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Abstract—How can we make robots that learn new tasks
from human teachers? Most research attempts to answer
this question by building and testing new imitation learn-
ing algorithms. But we believe that the human is equally
important: whatever algorithms we develop should stem
from how humans teach and interact with robotic systems.
This writeup summarizes the insights our group has gained
over the last five years by placing humans at the center of
the learning problem. We organize our research along three
themes, where each theme explores an underlying principle
necessary to learn from humans. 1) Learning as control, where
we inject structure to align robot learners with how humans
teach, 2) learning as representation, where we enable man
and machine to speak the same language, and 3) learning
as communication, where we close the learning loop by
providing feedback to the human teacher. Viewed together,
these interconnected research directions at the intersection
of human-robot interaction advance learning from humans
in ways that go beyond learning algorithms. Our papers are
available at: https://collab.me.vt.edu/

I. INTRODUCTION

Robots should be able to learn new tasks from human
teachers. At its core, this adaptability is the promise of
robotics: machines not built for a single purpose, but able
to intelligently assist humans throughout our everyday
lives. We envision robots that observe how people be-
have, and then (based on our guidance, examples, and
feedback) these robots learn how to make toast, drive us
to work, or assemble new parts.

Unfortunately — after more than 30 years of focused
research — learning from humans (i.e., imitation learn-
ing) still remains an unsolved question. So what’s hold-
ing us back? Why haven’t we achieved this functional-
ity? At first glance, it might seem like the algorithm the
robot uses to learn from the human is the key; i.e., if we
can just find the right combination of data, architecture,
and loss, then we will “solve” imitation learning. To be
sure, the learning algorithm is important. But the human
is equally important; whatever algorithms we develop
need to inherently account for how humans teach and
interact with robotic systems. This includes deficiencies
the learner must overcome (e.g., limited amounts of im-
perfect human data), capabilities that the learner should
tap into (e.g., the human’s insight on how to complete
the task), and discrepancies between man and machine
(e.g., how the human and robot communicate).

Our work over the past five years has tried to place
the human at the center of imitation learning problems.

This formulation required a shift in approach. Instead of
starting with learning algorithms — and then designing
new architectures, losses, or heuristics to enhance their
capabilities — we explored the underlying principles
necessary to successfully learn from humans. For exam-
ple: how can humans convey their desired task? How
should robots represent and interpret the human’s in-
puts? And what learning systems will converge towards
the correct behavior when paired with a human teacher?
If we can answer these and other fundamental questions,
we can apply the resulting principles to build classes
of algorithms and interfaces that successfully imitate
everyday users. In what follows we summarize our
progress across three main themes (see Figure 1).

Learning as Control (Section III). The way the robot
learns should be aligned with how the human teaches.
To reach this alignment we need structure; specifically,
our work frames learning as a dynamical system. The
robot’s policy is the state of this system, the human’s
examples are inputs, and the learning rule governs how
the robot’s policy updates in response to those inputs.
Analyzing learning with control-theoretic tools enables
us to shape where the learning rule will converge (i.e.,
the equilibrium of the dynamical system). We find that
this approach is invariant to the specific modality the
human uses to teach their desired task. In addition,
we can shape the learning system to converge towards
control policies that have desirable properties: e.g., pro-
ducing behaviors that align with human expectations.
Our research outcomes include paradigms that modify
a variety of existing learning algorithms so that they
are robust to noisy human examples and generalize to
situations not shown during training.

Learning as Representation (Section IV). When hu-
mans and robots interact, learning becomes a problem of
understanding the other agent. How can robots enable
humans to directly indicate what the robot should do,
while also guiding the human towards contexts where
the robot can more effectively collaborate? To facilitate
this mutual, bidirectional understanding between man
and machine we leverage representations; i.e., compact
models that encode the other agent in a way that the
ego agent can harness. We then equip both humans and
robots with these representations. Our research shows
that humans can interact with representations of the
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Fig. 1. (Left) Our group’s research over the last five years seeks to place the human at the center of imitation learning problems. (Right) This
human-centered approach leads to three interconnected formalisms for robot learning that span control, representation, and communication.
(Bottom) Our resulting insights advance learning from humans in ways that go beyond simply improving the robot’s learning algorithm.

robot’s actions, policies, and features to intuitively con-
trol how they want the robot to behave. In parallel,
robots can plan across learned representations of humans
to anticipate human actions and guide co-adaptation
towards mutually beneficial behaviors.

