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Learning the Correct Robot Trajectory in Real-Time

from Physical Human Interactions

DYLAN P. LOSEY and MARCIA K. O’MALLEY, Rice University

We present a learning and control strategy that enables robots to harness physical human interventions to up-
date their trajectory and goal during autonomous tasks. Within the state of the art, the robot typically reacts
to physical interactions by modifying a local segment of its trajectory, or by searching for the global tra-
jectory offline, using either replanning or previous demonstrations. Instead, we explore a one-shot approach:
here, the robot updates its entire trajectory and goal in real time without relying on multiple iterations, offline
demonstrations, or replanning. Our solution is grounded in optimal control and gradient descent, and extends
linear-quadratic regulator controllers to generalize across methods that locally or globally modify the robot’s
underlying trajectory. In the best case, this Linear-quadratic regulator + Learning approach matches the opti-
mal offline response to physical interactions, and—in more challenging cases—our strategy is robust to noisy
and unexpected human corrections. We compare the proposed solution against other real-time strategies in
a user study and demonstrate its efficacy in terms of both objective and subjective measures.
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1 INTRODUCTION

Our work seeks to leverage physical human-robot interaction (pHRI) to adapt robot behavior dur-
ing the current task. We treat physical interactions as a method for conveying information, which
the human can use to communicate his or her desired behavior to the robot. Consider a personal
robot that is setting the table for a human end user: this robot may not know the right location to
place a plate or the right way to move that plate to the goal. The human can physically intervene—
by applying forces and torques—and correct the robot’s behavior, such as pushing the robot towards
the table or guiding the robot away from the stove. Our research develops robotic controllers that
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Fig. 1. Updating the robot’s trajectory when responding to physical human corrections. Solid lines show

the robot’s updated trajectory. Today’s robots either modify a local segment of their trajectory to match the

human’s correction (left), or search a region for the optimal trajectory offline, via replanning or demonstra-

tions (middle). Our approach extends linear-quadratic regulator control to update either the local or global

trajectory in one shot, without offline planning or previous examples (right).

adjust to these corrections in real time such that after the human lets go, the robot autonomously
completes the rest of its current task in accordance with the end user’s preferences.

Solving this problem requires that the robot update its underlying trajectory in response to
the human’s interactions. Within the state of the art, however, it is challenging for the robot to
determine how to relate the human’s low-level torque input to meaningful changes in its trajectory,
and how to modify its trajectory in real time so that the robot’s reaction is seamless and fluent.

One common pHRI strategy is for the robot to modify its trajectory to move in the direction
of the human’s correction [11, 15, 24, 27]. Here, the robot treats the human’s interactions as local
information—where the human expert pushes, pulls, or twists the robot toward a better state—and
the robot adjusts its current waypoint (or next few waypoints) to match the human. But the robot
never relates these local adjustments to global changes: after the human stops interacting, the tra-
jectory soon returns to normal. Other pHRI works address this problem by learning the important
aspects of the task from physical human interactions (i.e., kinesthetic demonstrations) and then
replanning the robot’s entire trajectory [4, 14, 19, 38]. Here, the robot successfully relates the hu-
man’s low-level torque inputs to high-level trajectory parameters, but the learning and replanning
occur offline, between iterations of the same task. In summary, robots either fail to meaningfully
update the entire trajectory based on the current physical interaction or require computationally
expensive trajectory replanning (or offline demonstrations), which prevent the robot from reacting
seamlessly during the current task.

Within this work, we focus on a robot that should ideally complete its task autonomously, with-
out any assistance or collaboration from a human partner. A nearby human notices that the robot
is not performing its task in the right way; this human physically interacts and corrects the robot
to better match his or her personal preferences. Harnessing the communication implicit within
these physical interactions, we derive a method for the robot to meaningfully update its entire
trajectory in real time. Importantly, this method is suitable for cases where the robot has never
before performed this task or interacted with its current end user. Ultimately, we are interested in
a one-shot learning process, where the robot only performs the task a single time and learns the
correct trajectory for the rest of this task based on the current human input. Toward this end, we
make the following insight:

The human’s physical interactions guide the robot’s current trajectory toward a desired trajectory

that he or she would prefer the robot to follow.

Leveraging this insight, we derive a computationally efficient yet versatile learning rule that
generalizes to meaningfully update either the local or global trajectory in real time based on the
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current physical human interaction. Our approach extends traditional linear-quadratic regulator
(LQR) control with online gradient descent to simultaneously modify both the underlying trajec-
tory and the robot’s optimal control action. Our key novelty is captured in Figure 1: the proposed
approach outlines an optimal response to pHRI that is also suitable for real-time implementation.
More specifically, we make the following contributions.

Extending LQR to learn from physical corrections. Based on our insight that the human’s interac-
tions guide the robot toward a better trajectory, we derive a computationally efficient learning rule
for real-time implementation, where the robot meaningfully updates its underlying trajectory af-
ter each human interaction. We also provide convergence and stability guarantees—demonstrating
that the learning rule safely extends LQR control—and provide two common instantiations. Under
this approach, the robot can change its entire trajectory and control torques in real time, during
the current task, based on the human’s implicit corrections.

Generalizing across local and global trajectory updates. Our theoretical approach can be applied to
either learn about a local segment of the trajectory or update the robot’s global trajectory. We
obtain this versatility by introducing an unknown trajectory parameter θ , where the designer
chooses how to parameterize the desired trajectory based on his or her task requirements. If θ
consists of low-level parameters—like waypoints—our learning rule locally modifies the trajectory
by adjusting those waypoints; alternatively, if θ contains high-level parameters—like features—this
same learning rule modifies the entire trajectory to match the updated features.

Analyzing best- and worst-case performance. We benchmark our extension of LQR control against
comparable algorithms for updating the desired trajectory in response to human interactions. We
show that, in the best case, our approach objectively performs on par with the optimal offline
solution but can be implemented at the same loop rate as local trajectory modification methods. In
the challenging cases, we find that our approach is robust to end users whose interactions diverge
from the robot’s expectations, but other, non-learning approaches eventually obtain objectively
better performance when the robot has significant errors in the type of trajectory parameterization.

