent to standard
behavior cloning. Hence, as Δ→ 0 the robot learns a policy that is sufficiency complex to match
the given state-action pairs as precisely as possible. At the other extreme, when Δ→ 2𝑎𝑚𝑎𝑥 the
counterfactual set is equal to the entire action set C(𝑠, 𝑎) = A. This in turn means that 𝜋𝜃 = 𝜋𝜃 in
Equation (9), and Equation (10) becomes the conditional entropy of 𝜋𝜃 (𝑎 | 𝑠). Robots can minimize
this conditional entropy with any deterministic function that outputs a consistent action at each
state — for example, simply outputting a line in Figure 3. Accordingly, as Δ→ 2𝑎𝑚𝑎𝑥 the robot can
fit the provided dataset with increasingly simplistic but inaccurate policies.

4.3 Implementation
Equipped with our understanding of the loss function we are now ready to present Counter-BC
(see Algorithm 1). Counter-BC is an offline imitation learning approach that inputs a dataset of
state-action pairs D and the designer-specified hyperparameter Δ. During training Counter-BC
learns a control policy with parameters 𝜃 to minimize Equation (10): this training phase does not
require any human labels or environment interactions. Code for implementing Counter-BC is
located here: https://github.com/VT-Collab/Counter-BC
In the experiments reported below we instantiate 𝜋𝜃 as a Gaussian policy with independent

covariance. This policy is constructed from a fully connected neural network with two hidden layers
and ReLU(·) activation functions. Actions are sampled from the policy using the reparameterization
trick. To train the policy network we employ an Adam optimizer; unless otherwise stated, the
hidden layers are of size 256 and the learning rate is 1𝑒−3.

5 SIMULATIONS
In this section we compare Counter-BC to state-of-the-art alternatives in simulated environments.
Actual participants and synthetic users provide demonstrations within each environment, and
we leverage behavior cloning variants to try and recover the intended task from these imperfect

https://github.com/VT-Collab/Counter-BC
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Algorithm 1 Counterfactual Behavior Cloning (Counter-BC)
1: Input dataset D = {(𝑠1, 𝑎1), . . . , (𝑠𝑛, 𝑎𝑛)}
2: Initialize control policy 𝜋𝜃 (𝑎 | 𝑠) with weights 𝜃
3: Specify the radius Δ ≥ 0 used for sampling counterfactual actions
4: Sample counterfactual actions 𝑎′ ∈ C(𝑠, 𝑎) for each (𝑠, 𝑎) ∈ D ⊲ Equation (8)
5: for epoch ∈ 1, 2, . . . , 𝐾 do
6: L(𝜃 ) ← 0 ⊲ Initialize loss
7: for (𝑠, 𝑎) ∈ D do
8: log𝜋𝜃 ←

[
log𝜋𝜃 (𝑎′ | 𝑠) for each 𝑎′ ∈ C(𝑠, 𝑎)

]
⊲ Compute vector of length |𝐶 (𝑠, 𝑎) |

9: 𝜋𝜃 ← softmax(log𝜋𝜃 ) ⊲ Equation (9)
10: L(𝜃 ) ← L(𝜃 ) − 𝜋𝜃 · log𝜋𝜃 ⊲ Equation (10) with dot product between vectors
11: end for
12: 𝜃 ← 𝜃 − 𝛼∇𝜃L(𝜃 ) ⊲ Update model weights to minimize loss
13: end for
14: Return trained control policy 𝜋𝜃 (𝑎 | 𝑠)