Learning as Communication (Section V). Finally, from
the human’s perspective we frame learning as commu-
nication. Humans can teach proficient policies if they
understand how the robot learns. But today’s robots are
black boxes; as the human teaches, it is not clear what the
robot has learned or when it is still uncertain. Commu-
nicating the robot’s understanding closes this learning
loop and fundamentally improves human teaching (i.e.,
the human can now focus on aspects of the task where
the robot is struggling). To decide when, how, and what
to communicate we develop an information-theoretic
framework that correlates the human’s actions with the
robot’s task understanding. Applying this framework re-
sults in robots that boil down complex, abstract learning
parameters into personalized, understandable feedback.
Our research outcomes include methods for mapping
the robot’s internal state (e.g., its learned policy) to both
implicit and explicit signals that everyday human users
can leverage to adjust their teaching.

The overall purpose of this paper is to summarize
the interconnected work done by our group, and to
organize our experiences and insights for creating robots
that robustly, efficiently, and intuitively learn new tasks
from human teachers. When viewed together, the three
themes listed above provide complementary perspec-
tives and underlying principles for learning from hu-
mans. Although we cannot claim to have “solved” imi-
tation learning, we hypothesize that our insights across
all three themes reach towards a solution in ways that
methods which only consider (for example) the robot’s
learning algorithm cannot achieve. We emphasize that
none of this research would be possible without prior
scholarship and parallel efforts; please see related works
in the cited papers for further details.

II. LEARNING FROM HUMANS

We broadly consider scenarios where a robot is learn-
ing to improve its autonomous behavior based on in-
teractions with a human. Let x be the system state.
Depending on the specific problem setting, this state
could contain multiple components: e.g., the human’s
position, the robot’s position, and relevant features in
the environment. Let u be the system action. Again,
this overall action could break down into the human’s
action uH and the robot’s action uR. Both inputs cause
the system to transition according to its state dynamics:
x′ = f (x, u), where x′ is the new system state.

During interaction the robot decides which actions it
should take based on a control policy π:

uR = πθ(x) (1)

This controller is a mapping from states to actions, and
is parameterized by θ. When learning from humans we
often instantiate πθ as a neural network — where θ forms
the weights of that network.

Our goal is for the robot to learn the correct control
policy; i.e., a control policy that will assist the human
and autonomously perform desired tasks. More specifi-
cally, the robot seeks to identify a set of weights θ that
maximizes its expected performance. Within imitation
learning settings the robot extracts these weights by
reasoning over examples from a human teacher. Let
D = {(x, u)} be a dataset of state-action pairs where
the human demonstrates how the robot should behave
(offline), or provides feedback about the robot’s current
policy (online). Based on this dataset, the robot updates
its control policy πθ to imitate the human teacher.

III. LEARNING AS CONTROL

Control policies instantiated as neural networks are a
powerful tool because of their ability to learn arbitrarily
complex decisions. But one of the frustrating things
about these neural control policies is that they are inher-
ently open-ended. As designers, we do not know what
the robot will learn, or what we can guarantee about the
policy’s performance. This obscurity leads to empirical
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Fig. 2. Learning as control. (Left) We frame learning as a dynamical system, and shape the control policy πθ to converge towards desirable
equilibrium. (Middle) Robot playing air hockey. Each round the puck moves at different speeds and angles, but the robot can continuously hit
that puck because our control-theoretic approach makes it robust to covariate shift. (Right) One of the ways human teachers can provide inputs
to robot learners. The robot records a video of the human performing the task, and then matches object motions to complete the same task.

development cycles, where designers make changes to
improve the algorithm’s behavior, but it is not always
clear why those changes are beneficial.

To help resolve this problem, our insight is that:

We can add structure to learning from humans if we
approach learning as a dynamical system.

Under this re-framing the robot’s control policy is treated
as a “state,” and the learning rule becomes its “dynam-
ics.” The equilibrium of the dynamical learning system
should be the space of policies the human is trying to
teach the robot. The human’s inputs — of whatever
modality, whether demonstrations, corrections, or prefer-
ences — ideally drive the state (control policy) towards
its equilibrium (space of desired control policies). But
learning from humans has inherent challenges: human
teachers usually provide small amounts of data, and
that data is generally noisy and often worse than the
policy they want the robot to learn. Hence, we need
to shape the dynamical learning system so that it (a)
quickly converges to what the human meant (b) despite
heterogeneous and suboptimal inputs.