Comparing to the state of the art in a user study. When the robot does not know the right trajectory,
we conduct a user study comparing real-time responses where (1) the robot lets the human take
control as soon as an interaction is detected, (2) the robot locally modifies its trajectory in the
direction of the physical interaction, and (3) the robot implements our extension of LQR control.
We consider tasks both where the correct trajectory is close to or far from the initial trajectory,
as well as tasks that have the right path but the wrong timing. We evaluate the objective and
subjective results across both interaction strategy and task type.

Overall, this article introduces a computationally efficient solution to learning from physical
interactions, grounds this solution in optimal control theory, and compares the resultant approach
to state-of-the-art methods. Our learning and control strategy is suitable for one-shot applications,
where the robot should adapt the rest of its current trajectory to match the end user’s preferences.
We explore applications of this work for robotic rehabilitation, where an expert therapist can
use the proposed approach to intuitively modify the robotic training task for a participant. We
also envision applications within household robotics, where end users need to adapt the robot’s
baseline behavior to suit his or her personal needs and environment. Within these settings, pHRI
provides a natural avenue for communicating desired behavior to the robot.

2 RELATED WORK

Our research builds on prior pHRI works that consider trajectory updates and control strategies.
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2.1 Trajectory Updates from Physical Human Interaction

Collaborative tasks. Several works adapt the robot’s trajectory during collaborative tasks—such
as sawing, assembling, or carrying—where the human and robot partners must constantly act to-
gether [14, 35, 38]. For instance, Rozo et al. [38] propose a method where the robotic assistant learns
the right trajectory from offline physical demonstrations and apply this method during experi-
ments where the robot and human assemble a table. Unlike these works, we focus on settings where
the robot should complete its task autonomously, without collaborating with a human partner.

Avoiding end users. Other research modifies the robot’s trajectory to avoid interacting with the
human end user [8, 22, 23, 28]. For instance, Mainprice and Berenson [28] develop a scheme where
the robot predicts the human’s future motion and replans its trajectory to complete the task opti-
mally, without interfering with the human’s movement. By contrast, we consider situations where
the human wants to physically interact with the robot to convey his or her preferences.

Local modifications. When the human end user applies forces and torques, the robot can respond
by locally modifying its trajectory [1, 9, 11, 15, 24, 27]. Akgun et al. [1] enable the human to
physically adjust important keyframes along the robot’s trajectory so that—the next time the robot
performs the task—it moves through these waypoints. Haddadin et al. [15] and Li et al. [24] develop
reaction strategies to modify the robot’s next few waypoints: the robot deforms its trajectory in the
direction of the human’s applied disturbance [9, 27] or to maintain a pre-defined interaction force.
For each of these approaches, the robot updates a local segment of its trajectory (e.g., a keyframe or
the next few waypoints), but the robot does not learn a new trajectory from start to goal. Instead,
we are interested in leveraging local human interactions to update the global robot trajectory.

Adapting existing trajectories. Some prior approaches update the robot’s global trajectory by adapt-
ing its current trajectory to the new scenario [13, 29, 32, 37]. In Nierhoff et al. [32], for example, the
authors adapt the robot’s entire trajectory in real time to satisfy changing environment constraints
while remaining close to the original trajectory (without physical interactions). More related to
our approach is work by Gams et al. [13]: here, the robot learns from physical coaching during
periodic movements. Unlike this research, our work focuses on trajectory adaptation with optimal
control and does not require periodic movements or multiple trials.

Replanning optimal trajectories. If we treat physical human interactions as observations about
an underlying objective function, then the robot updates its objective after each interaction
and replans an optimal trajectory with respect to this new objective [4, 5, 19]. Jain et al. [19]
present one such formulation, where the human physically corrects a robot waypoint offline,
and the robot solves for its optimal trajectory at the next trial. Although we have extended this
method for real-time implementation [4, 5], the approach is practically limited to only a few
features and simple tasks, since optimal trajectory replanning for more complex settings cannot
be performed in less than a second [21, 39]. Accordingly, we treat trajectory replanning as an
optimal offline solution and assess how much performance the robot loses using our real-time
(i.e., sub-millisecond) approach.

Viewed together, prior works leverage physical human interactions to modify a local segment
of the robot’s trajectory, or to conduct offline replanning, which may rely on multiple trials or past
demonstrations. Alternatively, we propose a one-shot approach for autonomous tasks, where the
robot relates low-level interaction forces to real-time changes in the rest of its trajectory.

2.2 Control Strategies for Physical Human Interaction

Compliant responses. When a human and robot are physically interacting, compliant control is an
important step toward human safety [10, 16, 17]. Here, the robot responds to physical interactions
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by rendering an impedance [17]—for instance, a stiffness and damping—so that the human can
locally push the robot away from its underlying trajectory. Our work continues this trend and
encodes the robot to render an impedance during physical interactions.

Shared control. More generally, the human and robot can dynamically alter leader and follower
roles during pHRI through shared control [12, 26, 31]. For example, Mörtl et al. [31] formalize how
the human’s and robot’s effort should be divided during a collaborative task: intuitively, the robot
lets the human take control when the human’s feedback diverges from its expectations. Arbitration
serves as a knob between complete robot autonomy (at one extreme) and passively following the
human (at the other extreme) [12, 26]. In our work, we view shared control as a method that enables
the human to easily correct the robot’s state and treat it as a real-time baseline strategy.

Optimal control. Other research studies optimal control strategies for tasks that involve physical
human interaction [20, 25, 30]. In Li et al. [25], the authors leverage game theory and optimal con-
trol to identify the correct robot behavior: like Medina et al. [30], their approach reduces the robot’s
stiffness when the human applies forces and torques but increases the rendered stiffness when the
human does not interact, or when the human’s interactions agree with the robot’s prediction.