datasets. Our simulations explore i) how different types of noise and suboptimality affect the
learner’s performance, ii) how the learner’s behavior changes as the amount of data varies, iii) how
the level of noise in the human’s demonstrations impacts the learner, and finally iv) how adjusting
hyperparameter Δ alters results with Counter-BC.
Environments. We selected four different environments to perform our simulations: Intersection,
Cartpole, Car Racing, and Robomimic. Images of the environments are shown in Figure 4. Overall,
these environments and tasks span different levels of complexity — from balancing a one-DoF
inverted pendulum, to driving a vehicle based on RGB images, to controlling a robot arm that
grasps and manipulates objects. In order to collect real human demonstrations, we needed to choose
environments where humans can actually control the ego agent (i.e., teleoperate the robot). We
also tried to pick environments that were consistent with related works, and leveraged existing
datasets for learning from imperfect humans. Below we briefly summarize each environment.
Intersection. A multi-agent driving task from [28]. Two cars are crossing an intersection: the
ego agent (which is controlled by a simulated or real human) and another agent (which is fully
automated, and updates its motion in response to the ego agent). Both vehicles are attempting to
reach their respective goals on the opposite side of the intersection while avoiding collisions with
one another. The state 𝑠 ∈ R4 includes the 𝑥-𝑦 position of both cars, and the action 𝑎 ∈ R2 updates
the position of the ego agent. The performance of the robot learner is measured by its total reward
across an interaction; this reward is the negative of Equation (12) in [28].
Cartpole. A standard environment for robot learning [36]. The state 𝑠 ∈ R4 captures the pose of
a cart and attached pendulum, and actions 𝑎 ∈ R1 move the cart left or right along a continuous
action space in order to balance the inverted pendulum. The robot’s performance is measured by
the number of timesteps the agent can keep the pendulum from falling over (up to a maximum of
200 timesteps). Related papers on learning from noisy human demonstrations have leveraged this
environment or similar variations of the inverted pendulum problem [9, 33, 34, 43, 47].
Car Racing. A single-agent driving along a randomly generated road [36]. Unlike our other envi-
ronments — where the robot has direct access to the system pose — here the state 𝑠 is a 96 × 96
RGB image of the scene. The learner must map this visual input to continuous actions 𝑎 ∈ R3 that
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steer, accelerate, and brake. Humans provide demonstrations where they try to quickly advance
while keeping the car on the road; the learner’s performance is measured by the distance traveled.
Robomimic. An existing dataset for learning robot manipulation tasks from real human demon-
strations [27]. The dataset includes multiple tasks: we implement the Can task and Multi-Human
dataset. In this task a FrankaEmika robot arm reaches to grasp a cylindrical can, carry it, and then
drop it in the appropriate bin. The system state 𝑠 ∈ R23 includes the robot’s pose, the can’s pose,
and the can’s pose relative to the robot arm. Actions 𝑎 ∈ R7 move the robot’s end-effector and
actuate its gripper. The multi-human dataset includes 300 Can demonstrations collected from six
different humans: two “better” operators, two “okay” operators, and two “worse” operators. Similar
to [2, 22, 44], we directly leverage this existing multi-human dataset; no additional or synthetic
demonstrations are collected for this environment. Performance is measured by the percentage of
trials where the robot learner successfully completes the entire manipulation task.
Human Demonstrations. In Intersection, Cartpole, and Car Racing environments we collected real
and synthetic human demonstrations. Within the synthetic demonstrations we injected different
types of controlled noise or suboptimal behaviors. A list of demonstrators is provided below:
• Real Humans.We recruited 𝑁 = 20 in-person participants (3 female, average age 24 ± 4

years) to teleoperate the ego agent. Participants provided informedwritten consent following
university guidelines (IRB #23-1237). After practicing the tasks for up to five minutes, users
provided demonstrations to convey the desired behavior in each environment.
• Uniform. Synthetic humans demonstrated the task by sampling actions according to
Equation (1), where 𝑎∗ is the optimal action that maximizes task performance and 𝑃 is
a uniform distribution: 𝜖 ∼ U(−𝜎, 𝜎). Intuitively, these simulated human teachers had
uniform noise added to their demonstrations.
• Gaussian. Synthetic humans sampled actions according to Equation (1), where 𝑎∗ is the
optimal action and 𝑃 is an unbiased Gaussian distribution: 𝜖 ∼ N(0, 𝜎2).
• Random. With probability 1 − 𝜎 the demonstrator provides the optimal action so that
𝑎 = 𝑎∗. Otherwise the synthetic human injects uniform noise: 𝜖 ∼ U(−𝜎, 𝜎).

We emphasize that collecting actual human data is critical since the purpose of our approach is to
learn from humans; synthetic data may never capture the types of mistakes that real users make. At
the same time, testing with synthetic data is theoretically useful because it provides evidence about
which noise distributions are most advantageous or challenging for each method.
Learning Algorithms. Given a dataset D of state-action pairs provided by the real or synthetic
human, the robot used offline imitation learning to train a policy 𝜋𝜃 . We compared policies learned
with Counter-BC (Algorithm 1) to three state-of-the-art baselines for learning from noisy humans.