To summarize: we are ultimately looking for perfor-
mant learning algorithms. By treating learning as control,
we gain structure and can apply control-theoretic tools
to understand why specific learning methods work. See
Figure 2 for examples of these concepts.

Control-Theoretic Analysis. Our recent works have ex-
plored two levels of dynamical learning systems. To
explain these methods, we first need to take a step back
and talk about how robots learn. Learning from humans
often revolves around a loss function; this loss quantifies
the performance of the control policy across its dataset.
In practice, we train the control policy to reach weights θ
that minimize the given loss function L(θ). As a simple
example, for behavior cloning the loss could be:

L(θ) = ∑
(x,u)∈D

∥u − πθ(x)∥2 (2)

Intuitively, Equation (2) encourages the robot to learn a
policy that matches the demonstrated actions for each
state in the dataset. But — as we will see — there

are many reasonable choices for the loss function, and
we can leverage control theory to shape each of these
potential losses for more robust and stable learning.

We now return to our approaches that frame learning
as a dynamical system. First, we consider the error in
the control parameters θ [23]. If θ∗ are the unknown pa-
rameters of the correct control policy, then let eθ = θ − θ∗

denote the difference between these true parameters and
the weights the robot has actually learned. For learning
algorithms that use gradient descent to update θ so that
it minimizes loss L(θ), the error evolves according to:

e′θ = eθ − α∇θL(θ), eθ = θ − θ∗ (3)

where α > 0 is the scalar learning rate. The equilibrium
of the dynamical system in Equation (3) should ideally
be ∥eθ∥ = 0, i.e., the robot should learn the desired con-
trol policy with weights θ = θ∗. By applying Lyapunov
stability analysis, we find that a sufficient condition for
convergence to this equilibrium is:

α∥∇θL(θ)∥2 − 2eθ · ∇θL(θ) < 0 (4)

If Equation (4) is satisfied, then ∥e′θ∥ < ∥eθ∥ and the error
moves towards zero. This control-theoretic property tells
us something fundamental about the design of the loss
function. Specifically, we want to shape loss L so that
Equation (4) holds for as wide a range of human inputs
as possible. Doing so expands the basins of attraction,
and enables the robot to learn the correct control policy
from small amounts of noisy human data.

A second way we can frame learning as a dynamical
system is to focus on errors in the state x [24]. During
training, the human teacher shows the robot how to
behave at states x in dataset D — the robot knows
exactly what to do at these states. But at test time the
robot will inevitably encounter new situations that are
outside of the training dataset; it is critical that the
robot’s behavior remains safe and assistive across these
novel scenarios. Let x̂ denote a new, previously unseen
state. The error (i.e., the covariate shift) between new and
seen states is ex = x̂− x. Applying our system dynamics,
this error evolves according to:

e′x = f (x̂, û)− f (x, u), ex = x̂ − x (5)



Substituting control policy π into Equation (5), and ap-
plying a first order Taylor Series approximation around
x ∈ D, we reach the locally linearized simplification:

e′x = (∇x f +∇u · ∇xπ)ex (6)

What Equation (6) tells us is how a robot that starts at a
new state x̂ will behave as compared to a robot that starts
at a known state x. Of course, these two robots should
not act in the exact same way. But we want to prevent
the robot starting at x̂ from drifting completely out-of-
distribution, and reaching scenarios where the control
policy has no clue which actions to take. Hence, we will
encourage the robot to remain close to examples the
human teacher has demonstrated by making the error
dynamics in Equation (6) stable about the equilibrium
ex = 0. This is achieved by — for example — shaping
∇x f +∇u ·∇xπ to be a stable matrix. Again, our control-
theoretic finding has implications for the design of loss
functions when learning from humans; we can select or
modify L to enforce the stable error dynamics and make
the learned policy robust to covariate shift.