For each of the preceding control strategies, the robot returns to its original trajectory once
the human stops interacting—for instance, the robot never adapts its underlying trajectory. By
contrast, we develop a response that updates the robot’s trajectory so that the robot completes the
rest of its task in a different way after the interaction ends.

3 PROBLEM STATEMENT

Here, we formulate the problem setting for which our pHRI response strategy is appropriate. We
discuss the states, actions, and dynamics; the desired trajectory; and the cost function. A key ele-
ment of our formalism is the set of trajectory parameters, θ , which encode the trajectory that the
robot will attempt to track. Importantly, the robot does not know the right trajectory parameters.

3.1 States, Actions, and Dynamics

Consider an n degree-of-freedom (DoF) robotic manipulator with joint position q ∈ Rn and joint
velocity q̇ ∈ Rn . Let the robot’s state bex ∈ R2n , wherex = [qT , q̇T ]T . There are two system inputs:
ur ∈ Rn is the robot’s control torque (in joint space), anduh ∈ Rn is the disturbance torque (in joint
space) caused by human-robot interaction. If we assume that the robot is gravity compensated, we
can write the robot’s state-space dynamics as [40]

ẋ (t ) = F (x )x +G (x ) (ur + uh ). (1)

Here, F captures the robot’s passive dynamics, andG is the control matrix. In general, Equation (1)
describes a class of systems where both the human and robot actions,ur + uh , alter the system state
x . We will focus on robots that fall within this class of systems [4, 5, 16, 27].

3.2 Desired Trajectory

The robot has a desired trajectory (also called a reference trajectory) that it is attempting to track.
Let the desired trajectory be ξ ∈ Ξ. Without loss of generality, we assume that ξ is parameterized
by a constant vector θ ∈ Rm such that at the current time t , the desired state is ξ (θ , t ). Hence,
ξ ∈ Ξ is a function that maps the parameters θ and timestep t into a desired system state, and Ξ
is the set of possible mappings Rm ×R+ → R2n . In this work, we leave the choice of ξ up to the
designer and focus on learning the right value of θ given ξ . For example, the designer might choose
ξ so that θ is a vector containing the waypoints along the desired trajectory and ξ (θ , t ) outputs
the waypoint corresponding to time t .
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3.3 Cost Function

Ideally, the robot should track the correct desired trajectory while also minimizing its own effort.
The correct trajectory is determined by the human end user and is parameterized by θ ∗. Within our
formulation, θ ∗ captures the human’s preferences for how the robot should behave-for example,
the goal the robot should reach, the speed of the robot’s motion, and/or the trajectory features.
Similar to recent works on optimal control for pHRI [20, 25, 30], we therefore have the following
cost function:

J (θ ∗) =

∫ tf

t0

L
(
x (t ), ξ (θ ∗, t ),ur (t )

)
dt . (2)

Here, the task starts at time t0, ends at time tf , and the robot incurs the total cost J ∈ R+. Let the
loss function L ∈ R+ be quadratic so that we reach the classical LQR control problem [41]:

L (t ) = ���x (t ) − ξ (θ ∗, t )���2

Q
+
���ur (t )���2

R
. (3)

Note that ‖x ‖2A = xTAx within this notation. The inner product matricesQ and R are positive def-
inite and symmetric, and determine the relative costs of errors from the correct desired trajectory
and increases in the robot’s effort, respectively.

3.4 Unknown Trajectory Parameters

If the robot knows θ ∗, then the solution is straightforward: the robot should simply use LQR control
to track ξ (θ ∗) [2]. Physical human corrections are unnecessary in this case, as the robot is already
following the human’s preferred trajectory and minimizing the true cost function.

Our work considers cases where θ ∗ is not known a priori: instead, here the robot maintains a
point estimate θ . At the current time t , the error between the correct robot trajectory (parameter-
ized by θ ∗) and the actual desired trajectory (parameterized by θ ) is

e (t ) = ξ (θ ∗, t ) − ξ (θ , t ). (4)

Intuitively, we want θ → θ ∗ so that e → 0 and the robot tracks the correct trajectory. Thus, our
main problem becomes learning from physical human corrections to update θ while simultane-
ously selecting robot actions in a way that minimizes the estimated cost function, J (θ ).

4 LEARNING FROM PHYSICAL CORRECTIONS

In this section, we map the human’s physical interactions uh into real-time updates of the esti-
mate θ so that the robot can learn the right trajectory from physical corrections. This approach
is inspired by our insight from Section 1 and prior work on learning from pHRI [1, 4, 13, 19, 27]:
the human interactions reduce the error between the robot’s current trajectory and their preferred
trajectory. We define e = [eT

p , e
T
v ]T , where ep ∈ Rn is the position error and ev ∈ Rn is the velocity

error. From our insight, we assert that the human interacts based on some linear combination of
the position error and velocity error:

uh (t ) ∝ λ1 · ep (t ) + λ2 · ev (t ), (5)

where λ1, λ2 > 0. Hence, we model the human’s actions as observations about the trajectory error
from Equation (4). Note that the observation uh is a lower-dimensional embedding of the error e .

