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Abstract
When a robot performs a task next to a human, physical interaction is inevitable: the human might push, pull, twist, or
guide the robot. The state-of-the-art treats these interactions as disturbances that the robot should reject or avoid. At
best, these robots respond safely while the human interacts; but after the human lets go, these robots simply return
to their original behavior. We recognize that physical human-robot interaction (pHRI) is often intentional—the human
intervenes on purpose because the robot is not doing the task correctly. In this paper, we argue that when pHRI is
intentional it is also informative: the robot can leverage interactions to learn how it should complete the rest of its
current task even after the person lets go. We formalize pHRI as a dynamical system, where the human has in mind
an objective function they want the robot to optimize, but the robot does not get direct access to the parameters of this
objective—they are internal to the human. Within our proposed framework human interactions become observations
about the true objective. We introduce approximations to learn from and respond to pHRI in real-time. We recognize
that not all human corrections are perfect: often users interact with the robot noisily, and so we improve the efficiency
of robot learning from pHRI by reducing unintended learning. Finally, we conduct simulations and user studies on a
robotic manipulator to compare our proposed approach to the state-of-the-art. Our results indicate that learning from
pHRI leads to better task performance and improved human satisfaction.
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Introduction

Physical interaction is a natural means for collaboration and
communication between humans and robots. From compli-
ant designs to reliable prediction algorithms, recent advances
in robotics have enabled humans and robots to work in close
physical proximity. Despite this progress, seamless physical
interaction—where robots are as responsive, intelligent, and
fluid as their human counterparts—remains an open problem.

One key challenge is determining how robots should
respond to direct physical contact. Fast and safe responses
to external forces are generally necessary, and have been
studied extensively within the field of physical human-robot
interaction (pHRI). A traditional controls approach is to treat
the human’s interaction force as a perturbation to be rejected
or ignored. Here the robot assumes that it is an expert agent
and follows its own predefined trajectory regardless of the
human’s actions (De Santis et al. 2008). Alternatively, the
robot can treat the human as the expert, so that the human
guides the passive robot throughout their preferred trajectory.
Whenever the robot detects an interaction it stops moving
and becomes transparent, enabling the human to easily
adjust the robot’s state (Jarrassé et al. 2012). Impedance
control—the most prevalent paradigm for pHRI (Haddadin
and Croft 2016; Hogan 1985)—combines aspects of the
previous two control strategies. Here the robot tracks a
predefined trajectory, but when the human interacts the
robot complies with the human’s applied force. Under this
approach the human can intuitively alter the robot’s state
while also receiving force feedback from the robot.

In each of these different response strategies for pHRI
the robot returns to its pre-planned trajectory as soon as the
human stops interacting. In other words, the robot remains
confident that its original trajectory is the correct way to
complete the task. Since this robot trajectory is optimal with
respect to some underlying objective function, these response
paradigms effectively maintain a fixed objective function
during pHRI. Hence, the human’s interactions do not change
the robot’s understanding of the task; instead, external forces
are simply disturbances which should be reacted to, rather
than information which should be reasoned about.

In this work we assert that physical human interactions
are often intentional, and occur because the robot is doing
something that the human believes is incorrect. The fact
that the human is physically intervening to fix the robot’s
behavior implies that the robot’s trajectory—and therefore
the underlying objective function used to produce this
trajectory—is wrong. Under our framework we consider the
forces that the human applies as observations about the true
objective function that the robot should be optimizing, which
is known to the human but not by the robot. Accordingly,
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human interactions should no longer be thought of as only
disturbances that perturb the robot from its pre-planned
trajectory, but rather as corrections that teach the robot about
the desired behavior during the task.

This insight enables us to formalize the robot’s response
to pHRI as an instance of a partially observable dynamical
system, where the robot is unsure of its true objective
function, and human interactions provide information about
that objective. Solving this system defines the optimal way
for the robot to respond to pHRI. We derive an approximation
of the solution to this system that works in real-time for
continuous state and action spaces, enabling robot arms
to react to pHRI online and adjust how they complete
the current task. Due to the necessity of fast and reactive
schemes, we also derive an online gradient-descent solution
that adapts inverse reinforcement learning approaches to
the pHRI domain. We find that this solution works well
in some settings, while in others user corrections are noisy
and result in unintended learning. We alleviate this problem
by introducing a restriction to our update rule focused on
extracting only what the person intends to correct, rather than
assuming that every aspect of their correction is intentional.
Finally, we compare our approximations to a full solution,
and experimentally test our proposed learning method in user
studies with a robotic manipulator.

We make the following contributions∗:

Formalizing pHRI as implicitly communicating objec-
tives. We formalize reacting to physical human-robot inter-
action as a dynamical system, where the robot optimizes
an objective function with an unknown parameter θ, and
human interventions serve as observations about the true
value of θ. As posed, this problem is an instance of a Partially
Observable Markov Decision Process (POMDP).

Learning online from pHRI and safely controlling the
robot. Responding to pHRI requires learning about the
objective in real-time (the estimation problem), as well
as adapting the robot’s motion in real-time (the control
problem). We derive an approximation that enables both by
moving from the action or policy level to the trajectory level,
bypassing the need for dynamic programming or POMDP
solvers, and instead relying on local optimization. Working
at the trajectory level we derive an online gradient descent
learning rule which updates the robot’s estimate of the true
objective θ as a function of the human’s interaction force.

Responding to unintended human corrections. In practice,
the human’s physical interactions are noisy and imperfect,
particularly when trying to correct high degree-of-freedom
(DoF) robotic arms. Because these corrections do not isolate
exactly what the human is trying to change, responding to
all aspects of pHRI can result in unintended learning. We
therefore introduce a restriction to our online learning rule
that only updates the robot’s estimate over aspects of the task
that the person was most likely trying to correct.

Analyzing approximate solutions. In a series of controlled
human-robot simulations we compare the performance
of our online learning algorithm to the gold standard:
computing an optimal offline solution to the pHRI formalism.
We also consider two baselines: deforming the robot’s
original trajectory in the direction of human forces, and
reacting to human forces with only impedance control.
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(a) Robot that treats physical interactions as disturbances.
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(b) Robot that treats physical interactions as intentional and informative.

Figure 1. (Top) When physical human interactions are treated
as disturbances people have to repeatedly push the robot to
physically change its behavior. (Bottom) Robots that recognize
that physical interactions may be corrections can learn from
these interactions and change their underlying behavior to align
with the human’s preferences.

We find that our online learning method outperforms the
deformation and impedance control baselines, and that
the difference in performance between our online learning
method and the more complete offline solution is negligible.

Conducting user studies on a 7-DoF robot. We conduct
two user studies with the JACO2 (Kinova) robotic arm
to assess how online learning from physical interactions
affects the robot’s objective performance and the user’s
subjective feedback. During these studies the robot begins
with an incorrect objective function and participants must
physically intervene mid-task to teach the robot to execute
the remainder of the task correctly. In our first study we find
that participants are able to physically teach the to perform

∗Note that parts of this work have been published at the Conference on
Robotic Learning (Bajcsy et al. 2017) and the Conference on Human-Robot
Interaction (Bajcsy et al. 2018).
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the task correctly, and that participants prefer robots that
learn from pHRI. In our second study we test how learning
from all aspects of the human’s interaction compares to
our restriction, where the robot only learns about the single
feature most correlated with the human’s correction.

Overall, this work demonstrates how we can leverage the
implicit communication which is present during physical
interactions. Learning from implicit human communication
applies not only to pHRI, but conceivably also to other kinds
of actions that people take.

Prior Work
In this work, we enable robots to leverage physical
interaction with a human during task execution to learn
a human’s objective function. We also account for
imperfections in the way that people physically interact to
correct robot behavior. Prior work has separately addressed
(a) control strategies for reacting to pHRI without learning
the human’s objective and (b) learning the human’s objective
offline from kinesthetic demonstrations. An exception is
work on shared autonomy, which learns the human’s
objective in real-time, but only when that objective is
parameterized by the human’s goal position. Finally,
we discuss related work on algorithmic teaching, which
describes how humans can optimally teach robots as well as
how humans practically teach robots.

Controllers for pHRI. Recent review articles on control
for physical human-robot interaction (Haddadin and Croft
2016; De Santis et al. 2008) group these controllers into
three categories: impedance control, reactive strategies, and
shared control. When selecting a controller for pHRI,
ensuring the human’s safety is crucial. Impedance control,
as originally proposed by Hogan (1985), achieves human
safety by making robots compliant during interactions; for
instance, the robot behaves like a spring-damper centered
at the desired trajectory. But the robot can react to human
contacts in other ways besides—or in addition to—rendering
a desired impedance. Haddadin et al. (2008) suggest a variety
of alternatives: the robot could stop moving, switch to a
low-impedance mode, move in the direction of the human’s
applied force, or re-time its desired trajectory.

More relevant here are works on shared control, where
the robot has an objective function, and uses that objective
function to select optimal control feedback during pHRI
(Jarrassé et al. 2012; Medina et al. 2015; Losey et al. 2018).
In Li et al. (2016) the authors formulate pHRI with game
theory. The robot has an objective function which depends
on the error from a pre-defined trajectory, the human’s effort,
and the robot’s effort. During the task the robot learns the
relative weights of these terms from human interactions,
resulting in a shared controller that becomes less stiff when
the human exerts more force. Rather than only learning the
correct robot stiffness—as in Li et al. (2016)—our work
more generally learns the correct robot behavior. We note
that each of these control methods (Hogan 1985; Haddadin
et al. 2008; Jarrassé et al. 2012; Medina et al. 2015; Li et al.
2016; Losey et al. 2018) enables the robot to safely respond
to human interactions in real-time. However, once the human
stops interacting, the robot resumes performing its task in the
same way as it had planned before human interactions.