Both of the examples listed above are just that: exam-
ples. Across our research we have tried different ways
of framing learning as control [10, 31, 8]. The advantage
of these formulations is that they allow for control-
theoretic analysis, which can then be leveraged to derive
learning algorithms (or classes of learning algorithms).
Within this framework we often end up thinking about
equilibria — i.e., what sorts of behaviors should the robot
learner be converging to? Of course, we do not know
the correct control policy a priori; but we do have some
strong priors (e.g., the robot should not learn to collide
with obstacles). Our recent works have translated these
priors into desirable properties in θ, essentially reducing
the range of equilibria θ ∈ Θ the learning system can
recover from the human teacher.
Various Types of Inputs. Whatever structure we impose
must be able to assimilate the different ways in which
humans can teach robots. In the context of our dynamical
system, the loss function and associated learning rule
shape how the robot learns. The human’s actions — i.e.,
their teaching behaviors — become the inputs into this
dynamical system. So how should the human teacher
provide the examples which compose training dataset D
(i.e., the inputs from which the robot learns)? Our goal
here is to collect information-rich teaching data while
making it as easy as possible for the human to input
that data. If we can make human teaching seamless and
holistic, then it is possible to collect large amounts of
high-quality examples — and more human oversight
translates to simpler robot learning problems.

We have therefore developed a suite of inputs that
humans can use during teaching. Since treating learning
as control is invariant to the type of input, designers can
switch between these options to find the input method(s)
that are best suited to their task, user, and scenario:

• Demonstrations [19]. Human teleoperates or physi-
cally guides the robot through the desired motion.

• Corrections [19]. Human intervenes online to modify
a specific part of the robot’s behavior.

• Preferences [19]. Human compares two or more robot
trajectories and ranks these options.

• Drawings [25]. Human sketches and annotates the
desired behavior on a 2D image of the scene.

• Videos [14]. Robot collects a video of the human
performing the task with their own body.

• Language [4]. Human describes what the robot
should be doing using natural language.

Effective learning often combines more than one input
modality. Learning from these different modalities (e.g.,
both drawings and preferences) can be tricky since they
are conveying different information. But we have found
that robots can seamlessly reason over multiple input
types by treating them all as comparisons. When giving
an input the human is choosing a specific option uH.
By comparing that choice to the counterfactuals (i.e., the
alternatives ũH the human did not select), the robot gains
an understanding of what the human is optimizing for,
regardless of the input modality. For instance: the control
policy learned by our dynamical system should satisfy
the comparison ∥uH − πθ(x)∥ < ∥ũH − πθ(x)∥. We note
that both drawings and videos can be grounded into
demonstrations. For drawings, we project the 2D sketch
into a 3D motion. For videos, the robot first tries to copy
the behaviors the human showed. This inevitably fails
— since the robot’s kinematics are different from the
human’s — but the robot can iteratively explore around
the initial waypoints to find a trajectory that matches
how the human interacted with objects [22].

Outcomes. Overall, we have conducted research that
frames learning as a dynamical system [23, 24, 8], re-
search on the equilibrium the system should converge
towards [10, 31], and research on how to input different
types of human teaching into the system [19, 25, 14, 22].

IV. LEARNING AS REPRESENTATION

The learning paradigms described in Section III are
based on inference. A human teacher shows instances
of the task (e.g., drawings, videos), and the robot tries
to guess the correct control policy from those examples.
Of course, inference is challenging — so why not let the
human directly specify what the robot should do? Imag-
ine that we can enable humans and robots to speak the
same language. If we find this language, then humans can
leverage it to directly tell the robot its task, and robots
can guide humans towards seamless collaboration.

To help construct this language, our insight is that:

We connect man and machine by equipping
each agent with representations of their partner.
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Fig. 3. Learning as representation. (Left) We use representations to enable humans and robots to directly interface with one another. The latent
z encodes one agent, and then we equip the other agent with that variable. (Middle) Robot representation. The robot embeds its observations to
a latent feature space, and the human teacher uses language and markers to indicate which features — in this case the cup and coffee maker
— the robot should focus on in order to learn the current task. (Right) Human representation. Drones and robot arms predict how the human
will behave, and then plan across that prediction to influence the human’s future actions (e.g., changing the human’s strategy).

Representations here refer to learned models. They em-
bed some aspect of the other agent in a way that the ego
agent can harness; e.g., we can use representations to em-
bed the complex, interconnected motions of robot arms
into a low-dimensional, intuitive action space. Framing
learning as representation is really a two stage process.
In the first stage, we extract a representation from data,
and then in the second stage, we enable the ego agent to
interact with the learned representation. So, for example,
if we embed the high-dimensional motions of robot arms
into joystick inputs, then humans can interface with that
joystick to control the robot’s behavior. Alternatively, if
we embed the human’s driving style into a latent vector,
then autonomous cars can plan across these styles to
influence the human’s actions. Through representations
humans and robots speak with one another and remove
the need for inferring tasks from humans.