4.1 Gradient Descent

To learn from physical corrections and update θ in real time, we apply online gradient descent
[3, 7]. We want to find values of θ that converge toward θ ∗, or, expressed more generally, we are
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Fig. 2. Learning the correct trajectory from physical human interactions. A 2-DoF robotic arm starts in the

marked position and updates its underlying trajectory based on the human’s physical interactions (left,

where arrows show the human’s applied force). Learning from pHRI with Equation (9) reduces the error be-

tween the correct and actual trajectories (middle), and the error between the true and estimated parameters

(right) when compared to a robot that does not learn.

searching for the θ that minimizes the convex loss function V ∈ R+:

V (t ) =
1

2
���e (t )���2

=
1

2
���ξ (θ ∗, t ) − ξ (θ , t )���2

A
, A =

[
λ2

1I λ1λ2I
λ1λ2I λ2

2I

]
, (6)

where A is a positive semi-definite matrix that penalizes the linear combination λ1ep + λ2ev . Put
another way,V = 0 when λ1ep + λ2ev = 0. Let us take the gradient of Equation (6) with respect to
the vector θ ∈ Rm , where we recall that the human’s preferences θ ∗ are assumed to be constant:

∇θV (t ) = −
[
∂ξ (θ , t )

∂θ1
· · · ∂ξ (θ , t )

∂θm

]T

Ae (t ). (7)

In the preceding text, the bracketed term is a 2n ×m Jacobian matrix that relates changes in θ
to changes in the current desired state, ξ (θ , t ). Applying the principle of steepest descent, the
robot locally decreases V by updating θ in the direction: −ᾱ · ∇θV (t ), where ᾱ > 0. Substituting
in Equation (7),

θ̇ (t ) = ᾱ ·
[
∂ξ (θ , t )

∂θ1
· · · ∂ξ (θ , t )

∂θm

]T

Ae (t ). (8)

Inspecting Equation (8), we notice that—during implementation—the designer specifies ᾱ and can
solve for the Jacobian matrix. Put another way, the only unknown term is e (since the robot does
not know θ ∗), but because e is unknown, we cannot solve Equation (8) in its current form.

4.2 Leveraging Our Insight

Here, we apply our insight and treat uh as an observation of the trajectory error e . Recall from
Equation (5) that uh ∝ [λ1I , λ2I ]e , and so Ae ∝ [λ1I , λ2I ]Tuh . Substituting this observation model
from Equation (5) into Equation (8), our learning rule for physical corrections becomes

θ̇ (t ) = α ·
[
∂ξ (θ , t )

∂θ1
· · · ∂ξ (θ , t )

∂θm

]T [
λ1I
λ2I

]
uh (t ), (9)

where α > 0 and λ1, λ2 > 0 are parameters that the designer tunes to determine the learning rate
(α ) and the weight of position or velocity errors (λ1, λ2). For example, selecting λ1 = 1, λ2 = 0 im-
plies that the human interacts based purely on the position error and causes the robot to update θ
such that the position error ep converges to zero. Overall, Equation (9) maps pHRI to changes in
the robot’s trajectory estimate. This learning rule is suitable for real-time implementation and, by
changing θ , modifies the robot’s entire trajectory (Figure 2).
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4.3 Common Instantiations

Next, we derive instantiations of our learning rule for two common trajectory parameterizations.
First, we consider a trajectory parameterized through linear regression so that ξ (θ , t ) = Φ(t )θ . Here,
Φ ∈ R2n×m encodes the trajectory basis functions, and θ determines their relative weights: any
trajectory can be written in this form. For linear regression, our learning rule simplifies to

θ̇ (t ) = α · Φ(t )T

[
λ1I
λ2I

]
uh (t ). (10)

Second, we consider a dynamic movement primitive (DMP), which represents the trajectory as a
second-order dynamical system [18]. Let s > 0 be a phase variable monotonically decreasing to
zero, let K ∈ Rn×n be a virtual compliance constant, and let f (x , s,θ ) ∈ Rn be a forcing term that
shapes the attractor landscape [33, 34]. For DMPs, our learning rule reduces to

θ̇ (t ) = α ·
⎡⎢⎢⎢⎢⎣
∂f (x0, t ,θ )

∂θ1
· · · ∂f (x0, t ,θ )

∂θm

⎤⎥⎥⎥⎥⎦
T

KTuh (t ), (11)

where f (x0, t ,θ ) =
∫ t

t0
f (x , s,θ ) dt and the Jacobian is evaluated at the current estimate θ .

There are other implementation techniques of interest. For instance, instead of updating every
parameter in θ after each interaction, an alternate approach is to only update a few parameters
per timestep [5]. In this case, we first calculate Equation (9) and then update only the parameters
θi in θ for which |θ̇i | is the largest (after normalization). This approach may be suitable when the
human teaches sequentially and corrects one aspect of the desired trajectory at a time.

5 EXTENDING LQR CONTROL WITH LEARNING

In this section, we extend classical LQR control with the learning rule derived in Section 4. Com-
bining LQR + Learning (LQR+L) provides an optimal response to pHRI and also ensures that the
robot interacts safely. We discuss how this approach generalizes the state of the art and list its
limitations.

5.1 Optimal Response to Human Corrections

An optimal robot should select its actionsur to minimize the cost function J (θ ∗) from Equation (2),
which depends on the human’s true preferences θ ∗. Given all of its previous observations, the
robot’s best guess of the true cost function is J (θ ), where the desired trajectory is parameterized
by the learned estimate θ . Accordingly, the optimal robot response to human interactions is

ur (t ) = −R−1GT P (t )
[
x (t ) − ξ (θ , t )

]
. (12)

Here, P is the solution to a matrix Riccati equation (either finite or infinite horizon), and we lin-
earized the robot’s dynamics about the desired trajectory. Equation (12) is an LQR control law [2,
41].

5.2 Algorithm, Safety, and Stability

When the human physically interacts, the robot updates its underlying trajectory with Equation (9)
and selects the optimal action for that learned trajectory using Equation (12). This interaction algo-
rithm is safe, because in practice the LQR controller behaves like a variable impedance controller
and compliantly responds to the human’s interaction torques [16]. Our combination of learning
and LQR control is also stable under reasonable sufficient conditions

Sufficient conditions for stability. LQR+L is stable if, for any time t ∈ [t0, tf ] and bounded parameters
θ , the trajectory ξ (θ , t ) is continuous and differentiable with respect to θ .
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Proof. The end user’s input uh must be bounded (i.e., the human cannot apply infinite effort).
Given that ξ (θ , t ) is differentiable with respect to θ , from Equation (9) θ̇ is bounded, and therefore θ
remains bounded. Because ξ (θ , t ) is continuous, it is bounded on the closed interval [t0, tf ]. A robot
with dynamics (1) is stable when tracking a bounded trajectory with Equation (12) [2, 41]. �

In summary, human interactions cannot cause the learning and control system to become un-
stable.