Learning Human Objectives Offline. Inverse reinforce-
ment learning (IRL), also known as inverse optimal con-
trol, explicitly learns the human’s objective function from
demonstrations (Abbeel and Ng 2004; Kalman 1964; Ng
and Russell 2000; Osa et al. 2018). IRL is an instance of
supervised learning where the human shows the robot the
correct way to perform the task, and the robot infers the
human’s objective offline from one or more demonstrations.
Demonstrations can be provided through pHRI, where the
human kinesthetically guides the passive robot along their
desired trajectory (Finn et al. 2016; Kalakrishnan et al.
2013). In practice, the human’s actual demonstrations may
not be optimal with respect to their objective, and Ramachan-
dran and Amir (2007); Ziebart et al. (2008) address IRL from
approximately optimal or noisy demonstrations.

Most relevant to our research are IRL approaches that
learn from corrections to the robot’s trajectory rather than
complete demonstrations (Jain et al. 2015; Karlsson et al.
2017; Ratliff et al. 2006). Within these works, the human
corrects some aspect of the demonstrated trajectory during
the current iteration, and the robot improves its trajectory
the next time it performs the task. By contrast, we use
human interactions to update the robot’s behavior during
the current task. Our solution for real-time learning is
analogous to online Maximum Margin Planning (Ratliff et al.
2006) or coactive learning (Jain et al. 2015; Shivaswamy
and Joachims 2015), but we derive this solution as an
approximately optimal response to pHRI. Moreover, we
also show how this learning method can be adjusted to
accommodate unintentional human corrections.

As we move towards online learning, we also point out
research where the robot learns a discrete set of candidate
reward functions offline, and then changes between these
options based on the humans real-time physical corrections
(Yin et al. 2019). We view this work as a simplified instance
of our approach, where the robot has sufficient domain
knowledge to limit the continuous space of rewards to a few
discrete choices.

Learning Human Goals Online. Prior work on shared
autonomy has explored how robots can learn the human’s
objective online from the human’s actions. Dragan and
Srinivasa (2013); Javdani et al. (2018) consider human-
robot collaboration and teleoperation applications, in which
the robot observes the human’s inputs, and then infers the
human’s desired goal position during the current task. Other
works on shared autonomy have extended this framework
to learn the human’s adaptability (Nikolaidis et al. 2017)
or trust (Chen et al. 2018) so that the robot can reason
about how its actions may alter the human’s goal. In all of
these prior works the robot is moving through free-space and
the human’s preferred goal is the only aspect of the true
objective which is unknown. We build on this prior work
by considering general objective parameters; this requires a
more complex—i.e., non-analytic and difficult to compute—
observation model, along with additional approximations to
achieve online performance.

Although not part of shared autonomy, we also point
out research where the robot’s trajectory changes online
due to physical human interactions. In some works—such
as Mainprice and Berenson (2013); Sisbot et al. (2007)—
the robot alters its trajectory to avoid physical human
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interaction. More related to our approach are works where
the robot embraces physical corrections to adapt its behavior.
For example, in Losey and O’Malley (2018); Khoramshahi
et al. (2018); Khoramshahi and Billard (2019); Losey
and O’Malley (2020) the robot maintains a parameterized
desired trajectory or dynamical system, and updates the
parameters in real-time to minimize the error between
the resultant trajectory and the human’s corrections. These
works directly update the robots desired trajectory based on
corrections; by contrast, we learn a reward function from
human corrections, which can—in turn—be used to generate
dynamical systems or desired trajectories. Learning a reward
function is advantageous here because it enables the robot to
generalize what it has learned within the task, e.g., because
the human has corrected the robot closer to one table, the
robot will move closer to a second table as well.

Humans Teaching Robots. Recent works on algorithmic
teaching, also referred to as machine teaching, can be
used to find the optimal way to teach a learning agent
(Balbach and Zeugmann 2009; Goldman and Kearns 1995;
Zhu 2015). Within our setting the human teaches the robot
their objective function via corrections, but actual end-users
are imperfect teachers. Algorithmic teaching addresses this
issue by improving the human’s demonstrations for IRL
(Cakmak and Lopes 2012). Here the robot learner provides
advice to the human teacher, guiding them into making better
corrections. By contrast, we focus on developing learning
algorithms that match how everyday end-users approach the
task of teaching (Thomaz and Breazeal 2008; Thomaz and
Cakmak 2009; Jonnavittula and Losey 2021). Put another
way, we do not want to optimize the human’s corrections, but
rather develop learning algorithms that account for imperfect
teachers. Most relevant is Akgun et al. (2012), which
shows how humans can kinesthetically correct the robot’s
waypoints offline to better match their desired trajectory. We
similarly investigate interfaces that make it easier for people
to teach robots, but in the context of applying physical forces
to correct an existing robot trajectory.

Formalizing Physical Human-Robot
Interaction
Consider a robot performing a task autonomously and in
close proximity to a human end-user. The human observes
this robot and can physically interact with the robot to alter
its behavior. Returning to our running example from Fig. 1,
imagine a robotic manipulator that is carrying a coffee mug
from the top of a cabinet down to a table while the human
sits nearby. Importantly, the robot is either not doing this
task correctly (e.g., the robot is carrying the cup at such
an angle that coffee will spill) or the robot is not doing the
task according to the human’s personal preferences (e.g., the
robot is carrying the coffee too far above the table). In both of
these cases the human is incentivized to physically interact
with the robot and correct its behavior: but how should the
robot respond? Here we formalize pHRI as a dynamical
system where the robot does not know the correct objective
function that the human wants it to optimize and the human’s
interactions are informative about this objective. Importantly,
this formalism defines what it means for a robot to respond
in the right or optimal way to physical human interactions.

Furthermore, certain strategies for responding to pHRI can
be justified as approximate solutions to this formalism.

Notation. Let x be the robot’s state, ur be the robot’s action,
and uh be the human’s action. Returning to our motivating
example, x ∈ Rn encodes the manipulator’s joint positions
and velocities, ur ∈ Rm are the robot’s commanded joint
torques, and uh ∈ Rm are the joint torques resulting from
the wrench applied by the human. The robot transitions
to the next state based on its deterministic dynamics
ẋ = f(x, ur + uh). Notice that both the robot’s and human’s
action influence the robot’s motion. In what follows we will
work in discrete time, where a superscript t denotes the
current timestep. For instance, xt is the state at time t.

Objective. We model the human as having a particular
reward function in mind that represents how they would
like the current task to be performed. We write this reward
function as a linear combination of task-related features
(Abbeel and Ng 2004; Ziebart et al. 2008):

r(x, ur, uh; θ) = θ · φ(x, ur, uh)− λ‖uh‖2. (1)

In the above, φ ∈ [0, 1]N is a normalized vector of N
features, λ is a positive constant, and θ ∈ RN is a parameter
vector that determines the relative weight of each feature.
Here θ encapsulates the true objective: if an agent knows
exactly how to weight all the aspects of the task, then it can
compute how to perform the task optimally. The first term
in Equation (1) is the task-related reward, while the second
term penalizes human effort. Intuitively, the human wants the
robot to complete the task according to their objective θ—
e.g., prioritizing keeping the coffee upright, or moving closer
to the table—without any human intervention∗.

With this formalism the robot should take actions ur to
maximize the reward in Equation (1) across every timestep.
This is challenging, however, because the robot does not
know the true objective parameters θ: only the human knows
θ. Different end-users have different objectives, which can
change from task-to-task and even day-to-day. We thus think
of θ as a hidden part of the state known only by the human.
If the robot did know θ, then pHRI would reduce to an
instance of a Markov decision process (MDP), where the
states are x, the actions are ur, the reward is (1), and the robot
understands what it means to complete its task optimally. But
since the actual robot is uncertain about θ, we must reason
over this uncertainty during pHRI.

POMDP. We formalize pHRI as an instance of a partially
observable Markov decision process (POMDP) where the
true objective θ is a hidden part of the state, and the robot
receives observations about θ through the human actions uh.
Formally, a POMDP is a tuple 〈S,U, Z, T,O, r, γ〉 where:

• S is the set of states, where s = (x, θ), so that the
system state contains the robot state x and parameter θ

• U is the set of the robot actions ur
• Z is the set of observations (i.e. human actions uh)
• T (st, utr + uth, s

t+1) is the transition distribution
determined by the robot’s dynamics (θ is constant)

∗We recognize that ‖uh‖2 could also be thought of as a feature in φ with
weight λ; however, we have explicitly listed this term to emphasize that the
robot should not rely on human guidance.
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• O(st+1, utr, z
t+1) is the observation distribution

• r(st, utr, uth) is the reward function from (1)
• γ is the discount factor

In the above POMDP the robot cannot directly observe the
system state s, and instead maintains a belief over s, where
b(s) is the probability of the system being in state s. Within
our pHRI setting we assume that the robot knows its state x
(e.g., position and velocity), so that the belief over s reduces
to b(θ), the robot’s belief over θ. The robot does not know
the human’s true objective parameter θ, but updates its belief
over θ by observing the human’s physical interactions uh.

Solving this POMDP yields the robot’s optimal response
to pHRI during the task∗. We point out that this POMDP is
atypical, however, because the observations uh additionally
affect the robot’s reward r, similar to Javdani et al. (2018),
and alter the robot’s state x via the transition distribution T .
Because the human’s actions can change both the state and
reward, solving this POMDP suggests that the robot should
anticipate future human actions, and choose control inputs
ur that account for the predicted human inputs uh, similar to
Hoffman and Breazeal (2007).