• BC [19]: Standard behavior cloning. The robot trains a Gaussian policy to try and exactly
match the actions demonstrated by the human teacher.
• ILEED [2]: A behavior cloning variant that estimates the expertise of multiple teachers at

different states. This approach is not directly applicable to our setting, since we do not know
which datapoints belong to which human teacher. We therefore modify [2] to train the
expertise level 𝜌𝜙 (𝑠) → [0, 1] purely as a function of the state. This corresponds to a learner
that sets 𝑅(𝑠, 𝑎) = 𝜌𝜙 (𝑠) and determines the states where it should trust the demonstrated
behavior, and the states where it should ignore the human’s actions.
• Sasaki [30]: A behavior cloning variant that shifts the learned policy towards the mode of
the distribution. For this approach we set 𝑅(𝑠, 𝑎) = 𝜋𝑝𝑟𝑒𝑣 (𝑎 | 𝑠), the policy trained at the
previous iteration. In practice Sasaki learns to emulate the human’s actions at states where
the demonstrations are consistent, and ignores the human’s actions with high variability.
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Fig. 4. Learning from real and simulated humans (see Sections 5.1 and 5.2). Every column shows a different
environment, and the rows correspond to demonstrations from real humans, or synthetic operators with
uniform, Gaussian, and random noise. Plots illustrate the performance of the policy learned by each algorithm
as a function of the number of demonstrated state-action pairs (higher reward or success is better). For
Robomimic we tested the Can task with standardized demonstrations from the Multi-Human dataset [27].
Results are averaged across 50 runs; shaded regions show standard error.

Note that we did not include offline reinforcement learning algorithms since the robot learner
does not have access to the task reward, and thus these methods cannot be applied to our setting.
In our implementation Counter-BC and the baselines are instantiated as Gaussian policies with
two hidden layers of the same size. The learning rate, batch size, and number of epochs are held
constant across all methods to mitigate against biased results.

5.1 How Does Counter-BC Perform with Different Types of Imperfect Demonstrations?
The results of our first simulation are shown in Figure 4. Each row of this figure corresponds to a
different type of human demonstrator: actual participants, and then synthetic teachers with uniform,
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Fig. 5. Learning from increasingly noisy demonstrations (see Section 5.3). To regulate the amount of noise,
we simulated a human teacher. This teacher selected actions 𝑎 = 𝑎∗ + 𝜖 , where 𝑎∗ is the optimal action and
𝜖 ∼ U(−𝜎, 𝜎) is uniform noise. Increasing 𝜎 led to more noisy, imperfect, and suboptimal human teaching.
The policies learned by each algorithm degrade as 𝜎 increases, but Counter-BC is more robust than the
baselines. Results are averaged across 50 runs with demonstrations containing 400 state-action pairs.

Gaussian, or random noise. For the Robomimic environment we only collect data from real humans
by leveraging the standardized dataset in [27]. In general, we observe thatCounter-BC learns more
proficient policies than the baselines. We particularly highlight the performance of Counter-BC
in the Car Racing environment — where the control policies are based on image observations, and
not direct state measurements — as well as the performance across environments with real human
demonstrations. By contrast, the one type of imperfect demonstration where Counter-BC does
not consistently reach the highest reward is random noise; here Sasaki occasionally outperforms
Counter-BC. This result makes sense because Sasaki is designed to work with random noise.
More specifically, Sasaki trains the policy so that it is better aligned with the human teacher’s most
common actions — and when our simulated humans have random noise, their most common action
is the optimal action 𝑎∗. For all other types of imperfect demonstrations we find Counter-BC leads
to improved performance. Taken together, this suggests that Counter-BC learns the intended task
despite controlled noise or uncontrolled errors in the human’s demonstrations.

5.2 How Does Counter-BC Perform with an Increasing Number of Demonstrations?
Within Figure 4 we also measure how the performance of each algorithm changes with varying
amounts of human data. The number of demonstrated state-action pairs is shown along the 𝑥-axis
of each individual plot. Intuitively, we would expect the system to perform better when given
more examples: the more times the human shows the robot how to act, the more proficiently it
should behave during rollouts. Our results affirm this intuition. Additionally, we see that Counter-
BC outperforms the alternatives across different levels of demonstrations. This indicates that
Counter-BC is not limited to scenarios where robots only have access to small amounts of data —
Counter-BC can be more generally applied to large or small datasets.