5.3 Generalizing Across Local and Global Learning

Our proposed approach generalizes some previous works on learning from physical interactions.
Regardless of whether the designer chooses ξ such that θ parameterizes local or global trajectory
qualities, we can leverage our approach to update θ and adapt the underlying trajectory.

Local. If ξ ∈ Ξ is defined so that θ are the waypoints along the trajectory, then LQR+L is equiva-
lent to local trajectory modifications [1, 15, 24]. The robot uses Equation (9) to deform the local
waypoints in the direction of the human’s input and then tracks this updated trajectory.

Global. Alternatively, if the designer selects ξ such that θ are the weights for underlying features or
basis functions, LQR+L behaves similarly to global trajectory replanning [4, 19]. The robot mean-
ingfully relates human inputs to global changes in its entire trajectory with Equation (9), without
requiring a complete demonstration or offline replanning.

Generalizing. Thus, how the designer specifies ξ determines how LQR+L updates the robot’s cur-
rent trajectory. If θ contains low-level parameters (like waypoints or keyframes), our proposed
approach results in local modifications; however, if the designer selects meaningful high-level pa-
rameters (e.g., features or basis functions), then our method updates the global trajectory. We are
excited that our theoretical learning framework generalizes to both local and global settings and
does so while incorporating optimal control so that the robot selects optimal responses to pHRI
regardless which type of unknown parameters (low level or high level) the designer specifies.

5.4 Challenges and Limitations

Although we have shown that LQR+L safely optimizes the robot’s best guess of its cost function,
there are still practical challenges when learning from physical interactions:

(1) The robot may not have the right hypothesis space—for instance, the designer may choose
ξ such that no value of θ results in the end user’s desired trajectory.

(2) The human’s interactions may not match our observation model—that is, uh � λ1 · ep +

λ2 · ev .
(3) Even when the human interacts based on the error, the actions may be noisy and imperfect.

The listed challenges are not specific to our approach: modeling errors—both in the hypothesis
space and the observation model—are often unavoidable when learning from physical interactions.
We will explore how robust our approach is to these limitations in simulations and a user study.

6 SIMULATIONS

In this section, we perform offline simulations to analyze our proposed LQR+L algorithm. These
simulations consider both the best- and worst-case performance, and benchmark our approach
against comparable local and global methods for responding to physical corrections. We focus on
challenging settings where the human’s interaction strategy diverges from the robot’s observation
model, and where the robot does not have the right hypothesis space. Overall, these simulations are
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Fig. 3. Best-case performance when the robot knows the right models. Our proposed LQR+L algorithm learns

the correct trajectory from pHRI (left) so that the human no longer needs to interact with the robot (middle)

and achieves objective performance on par with the optimal Replan approach. However, LQR+L works online:

both local modifications and LQR+L can be implemented at 10 kHz, whereas Replan operates at 10 Hz (right).

When using local modifications in Deform, the end user has to repeatedly intervene to correct the robot.

meant to partially address challenges (1) and (2) from Section 5.4. We perform these simulations on
a 2-DoF robotic arm, and we leverage both of the trajectory instantiations described in Section 4.3.

6.1 Best-Case Performance

Here, we compare robots that locally modify their trajectory in the direction of the interaction
(Deform) [1, 16, 24], robots that learn the objective function from physical interactions and replan
an optimal trajectory (Replan) [4, 19], and our proposed LQR+L approach. Each of these robots
knows the right trajectory mapping ξ and the correct observation model relating uh to θ . The
simulated human interacts based on e , the desired trajectory error, without additional noise.

Setup. We used the same setting as shown in Figure 2: the human end user wants to alter the center
and radius of a robot’s stirring motion. Here, we parameterize the desired trajectory using linear
regression so that θ captures the robot’s radius, center position, and linear offset along the x-axis.
More formally, the desired trajectory is parameterized by

ξ (θ , t ) = Φ(t )θ =

[
t sin(t ) 1 0
0 cos(t ) 0 1

]
θ , θ ∈ R4 (13)

where the t term in Φ is a spurious offset the robot should learn to ignore. We compared the
error between the correct trajectory and the robot’s learned trajectory, as well as the rate at
which the trajectory was updated for Deform, Replan, and LQR+L. Simulations were conducted in
MATLAB (MathWorks). Similar to prior works that replan an optimal trajectory [4, 19], here Re-

plan had fixed start and goal positions and did not learn a new goal position from the human’s
interactions.

Results. We found that our proposed LQR+L algorithm obtains similar trajectory error to an optimal
replanning method but updates its trajectory in real time, at the same rate as a local modification
approach (Figure 3). Indeed, for this simple task, our LQR+L robot updated its trajectory every
0.022 ± 0.001 ms, but the Replan robot updated its trajectory every 86.3 ± 1.2 ms. We conclude
that—in the best case—using LQR+L is advantageous because it approaches the optimal perfor-
mance of global replanning approaches (in terms of trajectory error and human effort) but does so
at the same loop rate as local modification methods.

Learning versus non-learning. Now that we have simulated our best-case performance against other
learning approaches, we will move on to two worst-case scenarios. Here, the robot has the wrong
observation model (i.e., challenge (2)) or an incorrect hypothesis space (i.e., challenge (1)). Learning
is difficult in these cases, as the robot cannot correctly interpret the meaning behind the human’s
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Fig. 4. Challenging case performance when the human’s actual corrections diverge from the robot’s ob-

servation model. The shared control baseline does not rely on any human models but also never updates

the robot’s trajectory, and so the end user must repeatedly guide the robot away from the stove (left). Al-

though the robot incurs more cost J (θ∗) when the human makes decisions purely based on the robot’s actual

state—rather than the trajectory error—LQR+L still outperforms the Share baseline during a one-shot task

(right).

interactions; hence, to assess the robustness of LQR+L, we will compare our proposed approach to
a non-learning, shared control baseline.