Observation Model. Assuming that human interactions are
meaningful, the robot should leverage the human’s actions
uh to update its belief over θ. In order to associate the
human interactions uh with the objective parameter θ, the
robot uses an observation model: P (uh | x, ur; θ). If we
were to treat the human’s actions as random disturbances,
then we would select a uniform probability distribution for
P (uh | x, ur; θ). By contrast, here we model the human as
intentionally interacting to correct the robot’s behavior; more
specifically, let us model the human as correcting the robot
to approximately maximize their reward. We assume the
human selects an action uh that, when combined with the
robots action ur, leads to a high Q-value (state-action value)
assuming the robot will behave optimally after the current
timestep, i.e., assuming that the robot learns the true θ:

P (uth | xt, utr; θ) =
eQ(xt,utr+uth;θ)∫
eQ(xt,utr+ũh;θ)dũh

(2)

Our choice of Equation (2) stems from maximum entropy
assumptions (Ziebart et al. 2008), as well as the Bolzmann
distributions used in cognitive science models of human
behavior (Baker et al. 2007).

Approximate Solutions for Online Learning
Although we have demonstrated that pHRI is an instance of a
POMDP, solving POMDPs exactly is at best computationally
expensive and at worst intractable (Kaelbling et al. 1998).
POMDP solvers have made significant progress (Silver and
Veness 2010; Somani et al. 2013); however, it still remains
difficult to compute online solutions for continuous state,
action, and observation spaces. For instance, when evaluated
on a toy problem (S = R4, O = R8), recent developments
do not obtain exact solutions within one second (Sunberg and
Kochenderfer 2017). The lack of efficient POMDP solvers
for large, continuous state, action, and observation spaces
is particularly challenging here since (a) the dimension of
our state space S is twice the number of robot DoF, 2n,
plus the number of task-related features, N , and (b) we

are interested in real-time solutions that enable the robot
to learn and act while the human is interacting (i.e. we
need millisecond-to-second solutions). Accordingly, in this
section we introduce three approximations to our pHRI
formalism that enable online solutions. First, we separate
finding the optimal robot policy from estimating the human’s
objective. Next, we simplify the observation model and use
a maximum a posteriori (MAP) estimate of θ as opposed
to the full belief over θ. Finally, when finding the optimal
robot policy and estimating θ, we move from policies to
trajectories. These approximations show how our solution
is derived from the complete POMDP formalism outlined in
the last section, but now enable the robot to learn and react
in real-time with continuous state, action, and belief spaces.

QMDP. We first assume that θ will become fully observable
to the robot at the next timestep. Given this assumption, our
POMDP reduces to a QMDP (Littman et al. 1995); QMDPs
have been used by Javdani et al. (2018) to approximate
a POMDP with uncertainty over the human’s goal. The
QMDP separates into two distinct subproblems: (a) finding
the robot’s optimal policy given the current belief b(θ) over
the human’s objective:

Q(x, ur, b) =

∫
b(θ)Q(x, ur, θ)dθ (3)

where u∗r = arg maxur Q(x, ur, b) evaluated at every state
yields the optimal policy, and (b) updating the belief b(θ)
over the human’s objective θ given a new observation:

bt+1(θ) =
P (uth | xt, utr; θ)bt(θ)∫
P (uth | xt, utr; θ̃)bt(θ̃)dθ̃

(4)

where P (uth | xt, utr; θ) is the observation model in Equation
(2), and bt(θ) = P (θ | x0:t, u0:t

r , u0:t
h ) for t ∈ {0, 1, . . .}.

Intuitively, under this QMDP the robot is always
exploiting the information it currently has, and never actively
tries to explore for new information. A robot using the policy
from Equation (3) does not anticipate any human actions uh,
and so the robot solves for its optimal policy as if it were
completing the task in isolation. Recall that we previously
pointed out that physical human interactions can influence
the robot’s state. In practice, however, we do not necessarily
want to account for these actions when planning—the robot
should not rely on the human to move the robot. Due to our
QMPD approximation the robot never relies on the human
for guidance: but when the human does interact, the robot
leverages uh to learn about θ in Equation (4). In summary,
the robot only considers uh for its information value.

MAP of θ. Ideally, the robot would maintain a full belief b(θ)
over θ. Since the human’s objective θ ∈ RN is continuous,
potentially high-dimensional, and our observation model
is non-Gaussian, we approximate b with the maximum a
posteriori estimate. We will let θ̂ be the robot’s MAP
estimate of θ.

Planning and Control. Indeed, even if we had b(θ), solving
(3) in continuous state, action, and belief spaces is still

∗The most general formulation for pHRI is that of a cooperative inverse
reinforcement learning (CIRL) game (Hadfield-Menell et al. 2016), which,
when solved, yields the optimal human and robot policies.
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intractable for real-time implementations. Let us focus on
the challenge of finding the robot’s optimal policy given the
current MAP estimate θ̂. We move from computing policies
to planning trajectories, so that—rather than evaluating (3) at
every timestep—we plan an optimal trajectory from start to
goal, and then track that trajectory using a safe controller.

At every timestep t, we first replan a trajectory ξ = x0:T ∈
Ξ which optimizes the task-related reward from Equation
(1) over the T -step planning horizon. If our features φ
only depend on the state x, then the cumulative task-related
reward becomes:

R(ξ; θ) = θ · Φ(ξ) =
∑
xt∈ξ

θ · φ(xt) (5)

Here Φ(ξ) is the total feature count along trajectory ξ. Using
the cumulative reward function in Equation (5), the robot
finds the optimal trajectory ξtr from its current estimate θ̂t:

ξtr = arg max
ξ∈Ξ

θ̂t · Φ(ξ) (6)

We can solve Equation (6) for the optimal trajectory using
trajectory optimization tools (Schulman et al. 2014; Karaman
and Frazzoli 2011). Whenever θ̂ is updated from pHRI
during task execution, the robot’s trajectory will be replanned
using that new estimate to match the the learned objective.

To track the robot’s planned trajectory we leverage
impedance control. Impedance control—as originally pro-
posed by Hogan (1985)—is the most popular controller for
pHRI (Haddadin and Croft 2016), and ensures that the robot
responds compliantly to human corrections (De Luca et al.
2006). Let xt = (qt, q̇t), where qt is the robot’s current
configuration, and qtr ∈ ξtr is the desired configuration at
timestep t. After feedback linearization (Spong et al. 2006),
the equation of motion of a robot arm under impedance
control becomes:

Mr(q̈
t − q̈tr) +Br(q̇

t − q̇tr) +Kr(q
t − qtr) = uth (7)

Here Mr, Br, and Kr are the desired inertia, damping, and
stiffness rendered by the robot. These parameters determine
what impedance the human perceives: for instance, lowerKr

makes the robot appear more compliant. In our experiments,
we implement a simplified impedance controller without
feedback linearization:

utr = Br(q̇
t
r − q̇t) +Kr(q

t
r − qt) (8)

This control input drives the robot towards its desired
state xt ∈ ξtr, and evaluating Equation (8) over all states
yields the robot’s policy. To summarize, we first solve the
trajectory optimization problem from Equation (6) to get the
current robot trajectory ξtr, and then compliantly track that
trajectory using Equation (8). Notice that if the robot never
updates θ̂ then ξtr = ξt−1

r , and this approach reduces to using
impedance control to track an unchanging robot trajectory.

Intended Trajectories. Next we address the second QMDP
subproblem: updating the MAP estimate θ̂ after each new
observation. First we must find an observation model which
we can compute in real-time. Similar to solving for our
optimal policy with Equation (3), evaluating our observation
model from Equation (2) for a given θ is challenging because

it requires that we determine theQ-value associated with that
θ. Previously we avoided this issue by moving from policies
to trajectories. We will utilize the same simplification here
to find a feasible observation model based on the human’s
intended trajectory.

Instead of attempting to directly relate uh to θ, as in our
original observation model, we propose an intermediate step:
interpret each human action uh via an intended trajectory,
ξh, which the human would prefer for the robot to execute.
We leverage trajectory deformations (Losey and O’Malley
2018) to get the intended trajectory ξh from the robots
planned trajectory ξr and the humans physical interaction
uh. Following Losey and O’Malley (2018), we propagate the
human’s interaction force along the robot’s trajectory:

ξh = ξr + µA−1Uh (9)

where µ > 0 scales the magnitude of the deformation. The
symmetric positive definite matrix A defines a norm on the
Hilbert space of trajectories and dictates the shape of the
deformation Dragan et al. (2015). The input vector is Uh =
uh at the current time, and Uh = 0 at all other times. During
experiments we use the velocity norm for A (Dragan et al.
2015), but other options are possible.

Our deformed trajectory minimizes the distance from the
previous trajectory while keeping the end-points the same
and moving the corrected point to its new configuration
(Dragan et al. 2015). Whereas using the Euclidean norm
to measure distance would return the same trajectory as
before with the current waypoint teleported to where the user
corrected it, using a band-diagonal normA (e.g., the velocity
norm) serves to couple each waypoint along the trajectory
to the one before it and the one after it. This formalizes the
effect proposed by elastic strips by Brock and Khatib (2002)
and elastic bands by Quinlan and Khatib (1993).