To summarize: we are looking for intuitive and expres-
sive representations in human-robot interaction. If we
view learning through these representations, we enable
agents to directly specify what each other should do. See
Figure 3 for examples of these concepts.

Formalizing Representations. Mathematically, our rep-
resentations introduce an intermediate variable (also
called a latent variable) to the control policies discussed
in the previous sections. Instead of learning a mapping
πθ(x), we now instantiate the control policy as:

uR = πθ(x, z) (7)

where z is the representation. For simplicity, let’s say this
representation is learned through an encoder and decoder.
The encoder ψ(τ) → z embeds observed data into the
learned latent space, and the decoder ϕ(z) → τ̂ maps
that latent variable back into observable data. What z
represents depends on both what we are compressing,
τ, and what we are trying to recover, τ̂. Across our
research τ contains information that is mutually known
by the human and robot, such as states, trajectories, and
histories of interaction. Within τ̂ we then try to recover

either the robot’s next actions (to build a representation
of the robot), or the human’s next actions (to build
a representation of the human). In either case, once
representation z is learned via the encoder and decoder
it provides additional context to the control policy in
Equation (7). Put another way, based on z the robot has
a better idea of what actions it should take.

Robot Representations. Let’s start with our work that
builds representations of the robot and provides these
representations to the human teacher. The core idea here
is to find latent spaces that enable humans to more
directly convey their desired behavior to robots. Since
the human will interface with the robot representations,
these representations should be user-friendly: e.g., low-
dimensional, intuitive, and consistent.

We begin by representing the robot’s actions [18, 20].
Robot arms are composed of multiple connected joints,
and when performing a task the robot must carefully
synchronize all its joint positions. To give humans direct
control over this coordinated motion, our work embeds
the robot’s high-dimensional actions uR into a low-
dimensional representation z. We train this representa-
tion to accurately reconstruct complex robot actions con-
ditioned on the system state. Referring back to our en-
coder and decoder, here input τ is the action uR, output
τ̂ is the reconstructed action ûR, and latent z is trained
to minimize reconstruction error: ∥uR − ϕ(ψ(uR, x), x)∥.
Once the latent variable is learned, humans can directly
teleoperate the robot by selecting z = uH through a joy-
stick interface. This enables users to control robot arms in
real-time; the robot converts the human’s simple inputs
(e.g., pressing right on the joystick) into coordinated joint
motions (e.g., pulling open a drawer).

But if we limit our representation to individual actions,
users have to constantly give inputs throughout the task.
To facilitate more fundamental communication we have
therefore explored multiple levels of abstraction for robot
representations. For example, in [11, 13] we temporally
extend actions into trajectories, and use the human’s



inputs to determine which task the robot should au-
tonomously perform. In these works τ is a sequence of
states and human inputs, and τ̂ are the future actions
the robot arm should take. The system operates using
the same principle as with latent actions: the robot maps
the human’s inputs into coordinated joint motions. But
now — instead of only selecting a single action — the
robot can recognize the larger task, and execute a series
of actions to help complete that task.

Both action and trajectory representations offer a way
for users to indicate what their robot should do. When
learning from humans, it is also critical to know why
the human is making each decision. For instance, to
autonomously make coffee, the robot must learn to focus
on the pose of the coffee cup and the coffee machine. Our
recent works enable humans to convey the logic behind
their decisions through feature representations [35, 4].
The robot embeds every environment feature it observes
(e.g., the color of the cup, the clutter on the table) into
a latent feature space. While providing demonstrations,
the human teacher leverages natural language and phys-
ical markers to indicate which element(s) of this latent
space are critical for the current task. Returning to the
encoder and decoder: now τ is the robot’s visual obser-
vation and its associated features, z is the latent feature
space, and τ̂ is the language and marker data provided
by the human teacher. Intuitively, latent features are a
way for teachers to direct the learner’s attention and
remove confusion behind control decisions.