6.2 Challenging Case Performance: Incorrect Observation Model

Next, we test LQR+L when the robot has the wrong observation model—that is, the human does
not interact based on the trajectory error e . Instead, we simulate a human that physically interacts
based on the actual error between their desired state ξ (θ ∗) and the robot’s current state x . This
situation can arise when the robot does not accurately track its underlying trajectory ξ (θ ), and—
despite the haptic feedback from the LQR controller—the human is unsure about how the robot
plans to move. We compare our approach with a ideal human end user who follows our observation
model (LQR+L, Ideal), our approach when the actual human diverges from the robot’s observation
model by applying forces in the direction ξ (θ ∗, t ) − x (t ) (LQR+L, Actual), and a baseline shared
controller, which does not involve learning and is therefore robust to model errors (Share).

Setup. The robot is completing a pick-and-place task within the kitchen (Figure 4, left). As the
robot performs this task, the human end user notices that the robot is moving above a hot stove:
the human physically intervenes and corrects the robot away from the stove. We parameterized
the robot’s trajectory using a DMP. For Share, the robot cedes control to the human whenever
pHRI occurs, enabling the human to guide the robot without changing its underlying trajectory
[12, 31].

Results. Learning under our proposed method resulted in objectively better performance than a
baseline controller without learning, even in cases where the robot had an incorrect observation
model (see Figure 4, right). When the ideal human’s interactions matched the robot’s observation
model, LQR+L, Ideal incurred 14.7% as much total cost as Share, and—even when the human’s
interactions were based only on the robot’s actual position—LQR+L, Actual incurred 24.4% as much
total cost as Share. These results suggest that LQR+L is robust to observation model errors and is
still an effective strategy if the human makes decisions based purely on the robot’s current state,
as opposed to the error between the current and preferred trajectories.

6.3 Challenging Case Performance: Incorrect Hypothesis Space

Finally, we test LQR+L when the robot has the wrong hypothesis space ξ such that the correct
trajectory cannot be accurately represented with any parameter θ . This problem arises when ξ

ACM Transactions on Human-Robot Interaction, Vol. 9, No. 1, Article 1. Publication date: December 2019.



1:12 D. P. Losey and M. K. O’Malley

Fig. 5. Challenging case performance for tasks where the robot has a misspecified hypothesis space. When ξ
is chosen such that no value of θ leads to the right behavior, our proposed approach cannot correctly interpret

the meaning behind the end user’s interactions. Shared control becomes advantageous as the hypothesis

space error increases, both in terms of total cost (left) and the number of corrections (right). Interestingly,

LQR+L is more robust to an incorrect hypothesis space when the human interacts based only on the actual

position.

is defined such that θ consists of high-level features or basis functions, but the human has in
mind a different set of features, and thus the robot requires a different trajectory parameterization
to correctly interpret the human’s interactions. We again compare a Share baseline against our
algorithm with the right observation model (LQR+L, Ideal) and our algorithm with an incorrect
observation model: note that LQR+L, Actual has both the wrong hypothesis space and the wrong
observation model.

Setup. The robot is performing the same pick-and-place task as in Figure 4 (left), but now the end
user additionally wants the robot to stay away from their body. We define ξ to include the distance-
to-stove feature (which is weighted by θ ), but a distance-to-user feature is not included within ξ .
Hence, the robot does not know that distance to user is a possible feature: when the human guides
the robot away from his or her body, the LQR+L robots relate those interactions to the distance to
stove and cannot correctly interpret why the human is interacting. We measured the total cost and
the number of corrections while varying the true importance of the hidden parameter (distance to
user).

Results. Our approach for learning from pHRI outperforms a shared control baseline when the
robot has small errors in the hypothesis space, but Share becomes preferable when the modeling
errors dominate (Figure 5). LQR+L is robust to both hypothesis and observation errors, however;
LQR+L, Actual received 68.9% as much total cost as LQR+L, Ideal in the worst case, likely because
making decisions based purely on the robot’s state resulted in less undoing. We recommend using
a shared control approach when the hypothesis space is largely unknown—or, alternatively, we
can define θ to be waypoints, which removes the possibly of an incorrect hypothesis space.

6.4 Summarizing the Simulations

In the best case, we found that LQR+L reaches objective performance similar to an offline replan-
ning method but operates in real time, without any prior demonstrations. In the worst case, our
approach is robust to observation model errors: we simulated end users who corrected the ro-
bot based only on its current state and found a negligible loss in performance when compared
to a non-learning baseline. By contrast, if the robot has large errors within the hypothesis space,
LQR+L performs worse than the non-learning baseline (but remains robust to observation model
errors). Overall, these simulations address challenges (1) and (2) from Section 5.4.
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Fig. 6. Experimental setup used within our user study. Participants physically interacted with a 3-DoF robot

to alter its trajectory during the current task. We displayed the correct trajectory on the screen and compared

different real-time interaction strategies for updating the robot’s underlying trajectory.

7 USER STUDY

To explore all three challenges from Section 5.4 when interacting with actual humans, we con-
ducted a user study (Figure 6). Here, the robot started to perform a task with the wrong trajectory,
and participants physically corrected the robot during its current task execution, without prior
demonstrations or offline learning. We compared real-time shared control and local modification
approaches to our LQR+L method across three tasks: one where only slight changes were needed,
one that required global adjustments, and a final task with incorrect motion timing. To make the
comparison more realistic, the LQR+L robot had superfluous parameters within its desired trajec-
tory function ξ—so that this robot could learn unintended, erroneous movements—and the partic-
ipants could not directly observe the robot’s underlying trajectory. Importantly, the participants
corrected the robot in noisy and imperfect ways; we assessed whether these measured corrections
negatively impacted our LQR+L approach or the robot’s movement smoothness.