Now rather than evaluating the Q-value of uh + ur
given θ, like we did in Equation (2), we can compare
the human’s intended trajectory ξh to the robot’s original
trajectory ξr and relate these differences to θ. We assume
that the human provides a intended trajectory ξh that
approximately maximizes their cumulative task-related
reward from Equation (5) while remaining close to ξr:

P (ξh | ξr; θ) ≈
eR(ξh;θ)−λ‖ξh−ξr‖2∫
eR(ξ̃h;θ)−λ‖ξ̃h−ξr‖2dξ̃h

(10)

Moving forward we treat P (ξh | ξr; θ) as our observation
model. Note that this observation model is analogous to
Equation (2) but in trajectory space. In other words, Equation
(10) yields a distribution over intended trajectories given θ
and the current robot trajectory. Here the correspondence
between the human’s effort ‖uh‖2 and the change in
trajectories ‖ξh − ξr‖2 stems from the deformation in
Equation (9). In conclusion, we can leverage our simplified
observation model (10) to tractably reason about the meaning
behind the human’s physical interaction.

All-at-Once Online Learning
So far we have determined how to choose the robot’s actions
given θ̂, the current MAP estimate of the human’s objective.
We have also derived a tractable observation model. Next,
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we apply this observation model to update θ̂ based on human
interactions. By using online gradient descent we arrive at an
update rule for θ̂ which adjusts the weights of all the features
based on a single human correction. We refer to this method
as all-at-once learning. We also relate all-at-once learning to
prior works on online Maximium Margin Planning (MMP)
and Coactive Learning.

Gradient Descent. If we assume that the observations are
conditionally independent∗, then the maximum a posteriori
(MAP) estimate at timestep t+ 1 is:

θ̂t+1 = arg max
θ
P (ξ0

h, . . . , ξ
t
h | ξ0

r , . . . , ξ
t
r, θ)P (θ)

= arg max
θ

t∑
τ=0

lnP (ξτh | ξτr , θ) + lnP (θ) (11)

where P (ξτh | ξτr ; θ) is our observation model from Equation
(10). To use this model we need to compute the normalizer,
which requires integrating over the space of all possible
human-preferred trajectories. We instead leverage Laplace’s
method to approximate the normalizer. Taking a second-
order Taylor series expansion of R(ξh, θ)− λ‖ξh − ξr‖2
about ξr, the robot’s estimate of the optimal trajectory, we
obtain a Gaussian integral that we can evaluate:

P (ξh | ξr, θ) ≈ eR(ξh,θ)−R(ξr,θ)−λ‖ξh−ξr‖2 (12)

Since we have assumed that the human’s intended trajectory
ξh is an improvement over the robot’s trajectory ξr, then
it must be the case that R(ξh, θ) > R(ξr, θ). Let θ̂0 be the
robot’s initial estimate of θ, such that the robot has a prior:

P (θ) =
1

(2πα)1/2
e−

1
2α‖θ−θ̂

0‖2 (13)

where α is a positive constant.
Substituting our normalized observation model from

Equation (12) and the prior from Equation (13) back into
Equation (11), the MAP estimate θ̂t+1 is the solution to:

arg max
θ

t∑
τ=0

(
R(ξτh, θ)−R(ξτr , θ)

)
− 1

2α
‖θ − θ̂0‖2 (14)

In Equation (14) the λ‖ξh − ξr‖2 terms have dropped out
because this penalty for human effort does not explicitly
depend on θ. Intuitively, our estimation problem (14) states
that we are searching for the objective θ that maximally
separates the reward associated with ξh and ξr, while also
regulating the size of the change in θ.

We solve Equation (14) by taking the gradient with respect
to θ and then setting the result equal to zero. Substituting in
our cumulative reward function from Equation (5), we obtain
the all-at-once update rule:

θ̂t+1 = θ̂0 + α

t∑
τ=0

(
Φ(ξτh)− Φ(ξτr )

)
= θ̂t + α

(
Φ(ξth)− Φ(ξtr)

)
(15)

Given the current MAP estimate θ̂t, the robot’s trajectory
ξtr, and the human’s intended trajectory ξth, we determine an
approximate MAP estimate at timestep t+ 1 by comparing

O2

O1

Figure 2. Visualization of one iteration of our proposed
algorithm for online learning from pHRI. Here a point robot is
moving in a 2D environment with two obstacles, O1 and O2.
The robot initially plans to follow a straight line trajectory from
start to goal (ξtr, black dotted line). But the human wants the
robot to move farther away from the obstacles: the human
pushes the robot, and the robot uses the human’s applied force
to deform its initial trajectory into a human preferred trajectory
(ξth, solid black line). Given that ξth is better aligned with the
human’s objective than ξtr, we compute an online update of θ
and replan a new trajectory ξt+1

r (orange dotted line). Notice
that the new trajectory moves the robot farther from the nearby
obstacle O1 and the future obstacle O2.

the feature counts. Note that the update rule in (15) is actually
the online gradient descent algorithm (Bottou 1998) applied
to our normalized observation model (12).

Interpretation. The all-at-once update rule (15) has a simple
interpretation: if any feature has a higher value along the
human’s intended trajectory than the robot’s trajectory, the
robot should increase the weight of that feature. Returning to
our example, if the human’s preferred trajectory ξh moves the
coffee closer to the table than the robot’s original trajectory
ξr, the weights in θ̂ for distance-to-table will increase. This
enables the robot to learn in real-time from corrections.

Interestingly, our all-at-once update rule is a special case
of the update rules from two related IRL works. Equation
(15) is the same as the Preference Perceptron for coactive
learning—introduced in Shivaswamy and Joachims (2015)
and applied for manipulation tasks by Jain et al. (2015)—
if ξh was the robot’s original trajectory ξr with a single
corrected waypoint. Similarly, Equation (15) is analogous to
online Maximum Margin Planning without the loss function
if the correction ξh was treated as a new demonstration
(Ratliff et al. 2006). These findings also align with work from
Choi and Kim (2011), who show that other IRL methods
can be interpreted as a MAP estimate. What is unique in
our work is that we demonstrate how the online gradient-
descent update rule in Equation (15) results from a POMDP
with hidden state θ where physical human interactions are
interpreted as intended trajectories.

∗Recent work by Li et al. (2021) extends our approach to cases where the
interactions are not conditionally independent, i.e., multiple corrections are
interconnected.
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One-at-a-Time Online Learning
We derived an update rule to learn the human’s objective
from their physical interactions with the robot. This all-at-
once approach changes the weight of all the features that the
human adjusts during their correction. In practice, however,
the human’s interactions (and their intended trajectory) may
result in unintended corrections which mistakenly alter
features the human meant to leave untouched. For example,
when the human’s action intentionally causes ξh to move
closer to the table, the same correction may accidentally
also change the orientation of the coffee. In order to address
unintended corrections, we here assume that the human’s
intended trajectory ξh should change only a single feature.
We explain how to determine which feature the human is
trying to change, and then modify the update rule from
Equation (15) to obtain one-at-a-time learning.

Intended Feature Difference. Let us define the change in
features at time t as ∆Φt = Φ(ξth)− Φ(ξtr) ∈ RN , where ξth
is the human’s intended trajectory, ξtr is the robot’s trajectory,
and N is the number of features. Given our assumption that
the human intends to change just one feature at a single
timepoint, ∆Φt should have only a single non-zero entry;
however, because human corrections are imperfect (Akgun
et al. 2012; Jonnavittula and Losey 2021) this not always
the case. We introduce the intended feature difference, ∆Φth,
where only the feature the human wants to update is non-
zero. At each timestep the robot must infer ∆Φth from ∆Φt.
Note that this one-at-a-time approach does not mean that
only a single feature changes during the entire task: the user
can adjust a different feature at each timestep.

Without loss of generality, assume the human is trying to
change the i-th entry of the robot’s MAP estimate θ̂ during
the current timestep t. The ideal human correction of ξtr
should accordingly change the feature count in the direction:

Ji =
∂Φ(ξtr)

∂θ̂ti
(16)

Recall that ξtr is optimal with respect to the current estimate
θ̂t, and so changing θ̂t will alter Φ(ξtr). Put another way, if
the human is an optimal corrector, and their interaction was
meant to alter just the weight on the i-th feature, then we
would expect them to correct the current robot trajectory ξtr
such that they produce a feature difference ∆Φt exactly in
the direction of the vector Ji from Equation (16).

Because the human is imperfect, they will not exactly
match Equation (16). Instead, we model the human as
making corrections ∆Φt in the direction of Ji. This yields
an observation model from which the robot can find the
likelihood of observing a specific feature difference ∆Φt

given that the human is attempting to update the i-th feature:

P (∆Φ | i) ∝ e|Ji·∆Φ| (17)

Recalling that the robot observes the feature difference
∆Φt = Φ(ξth)− Φ(ξtr), then we estimate which feature the
human most likely wants to change using:

i∗ = arg max
i
P (Φ(ξth)− Φ(ξtr) | i)

= arg max
i

∣∣Ji · (Φ(ξth)− Φ(ξtr)
)∣∣ (18)

Once the robot solves for the most likely feature the human
wants to change, i∗, it can now find the human’s intended
feature difference ∆Φth. Recall that, if the human wanted
to only update feature i∗, their intended feature difference
would ideally be in the direction Ji∗ . Thus, we choose
∆Φth ∝ Ji∗ as our intended feature difference.

Update Rule. We make two simplifications to derive a
one-at-a-time update rule. Both simplifications stem from
the difficulty of evaluating the partial derivative from
Equation (16) in real-time. Indeed, rather than computing
this partial derivative, we approximate Ji as proportional to
the vector (0, . . . , 1, . . . , 0), where the i-th entry is non-zero.
Intuitively, we are here assuming that when the i-th weight
in θ̂ changes, it predominately induces a change in the i-th
feature along the resulting optimal trajectory.