Our final type of robot representation is our most
abstract — representing the robot’s policy as a canonical
space that is shared across multiple tasks [27]. Here we
encode demonstrations along two axis: a discrete en-
coder ψ1(τ) that embeds trajectories into different tasks,
and a continuous encoder ψ2(τ) that embeds those same
trajectories into continuous styles. Combining these em-
beddings produces a latent manifold we refer to as the
canonical space. Humans can interface with this space
(e.g., clicking on a visualization) to select what task
the robot should perform and the style with which the
robot should complete that task. The decoder maps both
human selections into robot actions τ̂ that are consistent
with the user-chosen task and style.

Human Representations. Switching perspectives, we
next look at works where robots build and reason over
representations of the human. These representations are
effectively human models: they enable robots to antici-
pate how humans will respond during interaction. The
core idea here is that — if the robot can predict how the
user will react to its actions — the robot can optimize its
own behavior to guide the human towards synergies.

Our early works apply this paradigm to human and
robot co-adaptation [29, 28]. The encoder ψ(τ) → z
inputs a history of states, actions, and rewards, and the
decoder ϕ(z) → τ̂ predicts the rewards the robot will

receive when executing the policy πθ(x, z). Under this
framework z captures how the human interacts with the
robot: different values of z represent different strategies
the human might follow (e.g., driving aggressively or
defensively). At each new interaction the robot updates
its estimate of z based on what happened during the
previous interaction, and then reasons over z to select
motions that are adapted to the human’s new strategy.

Our recent works go beyond adaptation to influence
humans [32, 34]. Here we use the same encoder structure
as before, but now the decoder predicts the human’s
future actions. Robots plan across this prediction to find
which robot trajectories will result in human responses
that maximize the team’s performance. Put another way,
the robot leverages its human representation to influence
the user towards collaborative behaviors (e.g., causing
people to drive safely). When learning from humans
this influence is particularly useful because the robot can
lead the human towards interactive behaviors it knows
how to respond to — thereby increasing its effectiveness.
Of course, human representations are never perfect. To
account for these modeling errors during interaction we
have also explored robust safety approaches [2].

Outcomes. Overall, we have built robot representations
which humans can interface with to directly control the
robot’s actions, trajectories, features, tasks, and styles
[18, 20, 11, 13, 35, 4, 27]. We have also built human
representations that robots can plan across to co-adapt
or influence human-robot teams [32, 34, 29, 28, 2].

V. LEARNING AS COMMUNICATION

Sections III and IV focused on making the robot a
better learner. In this final theme we now explore the
opposite perspective, and focus on making the human
a better teacher. This direction is critical for robots in-
the-wild: everyday users will not know the tricks and
insights that roboticists leverage when training systems
(e.g., end-users may be unsure about why their robot is
failing to learn). But if we can guide everyday humans to
be expert teachers, then even robots with simple learning
algorithms will extract the correct control policy.

To help humans become teachers, our insight is that:

We can accelerate learning when humans know
what the robot does and does not understand.

Imagine a user training their robot to make coffee. If the
human knows the robot is unsure about where to place
coffee cups, then they can focus their teaching on that
specific part of the task (e.g., giving more demonstrations
that reach for cups). This seems simple enough: we just
need robots to communicate their learned policy to the
human. But control policies are parameterized by thou-
sands of weights θ, and we cannot explain each of these
weights — or what they mean — to the human teacher.
Learning policies instantiated as neural networks effec-
tively turns robots into black boxes. Framing learning as
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communication seeks to open these boxes: we develop
feedback signals that close the loop and convey what the
robot has learned back to the human teacher. Our core
premise here is that — if we can determine when, where,
and what feedback to provide — the human will align
their teaching with the robot’s learning, fundamentally
simplifying learning from humans.

To summarize: we are looking for interfaces and algo-
rithms that convey robot learning. By treating learning
as communication, we reduce the burden on the robot
learner and build a more seamless student-teacher team.
See Figure 4 for examples of these concepts.

Mapping Learning to Communication. Let’s extend the
notation from Section II. In addition to taking actions uR,
now the communicative robot provides feedback signals
uS . Across our research these signals uS include visual,
haptic, or auditory cues (e.g., a wristband which vibrates
at different frequencies). The robot chooses its signals
(e.g., the vibration frequency) according to a communi-
cation policy γ(x, θ) → uS that maps learned control
weights θ into displayed cues uS . The standard approach
for γ is to design a library of signals and then prescribe a
meaning to each option (e.g., high-frequency vibrations
mean the coffee-making robot is unsure about where to
grasp the coffee mug). However, this pre-defined and
static framework is incompatible with robot learning,
where the types of information the robot needs to convey
are inherently abstract and constantly changing.