5.3 How Does Counter-BC Perform with Varying Levels of Noise?
So far we have varied the type of human teacher and the amount of data; next, we adjust the
level of noise within the human’s examples. Figure 5 corresponds to a setting where the robot is
learning from increasingly suboptimal and imperfect demonstrations. When 𝜎 = 0 the synthetic
human teacher perfectly demonstrates the task with optimal actions 𝑎∗, and as 𝜎 increases the
human deviates from the optimal actions with uniform noise 𝜖 ∼ U(−𝜎, 𝜎). Within the Intersection,
Cartpole, and Car Racing environments the maximum magnitude of an action dimension is 1; hence,
𝜎 = 1 means that the size of the noise matches or exceeds the size of the optimal actions. We find
that — relative to the baselines — Counter-BC is increasingly robust as 𝜎 grows and the synthetic
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Fig. 6. Learning from demonstrations while varying hyperparameter Δ (see Section 5.4). Note that the
hyperparameter Δ only applies to Counter-BC. Consistent with our theoretical analysis from Section 4.2,
when Δ = 0 then Counter-BC is equivalent to BC. Increasing Δ enlarges the counterfactual sets and leads
to simpler explanations of the human’s demonstrations. Once Δ is increased too much, the robot begins
to oversimplify the underlying human policy, resulting in degraded performance. Shaded regions show
the standard error across 50 end-to-end runs with demonstrations that have 400 state-action pairs. These
demonstrations were collected from 𝑁 = 20 in-person participants.

human’s demonstrations become more noisy and suboptimal. When the human’s demonstrations
have no noise (𝜎 → 0) then each method is roughly equivalent. But as the size of the noise increases
(𝜎 → 1) we see the advantages of Counter-BC in reasoning over counterfactual actions, searching
for simple policy explanations, and extrapolating the underlying task.

5.4 How Does Adjusting Hyperparameter Δ Affect Counter-BC?
We conclude our simulations by testing the effect of hyperparameter Δ on Counter-BC. In Sec-
tion 4.2 and Figure 3 we theoretically showed that Δ→ 0 causes the robot to exactly imitate all of
the human’s actions, reducing Counter-BC to standard BC. Conversely, as Δ increases the robot
should learn simpler functions by imitating actions close to (but not the same as) the behaviors
actually demonstrated by the human teacher, resulting in learning capabilities beyond the current
state-of-the-art. In Figure 6 we put this theory to the test with real human data. For datasets from
𝑁 = 20 participants in Intersection, Cartpole, and Car Racing, we learn robot policies while adjusting
the value of Δ. As expected, when Δ = 0 the performance of Counter-BC equals the behavior of
BC. Increasing Δ enables Counter-BC to expand the human’s demonstrations and extrapolate
underlying functions, improving performance of the learned policy. However, when Δ is increased
too far the robot eventually recovers policies that are simpler than what the human intended (i.e.,
missing nuances in the correct behavior), harming the performance of the autonomous robot. This
suggests both a trade-off and guidelines for implementation. We recommend that designers start
with low values of Δ, and gradually increase that hyperparameter to improve performance. We
also recognize that one downside of Counter-BC is that — if designers initialize with values of
Δ that significantly exceed the noise in the teacher’s demonstrations — the performance of our
algorithm may actually fall below the BC baseline.

6 USER STUDY
Our previous experiments focused on simulated environments with real and synthetic human
teachers. In our final study, we now test Counter-BC on a real-world robot arm (Franka FR3) with
demonstrations provided by 𝑁 = 20 in-person participants. The task matches our running example
from Figure 1: human teachers teleoperate the robot arm to repeatedly hit an air hockey puck
across a table. Based on the participants’ demonstrations, the robot must learn to align its paddle
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with the oncoming puck, and then move forward to strike that puck with the correct timing. See
examples of this game in our supplemental video: https://youtu.be/XaeOZWhTt68
Experimental Setup. Our experiment has two phases: training and testing. During training each
individual participant sits next to the robot and uses a joystick to teleoperate the arm in real-time.
The arm’s end-effector is constrained to move along the planar surface of an air hockey table. A
red puck glides along this table; participants try to control the robot to hit that puck so it bounces
off the opposite side and returns towards the robot arm. Based on the speed and location where
participants hit the puck, the puck may move at various angles and velocities (e.g., colliding with
the table’s sides). Hence, each iteration naturally forces users to vary the way they move the robot
arm. These participants are not perfect teachers — their demonstrations include examples where
they miss the puck entirely or accidentally hit it off-center.
Throughout training the robot records the position of the puck with an overhead camera (see