Given this assumption, computing the intended feature
difference ∆Φth ∝ Ji∗ reduces to projecting the observed
feature difference ∆Φt induced by the human’s action uh
onto the i∗-th axis:

∆Φth = (0, . . . ,∆Φti∗ , . . . , 0) (19)

This fulfills our original requirement for the intended feature
difference ∆Φth to only have one non-zero entry. Moreover,
once we substitute our simplification of Ji back into our
feature estimation problem (18), we get a simple yet intuitive
heuristic for finding i∗: only the feature which the user has
changed the most during their correction should be updated.
Our one-at-a-time update rule is therefore similar to the
gradient update from Equation (15), but with a single feature
weight update using Equation (19):

θ̂t+1 = θ̂t + α∆Φth (20)

Instead of updating the estimated weights associated with
all the features like in Equation (15), we now only update
the MAP estimate for the feature which has the largest
change in feature count. Overall, isolating a single feature at
every timestep is meant to mitigate the effects of unintended
learning from noisy physical interactions∗.

Optimally Responding to pHRI
Before introducing all-at-once and one-at-a-time learning,
we showed how approximate solutions to pHRI involve (a)
safely tracking the optimal trajectory and (b) updating the
MAP estimate based on human interactions. Now that we
have derived update rules for θ̂, we will circle back and
present our algorithm for learning from pHRI. We also
include practical considerations for implementation.

Algorithm. We have formalized pHRI as an instance of a
POMDP and then approximated that POMDP as a QMDP.
To solve this QMDP we must both find the robot’s optimal
policy and update the MAP estimate of θ at every timestep t.
First, we approximate the robot’s optimal policy by solving
a trajectory optimization problem in Equation (6) for ξtr and
then tracking ξtr with an impedance controller (8). Second,
we update the MAP estimate θ̂t by interpreting each human
correction as an intended trajectory—which we obtain by

∗We note that all the features are normalized to have the same sensitivity.
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Algorithm 1 Online Learning from pHRI

Given: initial weights θ̂0 and features φ ∈ [0, 1]N

Initialize: ξ0
r ← arg maxξ θ̂

0 · Φ(ξ)

for t = 0 to T do

utr = Br(q̇
t
r − q̇t) +Kr(q

t
r − qt) . (8)

ξth ← ξtr + µA−1U th . (9)

θ̂t+1 ← θ̂t + α
(
Φ(ξth)− Φ(ξtr)

)
. (15) or (20)

ξt+1
r ← arg maxξ θ̂

t+1 · Φ(ξ) . (6)

end for

deforming the robot’s original trajectory using Equation
(9)—and next we perform either all-at-once (15) or one-at-a-
time (20) online updates to obtain θ̂t+1. At the next timestep
t+ 1 the robot replans its optimal trajectory under θ̂t+1 and
the process repeats. An overview is provided in Algorithm 1.

Implementation. In practice, Algorithm 1 uses impedance
control to track a trajectory that is replanned after pHRI.
We note, however, that this approach ultimately derives
from formulating pHRI as a POMDP. One possible variation
on this algorithm is—instead of replanning ξtr from start
to goal—replanning ξtr from the robot’s current state xt

to the goal. The advantage of this variation is that it
saves us the time of recomputing the trajectory before our
current state (which the robot does not need to know).
However, in our implementation we always replan from
start to goal. This is because constantly setting xt along the
desired trajectory prevents the human from experiencing any
impedance during interactions (i.e., the robot never resists
the human’s interactions). Without any haptic feedback
from the robot, the end-user cannot easily infer the current
robot’s trajectory, and so the human does not know whether
additional corrections are necessary (Jarrassé et al. 2012). A
second consideration deals with the robot’s feature space.
Throughout this work we assume that the robot knows the
relevant features φ, which are provided by the robot designer
or user (Argall et al. 2009). Alternatively, the robot could use
techniques like feature selection (Guyon and Elisseeff 2003)
to filter a set of available features, or the features could be
learned by the robot (Levine et al. 2016).

Simulations
To compare our real-time learning approach with optimal
offline solutions and current online baselines, as well as
to test both all-at-once and one-at-a-time learning, we
conduct human-robot interaction simulations in a controlled
environment. Here the robot is performing a pick-and-place
task: the robot is carrying a cup of coffee for the simulated
human. The simulated human physically interacts with the
robot to correct its behavior.

Setup. We perform three separate simulated experiments.
In each, the robot is moving within a planar world from a
fixed start position to a fixed goal position. We here use a
2-DoF point robot for simplicity, while noting that we will
use a 7-DoF robotic manipulator during our user studies. The
robot’s state is x ∈ R2, the robot’s action is ur ∈ R2, and the

Figure 3. Comparison of the offline QMDP solution and our
online Learning approximation for a pick-and-place task. The
robot is attempting to carry the cup to the table. Originally the
robot is confident it should move in a straight line (black), but
the user actually wants the cup to be carried closer to the
ground (blue, dashed). Here the human physically interacts to
guide the robot back to their desired trajectory (circles) when
the robot’s error is too high.

Figure 4. Robot learning and regret for the task from Fig. 3.
The true human objective is θ = 1. The offline QMDP solution
learns more about the human’s objective than our online
Learning approximation. However, both QMDP and Learning
lead to significantly less regret than the Impedance baseline.
The regret for QMDP is the lowest because here human
corrects the robot at one less timestep.

human’s action is uh ∈ R2; both the state and action spaces
are continuous. We assume that the robot knows the relevant
features φ, but the robot does not know the human’s objective
θ. The robot initially believes that “velocity” (i.e., trajectory
length) is the only important feature, and so the robot tries to
move in a straight line from start to goal.

Learning vs. QMDP vs. No Learning. To learn in real-
time, we introduced several approximations on top of
separating estimation from control (QMDP). Here we want
to assess how much these approximations reduce the robot’s
performance. We first compare our approximate real-time
solution described in Algorithm 1 to the complete QMDP
solution (Littman et al. 1995). As a baseline, we have
also included just using impedance control (Haddadin and
Croft 2016), where no learning takes places from the
humans interactions. Thus, the three tested approaches are
Impedance, QMDP, and Learning. The simulated task is
depicted in Fig. 3. The two features are “velocity” and
“table,” and the human wants the robot to carry their coffee
closer to table level (θ = 1). During each timestep, if the
robot’s position error from the human’s desired trajectory
exceeds a predefined threshold, then the human physically
corrects the robot by guiding it to their desired trajectory.
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Recall that our Learning method uses a MAP estimate of
the human’s objective, but the full QMDP solution maintains
a belief b over θ. For QMDP simulations, we discretize the
belief space—such that θ ∈ {0, 1}—and the robot starts with
a prior b0(θ = 1) = 0.1. Using a planar environment and a
discretized belief space enables us to actually compare the
full QMDP solution to our approximation, since the QMDP
becomes prohibitively expensive in high dimensions with
continuous state, action, and belief spaces.

We expect the full QMDP solution to outperform our
Learning approximation. From Fig. 4, we observe that the
robot learns θ faster when using the QMDP, and that the
robot completes the task with less regret. Both QMDP
and Learning outperform Impedance, where the robot does
not learn from pHRI. We note that here the simulated
human behaves differently than our observation model
(2): rather than maximizing their Q-value, the human is
guiding the robot along their desired trajectory. When the
simulated human does follow our observation model, we
obtain very similar results: the normalized regret becomes
0.55 for QMDP and 0.62 for Learning. To ensure that the
learning rate is consistent between the QMDP and Learning
methods, we selected α such that θ̂1 equalled b1(θ = 1)
when the simulated human followed our observation model
(2). From these simulations we conclude that the Learning
approximation for online performance is worse than the full
QMDP solution, but the difference between these methods is
negligible when compared to Impedance.

Learning vs. Deforming. As part of our approximations we
assumed that the human’s interaction implies an intended
trajectory. Here we want to see whether learning from the
intended trajectory—as in Algorithm 1—is more optimal
than simply setting that intended trajectory as the robot’s
trajectory. We compare two real-time learning methods: our
Learning approach, and the trajectory deformation method
from Losey and O’Malley (2018), which we refer to as
Deforming. The task used in these simulations is shown
in Figs 5 and 6. Again, the robot is carrying a cup of
coffee, but here the human would prefer for the robot
to avoid carrying this coffee over their laptop. Thus, the
two features are “velocity” and “laptop.” As before, the
simulated human corrects the robot by guiding it back to
their desired trajectory when the tracking error exceeds a
predefined limit. In Deforming the robot does not learn about
the human’s objective, but instead propagates the human’s
corrections along the rest of the robot’s trajectory. By
contrast, in Learning we treat these trajectory deformations
as the human’s intended trajectory, which is then leveraged in
our online update rule. Learning and Deforming can both be
applied to change the robot’s desired trajectory in real-time
in response to pHRI, and Deforming is the same as treating
the intended trajectory as the robot’s trajectory.

In Figs. 5 and 6 we show the robot’s trajectory after
N human corrections. Notice that Deformations result in
local changes which aggregate over time, while—when we
learn from these deformations—Learning replans the entire
trajectory. Our findings are summarized in Fig 7: it takes
fewer corrections to track the human’s desired trajectory
with Learning, and the human also expends more effort
with Learning. To make the comparison consistent, here
we used the same propagation method from (9) to get

Figure 5. Responding to physical interaction by deforming the
robot’s trajectory. We propagate the human’s interaction along
the robot’s trajectory to get ξh, the human’s intended trajectory.
We then set ξh as the robot’s trajectory. Here N is the number
of number of interactions: we show the robot’s trajectory after 1,
3, 5, and 7 deformations. Importantly, when using deformations
the robot never learns about task, but only updates its trajectory
in the direction of the human’s applied force.