Our works therefore adapt the communication policy
γ during interaction to find cues which clearly convey
robot learning back to the human teacher. For our run-
ning example: when teaching a robot to make coffee,
perhaps high-frequency vibrations should indicate con-
fusion about grasps. But when teaching a robot to make
toast, that same signal could now indicate uncertainty
about how to insert the bread. To identify and update the
mapping between learning and signals, we leverage an
information-theoretic approach [1, 3, 38]. Specifically, we

train γ to maximize the correlation between the human’s
actions uH and the robot’s parameters θ:

I(uH ; θ | x) = H(uH | x)− H(uH | x, θ) (8)

Here I is the mutual information between two variables,
and H is the Shannon entropy over a distribution. The
hypothesis behind Equation (8) is that — even if we
don’t know what the human is trying to teach — we
do know that the way the human teaches should vary
in response to what the robot has learned. In practice,
we find that training γ to maximize Equation (8) leads
to robots that personalize when, how, and what they com-
municate. This is because I reasons over P(uH | x, uS ),
the probability of the current human teacher taking an
action in response to the robot’s feedback uS . Using this
information-theoretic framework we can build commu-
nication mappings γ completely from scratch over re-
peated interactions [1], or we can apply existing human
models P to bootstrap personalization [3].

Conveying Learning via Explicit and Implicit Signals.
Equipped with the information-theoretic backbone from
Equation (8), we next developed interfaces and algo-
rithms that communicate robot learning. This commu-
nication has become an emerging area of research. For a
review of current directions and open questions, see our
survey paper on keeping humans in-the-loop [7].

We start with work that leverages explicit feedback
signals (e.g., a text description of what the robot is
thinking). Remember the user is trying to teach the robot;
to be an effective teacher, the human must focus on
their own demonstrations and the robot’s reactions. As
such, explicit feedback should not interrupt the human’s
attention. One approach for unobtrusive signals is user-
worn devices — such as augmented reality headsets —
that overlay the robot’s plan onto the environment [26].
But our studies suggest that robot-mounted displays are
better suited for learning from humans. For instance,
in [36, 37] we wrap haptic arrays around robot arms:
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Fig. 5. Applications. (Left) RISO grippers unify traditional rigid end-effectors with a novel class of soft adhesives. When grasping an object,
RISOs can either pinch the item between non-deformable fingers or cause the object to stick to soft surfaces. We’ve used RISOs to grasp objects
from 2 mg (a piece of lead) to 2 kg (a stack of papers). (Right) The Kiri-Spoon is a soft, shape-changing utensil specifically designed for robot-
assisted feeding. Robots using Kiri-Spoons are able to more easily grasp and hold food items, simplifying acquisition and reducing spills.

when users teach the robot via physical demonstrations,
they can feel these haptic displays inflating or deflating
beneath their hands. We leverage the haptic arrays to
render the robot’s confidence. Specifically, we train an
ensemble of k control policies πθ(x), and then query
these policies at the current state x. If all k policies
output similar actions, the robot is confident and we
deflate the haptic bags. But if the policies diverge, we
inflate the array to notify the human about the learner’s
uncertainty. In [38] we extend this pneumatic display
into modular hardware that users can reconfigure on-
the-fly. Each configuration provides a different set of
haptic cues, and — to determine which configuration is
best suited for the current task and user — we maximize
the expected information gain from Equation (8).

In parallel to explicit feedback, we have also advanced
how robots implicitly reveal learning through natural
motions. Take, for example, a robot performing kitchen
tasks. By reaching for a ladle, that robot is implicitly
communicating what sorts of behaviors it has learned
to complete (e.g., scooping). Our works formalize this
logic in the context of shared autonomy [12, 9], where the
robot arm uses actions uR to indicate a learned task, and
in the context of preference learning [6], where the robot
adjusts its questions to highlight regions of uncertainty.
Implicit communication introduces a fundamental trade-
off for robot motions. The robot is using one channel (i.e.,
its actions uR) to simultaneously perform the task and
reveal its learning. To balance efficiency and communica-
tion, we accordingly propose a constrained optimization
framework [12] where the robot maximizes its action
transparency subject to performance limits.