7.1 Independent Variables

We varied the interaction strategy with three levels: one strategy let the human guide the robot
during interactions without changing its underlying trajectory (Share), a second strategy locally
modified the trajectory in the direction of interaction torques (Deform), and the third strategy was
our proposed LQR+L approach. We did not include a replanning strategy, as we were focusing on
real-time (sub-millisecond) response methods.

We also varied the task type to suit the advantages and disadvantages of each interaction strat-
egy (Figure 7). In Task 1, the robot’s initial trajectory was far from the correct trajectory, and so
large modifications were needed. In Task 2, the robot’s initial trajectory was close to the correct
trajectory, and therefore minor adjustments were sufficient. Finally, in Task 3, the robot started
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Fig. 7. The correct and learned trajectories (averaged across all participants) for each of our experimental

tasks. Because Share does not learn a new trajectory from pHRI, here Share is the same as the robot’s initial

trajectory. We included tasks that required global changes (left), local modifications (middle), and timing

adjustments (right). Although each task involved three DoFs, we only plot two joints for clarity.

with the right path but had the wrong movement timing. In all three tasks, the robot’s desired tra-
jectory ξ was parameterized using linear regression, and we provided superfluous terms that were
not necessary to learn the correct trajectory. For example, in Task 1, the robot started with the right
movement timing, but the robot could learn a different (and incorrect) timing from interactions.

7.2 Measured Outcomes

For each interaction strategy and task type, we measured the robot’s total incurred cost, the
amount of time the human spent interacting, and the smoothness of the robot’s movement. Total
cost was computed using (2), whereas movement smoothness was quantified by the spectral arc-
length of the robot’s speed profile [6]. In addition to these objective measures, we also recorded
the participants’ subjective responses to a 7-point Likert scale survey. The questions—as listed in
Table 1—were selected to determine how participants felt about the robot’s learning, predictability,
response speed, and interaction effort.

7.3 Experimental Setup

Participants interacted with the OpenWrist [36], a 3-DoF robot developed for pHRI. Each of the
interaction strategies were implemented on a desktop computer with the Mechatronics Engine
and Library (https://github.com/epezent/MEL). The computer communicated with the OpenWrist
robot through a Q8-USB data acquisition device (Quanser): this system updated the robot’s un-
derlying trajectory and control input at a frequency of 1 kHz. So that every participant used the
same preferred trajectory, we displayed the trajectory—as well as the robot’s current state—on a
screen in front of each of the participants. Our user interface was developed with Unity (Unity
Technologies).

7.4 Participants and Procedure

Our participant pool consisted of 12 Rice University affiliates who provided informed consent. Of
the 12 total participants, 5 were female and 7 were male, with ages ranging from 19 to 31 years
(25.8 ± 3.6). Ten of the 12 participants had a technical background.

We used a within-subjects design, where the order of the interaction strategies and task types
were separately counterbalanced. Participants were not told about the different interactions strate-
gies; however, to reduce in-task learning, we allowed participants to familiarize themselves with
each strategy and task once before the nine recorded trials (three strategies × three tasks).
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Fig. 8. Objective results from our user study for each interaction strategy and task type. We found that

LQR+L outperformed a shared control baseline and a local modification approach in terms of total cost

(left), interaction time (middle), and movement smoothness (right) for both Task 1 and Task 2. During the

third task—where the robot had the wrong timing—the objective results were mixed. Error bars denote the

standard error about the mean (SEM), and an asterisk denotes statistical significance (p < .05).

7.5 Results

Objective. The objective results from our user study are displayed in Figure 8. To interpret these
objective measures, we performed a two-way repeated measures analysis of variance (ANOVA),
where the robot’s interaction strategy and the task type were factors. We found a significant inter-
action effect between interaction strategy and task type for cost (F (4, 44) = 21.6, p < .001), inter-
action time (F (4, 44) = 17.3, p < .001), and movement smoothness (F (4, 44) = 8.33, p < .001). We
therefore reran our ANOVA with simple main effects.

LQR+L resulted in significantly less total cost than either Share or Deform during both Task 1 and
Task 2. During Task 3, however, LQR+L yielded a significantly lower cost than Deform (p < .001),
but not significantly lower than Share (p = .242). Similarly, we found that users with LQR+L had
significantly less interaction time than with either Share or Deform during both Task 1 and Task 2,
and that the LQR+L robot also completed these tasks significantly more smoothly. In Task 3, we
observed that LQR+L led to significantly less interaction time than Deform (p = .020), but there was
no significant difference in interaction time between LQR+L and Share (p = .664). Conversely, here
LQR+L resulted in significantly more smooth movements than Share (p = .002), but not Deform

(p = .131). We therefore conclude that LQR+L improved total cost, interaction time, and movement
smoothness when participants needed to change either the global or local trajectory, but when the
trajectory timing was wrong the results were less clear cut.

Subjective. The results from our 7-point Likert scale surveys are displayed in Table 1. We first
checked the reliability of each pair of related questions with Cronbach’s α and found that the par-
ticipants responded to every question pairing consistently (α > 0.9). Hence, we grouped each pair
of responses into a single averaged score and performed one-way repeated measures ANOVAs,
where the robot’s response strategy was the independent variable. The interaction strategy had a
significant effect on how participants perceived the robot’s learning (F (2, 22) = 33.9,p < .01), pre-
dictability (F (2, 22) = 6.0,p < .01), response speed (F (2, 22) = 24.1,p < .01), and interaction effort
(F (2, 22) = 27.9,p < .01). The results of our post hoc analysis are listed in Table 1.