Figure 6. Responding to physical interactions using our
proposed learning approach. As before, we propagate the
human’s interaction along the robot’s current trajectory to get
ξh, the human’s intended trajectory. But now we go one step
further: we compare ξh to ξr to update our estimate of the
human’s objective θ. The robot then moves in the direction of
the optimal trajectory for θ. Under this approach the robot learns
to avoid the laptop after N = 4 corrections, and autonomously
tracks the human’s preferred trajectory (blue, dashed).

Figure 7. Comparison of Deforming and Learning across our
simulations in Figs. 5 and 6. When robots only deform their
trajectory in the direction of the human’s applied force, humans
must exert more effort and make more corrections to guide the
robot’s trajectory to their desired behavior. By contrast, Learning
from these deformations enables the robot to correct not only
the next few timesteps, but also to replan the remainder of the
trajectory based on the human’s correction.

the Deformations and the intended trajectory for Learning.
Based on our results, we conclude that Learning leads to
more efficient online performance than Deformations alone,



Losey et al. 11

Figure 8. Comparing All-at-Once and One-at-a-Time learning
with an optimal simulated human. This human wants the robot
to carry the coffee closer to table level, and provides physical
corrections that exactly match their preferences. The human
corrects the robots behavior over the first few timesteps
(arrows) and the robot autonomously follows the humans
desired trajectory after these corrections. The robot’s behavior
is the same for All-at-Once and One-at-a-Time learning.

Figure 9. All-at-Once and One-at-a-Time learning with an
optimal simulated human. The true objective is table = 0.5,
human = 0. Both All-at-Once and One-at-a-Time converge to
the true objective: no unintentional corrections occur.

and, in particular, Learning requires less human effort to
complete the task correctly.

All-at-Once vs. One-at-a-Time. Previously we simulated
tasks with only two features, and so a single feature weight
was sufficient to capture the human’s preference (θ ∈ R). In
other words, either the all-at-once update or the one-at-a-time
update could have been used for Learning. Now we compare
All-at-Once (15) and One-at-a-Time (20) learning in a task
with three features (θ ∈ R2). This task is illustrated in Figs. 8
and 10. The human end-user trades off between the length
of the robot’s trajectory (velocity), the coffee’s height above
the table (table), and the robot’s distance from the person
(human). Like before, the weight associated with “velocity”
is fixed, and the human’s true objective is θ = [0.5, 0], where
0.5 is the weight associated with table and 0 is the weight
associated with human. Initially the robot believes that θ0 =
[0, 0], and therefore the robot is unaware that it should move
closer to the table.

We utilize two different simulated humans: (a) an optimal
human, who exactly guides the robot towards their desired
trajectory, and (b) a noisy human, who imperfectly corrects
the robot’s trajectory. Like in our previous simulations, the
human intervenes to correct the robot when the robot’s error
with respect to their desired trajectory exceeds an acceptable
margin of error: let us now refer to this as the optimal human.
By contrast, the noisy human takes actions sampled from
a Gaussian distribution which is centered at the optimal

Figure 10. Comparing All-at-Once and One-at-a-Time learning
with a noisy simulated human. This noisy human wants the
robot to move closer to the table, but accidentally provides
biased corrections that also move the cup closer to the human.
Ellipses show the robot’s position at each timestep with 95%
confidence over 100 simulations. The human unintentionally
pulls the robot closer to their body at the start of the task, and
with the All-at-Once approach they struggle to undo these
mistakes in the second half of the task.

Figure 11. All-at-Once and One-at-a-Time learning with a
noisy simulated human. The shaded regions give the standard
error of the mean. With All-at-Once, the robot initially learns that
the human feature is important, and the person must undo that
unintended learning. One-at-at-Time learning reduces the
unintended effects of the humans noisy corrections; the robot
converges towards the humans desired trajectory more rapidly.

human’s action. This distribution is biased in the direction
of the human such that the noisy human tends to accidentally
pull the robot closer to their body when correcting the table
feature. Due to this noise and bias, the noisy human may
unintentionally correct the human feature.

Our final simulation compares All-at-Once and One-at-
a-Time learning for optimal and noisy humans. The results
for an optimal human are shown in Figs. 8 and 9, while
the results for the noisy human are depicted in Figs. 10 and
11. We find that the performance of All-at-Once and One-
at-a-Time are identical when the human acts optimally: the
robot accurately learns the importance of table, and does not
change the weight of human. When the person acts noisily,
however, One-at-a-Time learning causes better performance.
More specifically, the noisy user corrected the All-at-Once
robot during an average of 5.24 timesteps, but only corrected
the One-at-a-Time robot 3.56 timesteps. Inspecting Fig. 11,
we observe that the noisy human unintentionally taught the
human feature at the beginning of the task, and had to exert
additional effort undoing this mistake on All-at-Once robots.
We conclude that there is a benefit to One-at-a-Time learning
when the human behaves noisily, since updating only one
feature per timestep mitigates accidental learning.
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(a) Task 1: Keep the cup upright (b) Task 2: Carry closer to the table (c) Task 3: Avoid the region above a laptop

Figure 12. Simulations depicting the robot trajectories for each of the three tasks in our first user study (Learning vs. Impedance).
The black path represents the robot’s initial trajectory, and the blue path represents the human’s desired trajectory.

Figure 13. During the first user study participants interacted
with a robot that maintained a fixed objective (Impedance, grey)
and a robot that learned from their physical interactions to
update its objective (Learning, orange).

User Studies

To evaluate the benefits of using physical interaction to
communicate we conducted two user studies with a 7-DoF
robotic arm (JACO2, Kinova). In the first study, we tested
whether learning from pHRI is useful when humans interact,
and compared our online learning approach to a state-of-
the-art response that treated interactions as disturbances
(Learning vs. Impedance). In the second study, we tested how
the robot should learn from end-users, and compared one-
at-a-time learning to all-at-once learning (One-at-a-Time vs.
All-at-Once). During both studies the participants and the
robot worked in close physical proximity. In all experimental
tasks, the robot began with the wrong objective function, and
participants were instructed to physically interact with the
robot to correct its behavior∗.

Learning vs. Impedance
We have argued that pHRI is a means for humans to correct
the robot’s behavior. In our first user study, we compare a

robot that treats human interactions as intentional (and learns
from them) to a robot that assumes all human interactions are
disturbances (and ignores them).
Independent Variables. We manipulated the pHRI strategy
with two levels: Learning and Impedance. The Learning
robot used our proposed method (Algorithm 1) to react to
physical corrections and re-plan a new trajectory during
the task. By contrast, the Impedance robot used impedance
control (our method without updating θ̂) to react to physical
interactions and then return to the originally planned
trajectory. Because impedance control is currently the most
common strategy for responding to pHRI (Haddadin and
Croft 2016), we treated Impedance as the state-of-the-art.
Dependent Measures. We measured the robot’s objective
performance with respect to the human’s actual objective.
One challenge in designing our experiment was that each
participant might have a different internal objective θ for any
given task depending on their experiences and preferences.
Since we did not have direct access to every person’s internal
preferences, we defined the true objective θ ourselves, and
conveyed the objective to participants by demonstrating the
desired optimal robot behavior. We instructed participants
to correct the robot to achieve this behavior with as little
interaction as possible. To understand how users perceived
the robot, we also asked subjects to complete a 7-point Likert
scale survey for both pHRI strategies: the questions from this
survey are shown in Table 1.
Hypotheses.

H1. Learning will decrease interaction time,
effort, and cumulative trajectory cost.

H2. Learning users will believe the robot under-
stood their preferences, feel that interacting with
the robot was easier, and perceive the robot as
more predictable and collaborative.

Tasks. We designed three household manipulation tasks for
the robot to perform in a shared workspace, in addition to one

∗For video footage of the experiment, see: https://youtu.be/
I2YHT3giwcY

https://youtu.be/I2YHT3giwcY
https://youtu.be/I2YHT3giwcY
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Figure 14. Objective results from our first user study. We explored whether robots should learn from physical interactions
(Learning vs Impedance). Learning from pHRI decreased participant effort and interaction time across all experimental tasks (the
total trajectory time was 15s). An asterisk (*) means p < .0001.
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Figure 15. (Left) Average cost for each task and the cost of the desired trajectory. Robots that always follow the human’s desired
trajectory minimize cost. An asterisk (*) means p < 0.0001. (Right) Plot of sample participant data from the laptop task: the desired
trajectory is in blue, the trajectory with the Impedance condition is in gray, and the Learning condition trajectory is in orange.

familiarization task. The robot’s objective function consisted
of two features: “velocity” and a task-specific feature, where
Φ(ξ) ∈ [0, 1]. Because one feature weight was sufficient to
capture these tasks (i.e., θ ∈ R) both the all-at-once and one-
at-a-time learning approached were here identical. For each
task, the robot carried a cup from a start pose to a goal pose
with an initially incorrect objective, forcing participants to
correct its behavior during the task.