With both explicit and implicit communication signals
in place, we can now return to our original hypothesis.
Does communication actually improve human teaching
and robot learning? By and large, our experiments with
human-robot teams support the role of communication,
and suggest that this feedback enhances trust, team
dynamics, and mutual understanding [5, 30]. Interest-
ingly, we have also discovered that there are certain

edge cases where communication is not helpful [33].
Conveying robot learning requires effort: both from the
designer (who needs to create the communication pro-
tocol) and from the end-user (who needs to interpret
and respond to the robot’s signals). Our game-theoretic
analysis shows that communication is not worth the
cost when either (a) the potential improvements in per-
formance are negligible or (b) the human struggles to
understand what the robot is trying to convey.

Outcomes. Overall, we have developed a mathematical
framework for mapping robot learning to communica-
tion [1, 3, 38]. We have then applied different instantia-
tions of that framework to generate explicit and implicit
feedback signals [26, 36, 37, 12, 9, 6], and researched their
effect on the human-robot team [7, 5, 30, 33].

VI. DISCUSSION

This writeup synthesizes how our research group is
moving towards robots that learn from humans. Con-
ventional wisdom starts with the learning algorithm. In-
stead, our research tries to place the user at the center of
the learning problem by asking fundamental questions:

1) How do we structure learning for humans? This ques-
tion led to our theme on Learning as Control. Our
current answer is to model learning as a dynamical
system, and apply control-theoretic tools to derive
learning principles based on convergence, robust-
ness, and heterogeneous inputs.

2) How do we enable humans to clearly convey their task?
This question led to our theme on Learning as
Representation. Our current answer is to build
representations of the human and robot, and then
enable agents to directly interface with one another
through these latent representations.

3) How do we make humans better teachers? This ques-
tion led to our theme on Learning as Communi-
cation. Our current answer is to close the loop on
robot learning, and develop information-theoretic
feedback signals that intuitively convey what the
robot is learning back to the human teacher.



Taken together, these (and other) different perspectives
across the robot, interaction, and human advance learning
from humans in ways that a single perspective cannot
achieve. For example: imitation learning methodologies
should ideally improve both how the robot learns as
well as how the human teaches. Ultimately, the goal
of learning from humans remains the same — enabling
multi-purpose robots to assist everyday users on new
tasks. By placing the human at the center of the learning
process, we maximize how much the robot learner assists
while minimizing the human’s teaching effort.
Looking Ahead. So what’s still missing to learn from
humans in-the-wild? Our experience is that practical ap-
plications reveal the core roadblocks behind widespread
functionality. Beyond the proof-of-concept experiments
and user studies within each cited paper, we have ap-
plied our frameworks to food processing and assistive
eating (see Figure 5). Within the food industry, there
is a need for robots that can autonomously manipulate
diverse items (e.g., small and numerous foods) and break
down large items (e.g., separating meat from fat). For
these applications we have developed specialized RISO
grippers that combine and decouple rigid and soft com-
ponents to grasp items across a 1 million times range in
weight [21, 16]. In addition, we have prototyped general-
purpose meat processing robots [39] that can detect and
cut meat safely alongside human workers.

At the other end of the food spectrum we are inter-
ested in robot-assisted feeding for users with mobility
limitations. Within this application assistive robot arms
reach for morsels on the user’s plate, acquire bite-sized
portions, and then carry that food to the user’s mouth. In
[15, 17] we facilitate the process by creating a mechanical
utensil that robots can leverage to grasp and transport
foods. This utensil — called the Kiri-Spoon — has the
form of a traditional spoon and the function of a soft
gripper: when actuated, its kirigami structure deforms
into a 3D bowl that encapsulates food items. Our case
studies with stakeholders indicate that the Kiri-Spoon
improves the user’s assistive eating experience.

From our applications we have gathered further in-
sight into learning from humans. In Sections III–V we
discussed algorithmic intelligence (e.g., controllers, rep-
resentations, interfaces). In practice, however, we see that
mechanical intelligence is often necessary to simplify the
learning problem and reach everyday solutions. Con-
sider autonomous grasping: many of our works explore
how robots can learn to manipulate objects. But instead
of the robot learning complex grasp patterns, why not
just engineer more functional grippers? Mechanical intel-
ligence — such as specialized utensils for robot-assisted
feeding — makes tasks inherently easier, reducing what
the robot needs to learn. Our future work will seek to
more seamlessly integrate both mechanical and algorith-
mic intelligence within learning systems.
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