7.6 Discussion

Summarizing results. Our proposed LQR+L approach led to better objective performance during
the tasks with global or local trajectory errors. Users also perceived the LQR+L robot as more pre-
dictable and better at learning the robot’s preferred trajectory. During the task where the human
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Table 1. Questions and Responses from the 7-Point Likert Scale User Survey

Questionnaire Item Reliability LQR+L Share, Deform Post Hoc
– By the end of the task, I was confident
the robot had learned my trajectory. .99 6.0 ± 1.2

3.0 ± 2.0 p < .001∗

2.0 ± 1.1 p < .001∗
– The robot did not learn my preferred
trajectory.
– After each correction, I could
anticipate how the robot would behave. .92 5.8 ± 1.4

4.0 ± 1.9 p = .003∗

3.7 ± 1.8 p = .003∗
– The robot responded unpredictably to
my corrections.
– The robot responded quickly to my
corrections. .96 6.0 ± .84

5.4 ± 1.6 p = .199
2.9 ± 1.5 p < .001∗

– It took a while for the robot to change
its trajectory after each correction.
– Correcting the robot’s trajectory
required little effort. .94 5.1 ± 1.9

4.9 ± 1.8 p = .743
1.4 ± .51 p < .001∗

– I had to apply a lot of force to correct
the robot’s trajectory.

Note: We grouped questions into four topics and tested their reliability using Cronbach’s alpha. Questions focused on
whether the robot learned, was predictable, responded quickly, and was easy to correct. LQR+L, Share, and Deform give the
mean ± std response across users, where higher values indicate agreement (users answered with an integer 1 − 7). Post
hoc shows the pairwise comparisons between LQR+L and Share (top) andLQR+L and Deform (bottom), where an asterisk
denotes significance.

wanted to change the movement timing, LQR+L resulted in less total cost and interaction time than
the local modification approach and improved movement smoothness as compared to the shared
control method; however, the other pairwise comparisons were not significant. Participants be-
lieved that the LQR+L robot required less effort to correct and responded more quickly than the
Deform robot, but for these metrics LQR+L was not significantly different from Share.

Highlighting strengths. This user study was meant to address the challenges from Section 5.4 within
a realistic setting. We gave the LQR+L robot an over-defined hypothesis space, did not provide
users with the trajectory error, and measured noisy and imperfect human corrections. Despite
these challenges, our proposed approach learned the right robot trajectory for local and global
mistakes such that if the robot were to perform the same task again, the human would no longer
need to interact and correct the robot’s behavior (see Figure 7, left and middle).

Identifying shortcomings. Not all of our results were positive. Participants reported that it was dif-
ficult to alter the robot’s timing with LQR+L. For example, “changing the speed of the robot was
difficult, but changing its trajectory was much easier.” We suggest that Task 3 was particularly
difficult for the LQR+L method because the user was attempting to make the robot track a specific
sinusoidal trajectory—without any phase shift—rather than just a preferred frequency. Accord-
ingly, participants had to iteratively speed up and slow down the robot so that it had both the
right frequency and phase. The ability to adjust the robot’s timing online is one of the unique
aspects of our approach as compared to prior works [4, 19, 24, 27]; although it was not effective
here because of the phase constraint, we are excited about this capability moving forward.

Revisiting the state of the art. Although LQR+L performed well within our application scenario,
other methods may be preferable in different contexts. For example, if the task requires significant
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interaction with the environment—such as sawing—collaborative approaches are more appropri-
ate [14, 35, 38]. Local modification approaches become increasingly relevant if the task involves
multiple repetitions: the robot can store and replay the local adjustments between iterations, en-
abling the end user to intuitively and iteratively correct the robot’s trajectory [1, 9, 11, 13, 15, 24,
27]. For scenarios where the task has few features (i.e., two to three), global replanning methods
have already been implemented online [4, 5]: thus, in practice, the time spent replanning may not
be significant enough to warrant our alternate approach. Finally, as we demonstrated within the
worst-case simulations, shared and optimal controllers that do not learn the correct trajectory are
often sufficient when the hypothesis space is largely incorrect [12, 20, 25, 30, 31]. Our experimental
results should therefore be interpreted as useful trends—demonstrating that LQR+L is beneficial
in the right contexts—rather than claiming that this method is better for all cases.

8 CONCLUSION

We presented an extension of LQR control that enables autonomous robots to learn the right tra-
jectory from physical human corrections in one shot, without replanning, offline demonstrations,
or multiple iterations. Based on our insight—where human corrections are observations about the
error from their preferred trajectory—we leveraged gradient descent to derive a computationally
efficient learning rule for real-time implementation and proved that augmenting LQR control with
this learning rule yields stable pHRI. Our resulting algorithm generalizes across both local and
global trajectory updates: if the designer specifies a low-level hypothesis space (like waypoints),
LQR+L locally modifies the trajectory, but if the designer identifies high-level parameters (like
features), LQR+L modifies the entire future trajectory after each interaction.

We identified several practical challenges that often arise when learning from pHRI and explored
how robust our approach is to each of these limitations within simulations and a user study. In the
best case, LQR+L obtained objective performance on par with an offline optimal response but did
so in real time, at the same loop rate as a local modification approach. In the worst case, LQR+L

was robust to errors in the observation model; however, for large errors in the hypothesis space, a
non-learning baseline outperformed the proposed learning approach. Our user study considered
realistic scenarios where the robot had an incorrect hypothesis space, the participants could not
directly observe the trajectory error, and the human corrections were noisy and imperfect. We
found that LQR+L outperformed two real-time baselines (shared control and local modifications)
in tasks with local or global trajectory errors: the LQR+L robot had less total cost and interaction
time, as well as increased movement smoothness. Although these simulations and the user study
support our approach, we also recognized that prior methods may be better suited for different
application scenarios, such as cases where there are significant interactions with the environment,
the task is iterative or captured with only a few parameters, or the designer is very unsure of the
correct trajectory parameterization.

Overall, this work is only a first step toward learning from physical interactions and selecting
optimal robot responses in real time for one-shot settings where the robot should complete the
rest of its current task correctly. Our user study explores applications of the proposed method for
robotic rehabilitation, where the therapist can interact with the robot to update its training task.
The proposed method can also be applied to household robotics settings, where the end user wants
to adapt the robot’s underlying behavior to suit his or her preferences and environment.
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