In the familiarization task the robot’s original trajectory
moved too close to the human. Participants had to physically
interact with the robot to make the robot keep the cup farther
away from their body. In Task 1 the robot carried a cup
directly from start to goal, but did not realize that it needed to
keep this cup upright. Participants had to intervene to prevent
the cup from spilling. In Task 2 the robot carried the cup too
high in the air, risking breaking that cup if it were to slip.
Participants had to correct the robot to keep the cup closer to
the table. Finally, in Task 3 the robot moved the cup over a
laptop to reach its final goal pose, and participants physically

guided the robot away from this laptop region. We include a
depiction of our three experimental tasks in Fig. 12.

Participants. We employed a within-subjects design and
counterbalanced the order of the pHRI strategy conditions.
Ten total members of the UC Berkeley community (5 male,
5 female, age range 18-34) provided informed consent
according to the approved IRB protocol and participated in
the study. All participants had technical backgrounds. None
of the participants had prior experience interacting with the
robot used in our experiments.

Procedure. For each pHRI strategy participants performed
the familiarization task, followed by the three experimental
tasks, and then filled out our user survey. They attempted
every task twice during each pHRI strategy for robustness
(we recorded the attempt number for our analysis). Since we
artificially set the true objective θ, we showed participants
both the original and desired robot trajectory before the task
started to make sure that they understood this objective and
got a sense of the corrections they would need to make.
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Questions Cronbach’s α Imped LSM Learn LSM F(1,9) p-value
un

de
rs

ta
nd

in
g By the end, the robot understood how I wanted it to do the task.

0.94 1.70 5.10 118.56 <.0001
Even by the end, the robot still did not know how I wanted it to do the task.

The robot learned from my corrections.

The robot did not understand what I was trying to accomplish.

ef
fo

rt I had to keep correcting the robot.
0.98 1.25 5.10 85.25 <.0001

The robot required minimal correction.

pr
ed

ic
t

It was easy to anticipate how the robot will respond to my corrections. 0.8 4.90 4.70 0.06 0.82

The robot’s response to my corrections was surprising. 0.8 3.10 3.70 0.89 0.37

co
lla

b The robot worked with me to complete the task.
0.98 1.80 4.80 55.86 <.0001

The robot did not collaborate with me to complete the task.

Table 1. Subjective ratings collected from a 7-point Likert scale survey. Participants answered each question once after working
with the Impedance condition, and once after the Learning condition. The four question scales are shown on the left. Imped is short
for Impedance, Learn is short for Learning, and LSM stands for Likert scale mean. Higher LSM values are better (more
understanding, less effort, more predictable, more collaborative). ANOVA results are on the far right.

Results – Objective. We conducted a repeated measures
ANOVA with pHRI strategy (Impedance or Learning) and
trial number (first attempt or second attempt) as factors.
We applied this ANOVA to three objective metrics: total
participant effort, interaction time, and cost∗. Fig. 14 shows
the results for human effort and interaction time, and Fig. 15
shows the results for cost. Learning resulted in significantly
less interaction force (F (1, 116) = 86.29, p < 0.0001) inter-
action time (F (1, 116) = 75.52, p < 0.0001), and task cost
(F (1, 116) = 21.85, p < 0.0001). Interestingly, while trial
number did not significantly affect participant’s performance
with either method, attempting the task a second time yielded
a marginal improvement for the impedance strategy but not
for the learning strategy. This may suggest that it is easier for
users to familiarize themselves with the impedance strategy.

Overall, our results support H1. Using interaction forces
to learn about the objective θ here enabled the robot to better
complete its tasks with less human effort when compared to
a state-of-the-art impedance controller.

Results – Subjective. Table 1 shows the results of our
participant survey. We tested the reliability of four scales,
and found the understanding, effort, and collaboration scales
to be reliable. Thus, we grouped each of these scales into
a combined score, and ran a one-way repeated measures
ANOVA on each resulting score. We found that the robot
using our Learning method was perceived as significantly
(p < 0.0001) more understanding, less difficult to interact
with, and more collaborative than the Impedance approach.

By contrast, we found no significant difference between
our Learning method and the baseline Impedance method
in terms of predictability. Participant comments suggest that
while the robot quickly adapted to their corrections when
Learning (e.g. “the robot seemed to quickly figure out what I
cared about and kept doing it on its own”), determining what
the robot was doing during Learning was less intuitive (e.g.
“if I pushed it hard enough sometimes it would seem to fall
into another mode, and then do things correctly”).

We conclude that H2 was partially supported: although
users did not perceive Learning to be more predictable than
Impedance, participants believed that the Learning robot

understood their preferences better, took less effort to interact
with, and was a more collaborative partner.

Summary. Robots that treat pHRI as a source of information
(rather than as a disturbance) are capable of online, in-task
learning. Learning from pHRI resulted in better objective
and subjective performance than a traditional Impedance
approach. We found that the Learning robot better matched
the human’s preferred behavior with less human effort and
interaction time, and participants perceived the Learning
robot as easier to understand and collaborate with. However,
participants did not think that the Learning robot was more
predictable than the Impedance robot.

One-at-a-Time vs. All-at-Once
We have found that learning from pHRI is beneficial; now
we want to determine how the robot should learn. In our
second user study we focused on objective functions which
encode multiple task-related features. In these scenarios it is
difficult for the robot to determine which aspects of the task
the person meant to correct during pHRI, and which features
were changed unintentionally.

Independent Variables. We used a 2-by-2 factorial design
and manipulated the learning strategy with two levels (All-
at-Once and One-at-a-Time), as well as the number of feature
weights that need correction (one feature weight and all the
feature weights). Within the All-at-Once learning strategy
the robot always updated all the feature weights after a single
human interaction using the gradient update from Equation
(15). In the One-at-a-Time condition the robot chose the
one feature that changed the most using Equation (18), and
then updated its feature weight according to Equation (20).
Both learning strategies leveraged Algorithm 1, but with
different update rules. By comparing these two versions of
our approach we explore how robots should respond to noisy
and imperfect human interactions.

∗For simplicity, we only measured the value of the feature that needed to be
modified in each task, and computed the absolute difference from the feature
value of the optimal trajectory.
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(a) Task 1: Correct one feature, the distance to table (table) (b) Task 2: Correct two features, the cup orientation (cup) and the
distance to table (table)

Figure 16. Simulations depicting the robot trajectories for both of the two tasks in our second user study (One-at-a-Time vs.
All-at-Once). The black path represents the robot’s original trajectory, and the blue path represents the human’s desired trajectory.
Note that the robot now has multiple features, making it possible for the human to accidentally correct one or both features.

?

Figure 17. When the robot has to trade-off between many task
objectives, physically teaching the robot can be challenging for
users. Here the human intends to teach the robot to move
closer to the table. But the human’s correction unintentionally
tilts the angle of the cup: the robot must decide which parts of
this correction to learn from and which parts to ignore.

Dependent Measures – Objective. Within this user study
the robot carried a cup across a table. To analyze the
objective performance of our two learning strategies, we split
the objective measures into four categories:

Final Learned Reward: These metrics measure how closely
the learned reward matched the optimal reward by the end of
the task (timestep T ). We measured the dot product between
the optimal and final reward vector: DotFinal = θ · θ̂T . We
also analyzed the regret of the final learned reward, which is
the weighted feature difference between the ideal trajectory
and the learned trajectory:

RegretFinal = θ · Φ(ξθ)− θ · Φ(ξθ̂T )

Lastly, we measured the individual feature differences (table
and cup) between the ideal and final learned trajectories:

TableDiffFinal = |Φtable(ξθ)− Φtable(ξθ̂T )|

CupDiffFinal = |Φcup(ξθ)− Φcup(ξθ̂T )|

Learning Process: Measures about the learning process,
i.e., θ̃ = {θ̂0, θ̂1, . . . , θ̂T }, included the average dot product
between the true reward and the estimated reward over time:

DotAvg =
1

T

T∑
i=0

θ · θ̂i

We also measured the length of the θ̃ path through weight
space for both cup (θ̃cup) and table (θ̃table) weights. Finally,
we computed the number of times the cup and table weights
were updated in the opposite direction of the optimal θ
(denoted by CupAway and TableAway).

Executed Trajectory: For the actual trajectory that the robot
executed, ξact, we measured the regret

Regret = θ · Φ(ξθ)− θ · Φ(ξact)

and the individual table and cup feature differences between
the ideal and actual trajectory

TableDiff = |Φtable(ξθ)− Φtable(ξact)|

CupDiff = |Φcup(ξθ)− Φcup(ξact)|

Interaction: Interaction measures on the forces applied by
the human included the total interaction force, IactForce =∑T
t=0 ||uth||1, and the total interaction time.

Dependent Measures – Subjective. After each of the four
conditions we administered a 7-point Likert scale survey
about the participant’s interaction experience (see Table 2
for the list of questions). We separated our survey items
into four scales: success in teaching the robot about the task
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Figure 18. How accurately the robot learned when using All-at-Once or One-at-a-Time. (Left) The final learned θ with
One-at-a-Time is more aligned with the ideal θ on the Table+Cup task where the human had to correct multiple features. Looking at
the individual feature errors: (Center) while the final cup feature was closer to ideal for One-at-a-Time on both tasks, (Right)
All-at-Once learned a more accurate estimate of Table when the human only needed to teach a single feature. But we notice an
interaction effect here: although One-at-a-Time got the Table wrong on the single feature task, it outperformed All-at-Once across
the board when the human needed to adjust multiple features.

(succ), correctness of update (correct update), needing to
undo corrections because the robot learned something wrong
(undoing), and ease of undoing (undo ease).

Hypotheses.

H3. One-at-a-Time learning will increase the
final learned reward, enable a better learning
process, result in lower regret for the executed
trajectory, and lead to less interaction effort and
time as compared to All-at-Once.