Figure 7, Left). The robot also saves its end-effector locations and the user’s commanded actions.
Overall, the robot’s state 𝑠 ∈ R6 consists of the 𝑥-𝑦 position of its end-effector, the 𝑥-𝑦 position
of the puck at the current timestep, and the puck’s 𝑥-𝑦 position at the previous timestep. Actions
𝑎 ∈ R2 are end-effector velocities along the surface of the table normalized between 0 and 1. Each
timestep of training yields a new (𝑠, 𝑎) pair for datasetD. After the participants’ demonstrations are
completed, we move to the testing phase. Here the robot learns a control policy from the aggregated
dataset D and then rolls out this learned policy to autonomously play air hockey. We evaluate the
proficiency of the robot’s control policy across multiple interactions.
Independent Variables. During testing we modulate two variables: the algorithm the robot uses
to learn its control policy, and the amount of data leveraged by that algorithm. We compare the
same offline imitation learning methods as in Section 5. These include our proposed Counter-BC
approach, as well as state-of-the-art baselines BC [19], ILEED [2], and Sasaki [30]. Each algorithm
learns from the same human demonstrations. We sample these demonstrations from the aggregated
datasetD collected during training; specifically, we measure the robot’s performance when trained
on 200, 400, 800, 1600, and 3200 state-action pairs.
Dependent Measures. We rollout each learned policy in the air hockey environment. Ideally,
the robot will learn to repeatedly hit the puck while moving quickly and efficiently. We therefore
count the Number of Hits, i.e., the number of times the robot uses its end-effector to push the
puck towards the opposite end of the table. To assess efficiency, we record the Distance per Hit.
This corresponds to the distance the robot’s end-effector travels during an interaction (in meters)
divided by the number of hits; if the robot never hits the puck, then this is just the total distance
traveled. Similarly, the Time per Hit is the total interaction time (in seconds) divided by the number
of hits. As before, if the robot never hits the puck, Time per Hit becomes the total interaction time.
A proficient robot should repeatedly hit the puck (maximizing Number of Hits) while minimizing
the distance traveled (Distance per Hit) and the time between hits (Time per Hit).
Participants and Procedure. A total of 𝑁 = 20 users provided demonstrations for the air hockey
task (3 female, average age 24 ± 4 years). These were the same users that taught the simulated
robots in Section 5. After giving informed written consent (IRB #23-1237), participants practiced
teleoperating the robot arm with a joystick for 2 to 5 minutes. Users then controlled the robot to
play air hockey for 2 minutes of recorded demonstrations. We aggregate the data from all 20 users
into a single combined dataset D, and uniformly randomly sample from this dataset to collect the
state-action pairs need to train the robot learner.

During testing we perform 10 end-to-end runs for each learning algorithm and amount of data. In
what follows we describe a single one of these runs. To evaluate the performance with 𝑘 datapoints,
we first sample 𝑘 state-action pairs from dataset D and then train all four algorithms with those

https://youtu.be/XaeOZWhTt68
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Fig. 7. Results from our air hockey experiment in Section 6. In-person participants provided demonstrations
where they teleoperated the robot arm to repeatedly hit a hockey puck (also see Figure 1). The top row plots
the performance of the robot’s learned policy when trained on an increasing number of state-action pairs; the
bottom row shows the average performance across all dataset sizes. Number of Hits is the number of times the
robot autonomously hit the puck (higher is better). Distance per Hit is path length of the robot’s end-effector
divided by the number of hits (lower is better), and Time per Hit is the total interaction time divided by the
number of hits (lower is better). Our results suggest that robots which use Counter-BC to learn from human
demonstrations outperform other offline imitation learning approaches that account for imperfect teaching.
Shaded regions and error bars show the standard error, and an ∗ denotes statistical significance (𝑝 < .05).

same datapoints. For each method (BC, ILEED, Sasaki, Counter-BC) we then place the hockey
puck directly in front of the robot’s end-effector and start executing the learned policy. We record
the Number of Hits, Distance per Hit, and Time per Hit until the robot misses the puck and the puck
comes to rest. Repeating this end-to-end process 10 times for all five levels of demonstration, we
ultimately test each learning algorithm a total of 50 times.
Hypotheses. We hypothesized that:

Robots that use Counter-BC to learn from human demonstrations will extract more
proficient control policies than the baselines.

Results.Our experimental results are summarized in Figure 7. In the top rowwe plot our dependent
measures as a function of the number of demonstrations; the bottom row displays the average
outcomes across all 50 trials for each algorithm. As a reminder, for the Number of Hits higher
values indicate better task performance. By contrast, for the Distance per Hit and the Time per Hit
lower values mean the robot is playing the game more quickly and efficiently.
To capture overall trends in the learned policies we will analyze the average results. Repeated

measures ANOVAs with Greenhouse-Geisser corrections determine that algorithm type has a
statistically significant effect on the Number of Hits (𝐹 (2.74, 134.24) = 39.8, 𝑝 < .001), the Distance
per Hit (𝐹 (2.42, 118.78) = 12.6, 𝑝 < .001), and the Time per Hit (𝐹 (1.89, 92.48) = 8.3, 𝑝 < .001). To
better understand these differences, we next conduct post hoc tests with a Bonferroni adjustment.
Here we see that Counter-BC averages a higher Number of Hits across all demonstrations as
compared to BC (𝑝 < .001), ILEED (𝑝 < .001), and Sasaki (𝑝 < .001). Similarly, the Time per
Hit for Counter-BC is lower than BC (𝑝 < .01), ILEED (𝑝 < .001), and Sasaki (𝑝 < .05). For
the Distance per Hit we gather mixed findings: Counter-BC is again more performant than BC
(𝑝 < .001) and Sasaki (𝑝 < .01), but comparisons with ILEED are not statistically significant
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(𝑝 = 1.0). We can explain this result by watching the learned behavior for ILEED. In our tests,
robots trained with ILEED barely move the end-effector, often missing the puck or hitting that puck
at a low velocity. Accordingly — although ILEED has a low Distance per Hit — it is not an effective
policy for repeatedly hitting the puck and completing the desired task. We note that ILEED was
originally designed for settings where there are multiple human teachers, and the robot knows
which demonstrations belong to which teacher. The relatively poor performance of ILEED is likely
because (in our setting) we do not assume any labels on the dataset, and so ILEED cannot connect
individual datapoints with any specific human teacher.
In summary, our results from Figure 7 support our hypothesis and suggest that Counter-BC

is an effective algorithm for learning from real human data on physical robot arms. Across each
axis of evaluation (Number of Hits, Distance per Hit, and Time per Hit), we find that Counter-BC
outperforms or matches the baselines, and these trends hold regardless of the number of state-action
pairs leveraged to train the robot learner.

7 CONCLUSION
Existing imitation learning algorithm seek to emulate the exact actions of a human teacher. By
contrast, this work introduced an different perspective. Our core hypothesis was that all of the
human’s data is based on the underlying task they are trying to convey. Suboptimality inherent to
human teaching adds unintended complexity to the dataset, but we can develop learning algorithms
to work around this noise and recover the underlying function. In doing so, the robot is no longer
constrained to imitate the human’s exact datapoints; instead, the robot can now propose and imitate
counterfactual actions to reach a coherent, simple explanation of what the human meant. We
formalized this concept by deriving Counter-BC, a novel offline imitation learning algorithm that
accounts for imperfect human teachers. We proved that the loss function used to train Counter-BC
generalized prior works; put another way, current methods can be viewed as instances of our
overarching approach. In practice, by optimizing this generalized loss Counter-BC trains the policy
to minimize entropy over actions (i.e., reaching a simple explanation) while ensuring that the actions
output by the policy are close to the actions demonstrated by the human (i.e., remaining within the
counterfactual set). Our analysis indicated that Counter-BC can extract the desired policy from
imperfect data, multiple users, and teachers of varying skill. To support these findings, we tested
Counter-BC across several environments with real human teachers, synthetic demonstrations, and
standardized datasets. We note that our testing included learning tasks from images, learning tasks
with high-dimensional states, and learning tasks on real-world robot arms. Results indicated that
Counter-BC learns more proficient policies than state-of-the-art baselines. In particular, we found
that Counter-BC is robust to different types of human data with varying levels of noise, and that
Counter-BC is also more performant when trained on real human demonstrations. Overall, our
theoretical and empirical contributions are a step towards robots that learn what their human
teachers actually meant, not just what the human teacher showed.

Limitations. One advantage and disadvantage of Counter-BC is the hyperparameter Δ ≥ 0 in
Algorithm 1. This hyperparameter specifies the specifies the size of the counterfactual set; intuitively,
increasing Δ means the robot can extrapolate more from the human’s data, but the resulting policy
may contain greater deviations from the human’s demonstrations. The advantage of Δ is that
designers can tune this parameter along a continuous spectrum so that Counter-BC works with
expert teachers (low values of Δ) and inexperienced teachers (high values of Δ). The disadvantage
is that — if designers choose too large a Δ — Counter-BC may oversimplify the policy and miss
important nuances in the task. Within our manuscript we tried to mitigate this potential issue by
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presenting design guidelines and by testing with different Δ values. In future work, we would like
to automate the selection of Δ based on the offline dataset of human demonstrations.
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