H4. Participants will perceive the robot as more
successful at accomplishing the task, better at
learning, less likely to need undoing, and easier
to correct if it did learn something wrong in the
One-at-a-Time condition.

Tasks. We designed two household manipulation tasks for
the robot arm to perform within a shared workspace. A
depiction of the these experimental tasks is shown in Fig. 16.
The robot’s objective function consisted of three features:
“velocity,” (the trajectory length), “table” (the distance from
the table), and “cup” (the orientation of the cup). We
purposely selected features that were easy for participants to
interpret so that they intuitively understood how to correct
the robot. For each experimental task the robot carried a
cup from a start pose to end pose with an initially incorrect
objective. Task 1 focused on participants having to correct a
single aspect of the objective, while Task 2 required them to
correct all parts of the objective.

In Task 1 the robot’s objective had only one feature weight
incorrect. The robot’s default trajectory took a cup from the
participant and put it down on the table, but carried the cup
too far above the table (see top of Fig. 16). In Task 2 all the
feature weights started out incorrect in the robot’s objective.
The robot again took a cup from the participant and put it
down on the table, but this time it initially grasped the cup
at the wrong angle, and was also carrying the cup too high
above the table (see bottom of Fig. 16).

Participants. We used a within-subjects design and coun-
terbalanced the order of the conditions during experiments.
In total, twelve members of the UC Berkeley community
(4 male, 7 female, 1 non-binary trans-masculine, age range
18-30) provided informed written consent according to the
approved IRB protocol before participating in this study.
Eleven of the participants had technical backgrounds, and
one did not. None of the participants had prior experience
interacting with the robot used in our experiments.

Procedure. Before the start of the experiment participants
performed a familiarization task to become more comfort-
able teaching the 7-DoF JACO2 robot with physical correc-
tions. We here used the second task from our first experiment,
where the robot carried a cup at an angle, and the human must
correct the cup’s orientation. During this familiarization task
the robot’s objective contained only one feature weight (cup).
Afterwards, for each experimental task, the participants were
shown the robot’s initial trajectory as well as their desired
trajectory. They were also told what aspects of the task the
robot is aware of (cup orientation and distance to table), as
well as which learning strategy they were interacting with
(One-at-a-Time or All-at-Once). Participants were told the
difference between the two learning strategies in order to
minimize in-task learning effects. Importantly, we did not tell
participants to teach the robot in any specific way (like one
aspect as a time); we only informed participants about how
the robot reasons over their corrections.

Results – Objective. Here we summarize the results for each
of our objective dependent measures.

Final Learned Reward. We ran a factorial repeated-measures
ANOVA with learning strategy and number of features as
factors—and user ID as a random effect—for each of our
objective metrics. Fig. 18 summarizes our findings about the
final learned weights θ̂T for both learning strategies.

For the final dot product with the true reward θ, we found
a significant main effect of the learning strategy (F (1, 81) =
29.86, p < .0001), but also an interaction effect with the
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number of features (F (1, 81) = 13.07, p < .01). The post-
hoc analysis with Tukey HSD revealed that One-at-a-Time
led to a higher dot product on Task 2 (p < .0001), but there
was no significant difference on Task 1 (where One-at-a-
Time led to slightly higher dot product).

We next looked at the final regret, i.e., the difference
between the cost of the final learned trajectory and the cost of
the ideal trajectory. For this metric we found an interaction
effect, suggesting that One-at-a-Time led to lower regret for
Task 2 but not for Task 1. Looking separately at the feature
values for table and cup, we found that One-at-a-Time led
to a significantly lower difference for the cup feature across
the board (F (1, 81) = 11.30, p < .01, no interaction effect),
but that One-at-a-Time only improved the difference for the
table on Task 2 (p < .0001). Surprisingly, One-at-a-Time
significantly increased the difference when the human only
needed to correct a single feature (p < .001).

Overall, we see that One-at-a-Time results in better final
learning when the human needs to correct multiple features
(Task 2). When the human only wants to correct a single
feature (Task 1) the results are mixed: One-at-a-Time led
to a significantly better result for the cup orientation, but a
significantly worse result for the table distance.

Learning Process. For the average dot product between the
estimated and true reward over time, our analysis revealed
almost identical outcomes as those reported for the final
reward (see Fig. 19). Higher values of DotAvg indicate the
robot’s estimate θ̂ is in the direction of the true parameters
θ. Differences in DotAvg were negligible during Task 1, but
One-at-a-Time outperformed All-at-Once during Task 2.

Next, we found that One-at-a-Time resulted in signifi-
cantly fewer updates in the wrong direction for the cup
weight (F (1, 81) = 44.91, p < .0001) and for the table
weight (F (1, 81) = 22.02, p < .0001), with no interaction
effect in either case. Fig. 20 highlights these findings and
their connection to the subjective user responses from Table 2
that are related to undoing.

Finally, looking at the length of the learned path θ̃ through
the space of feature weights, we found a main effect of
learning strategy (F (1, 81) = 26.82, p < .0001), but also an
interaction effect (F (1, 81) = 6.55, p = .01). The post-hoc
analysis with Tukey HSD revealed that for Task 1 our One-
at-a-Time approach resulted in a significantly shorter path
through weight space (p < .0001). The path was also shorter
during Task 2, but this difference was not significant. The
effect was mainly due to the One-at-a-Time method resulting
in a shorter path for the cup weight on Task 1, as revealed by
the post-hoc analysis (p < .0001).

Overall, we see that the quality of the learning process was
significantly higher for the One-at-a-Time strategy across
both tasks. When one aspect (Task 1) or all aspects (Task
2) of the objective were wrong, One-at-a-Time led to fewer
weight updates in the wrong direction, and resulted in the
learned reward over time being closer to the true reward.

The Executed Trajectory. We found no significant main
effect of the learning strategy on the regret of the executed
trajectory: the two strategies lead to relatively similar actual
trajectories with respect to regret. Both regret as well as
the feature differences from ideal for cup and table showed
significant interaction effects.
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(a) DotAvg measures the alignment between the learned θ̂t and the true θ.
In the task with only one wrong feature weight, there was no significant
difference between the two methods in average dot product over time.
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(b) In contrast to (a), when two feature weights are wrong One-at-a-Time
outperformed All-at-Once. The dip in DotAvg for All-at-Once indicates that
participants accidentally taught the robot the wrong thing and needed to undo
their corrections.

Figure 19. One-at-a-Time showed more consistent alignment
between the learned objective, θ̂t, and the ideal objective, θ,
when compared to All-at-Once. Contrasting (a) and (b), these
results suggest that when the human needs to correct multiple
aspects of the robot’s behavior One-at-a-Time enables more
accurate learning. We anticipate that most real-world tasks will
require corrections of multiple features.

Interaction Metrics. We found no significant effects on
interaction time or force.

Objective Results – Summary. Taken together these results
indicate that One-at-a-Time leads to a better overall learning
process. On the more complex task where all the features
must be corrected (Task 2), One-at-a-Time also leads to
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Figure 20. How frequently participants made mistakes and had
to undo their corrections. (Left) Humans working with
One-at-a-Time made fewer corrections that caused the robot to
learn the opposite of what they intended. This result was
consistent across both tasks. (Right) These objective findings
match our subjective Likert scale data. Participants thought the
One-at-a-Time robot was less likely to learn the wrong thing and
need an additional undoing action.

a better final learned reward. For the simpler task where
only one feature must be corrected (Task 1), One-at-a-
Time enables users to better avoid accidentally changing the
initially correct weight (cup), but One-at-a-Time is not as
good as the All-at-Once method at enabling users to properly
correct the initially incorrect weight (table). Accordingly, our
objective results partially support H3. Although updating one
feature weight at a time does not improve task performance
when only one aspect of the objective is wrong, reasoning
about one feature weight at a time leads to significantly
better learning and task performance when all aspects of the
objective are wrong.

Results – Subjective. We ran a repeated measures ANOVA
on the results of our participant survey. After testing the
reliability of our four scales (see Table 2), we found that
the correct update and undoing scales were reliable, and
so we grouped these into a combined score. The success
(succ) scale had only a single question, and so grouping was
not applicable here. Finally, we analyzed the two questions
related to undoing ease (undo ease) individually because this
specific scale was not reliable.

For the correct update scale we found a significant effect
of learning strategy (F (1, 33) = 5.09, p = 0.031), showing
that participants perceived One-at-a-Time as better at
updating the robot’s objective according to their corrections.
The undoing scale also showed a significant effect of
learning strategy (F (1, 33) = 10.35, p < 0.01), where One-
at-a-Time was perceived as less likely to learn the wrong
thing, which would then force the participants to undo their
corrections. For both success and undoing ease scales we
analyzed the questions Q1, Q9, and Q10 individually and
found no significant effect of learning strategy.

Subjective Results – Summary. The subjective data echoes
some of our objective data results. Participants perceived that
the robot with One-at-a-Time was better at correcting what
they intended, and required less undoing due to unintended
learning. We conclude that H4 was partially supported.

Questions Cronbach’s α

su
cc Q1: I successfully taught the robot

how to do the task. –

co
rr

ec
tu

pd
at

e

Q2: The robot correctly updated its
understanding about aspects of the
task that I did want to change.

.84

Q3: The robot wrongly updated its
understanding about aspects of the
task I did NOT want to change.

Q4: The robot understood which
aspects of the task I wanted to
change, and how to change them.

Q5: The robot misinterpreted my
corrections.

un
do

in
g

Q6: I had to try to undo corrections
that I gave to the robot, because it
learned the wrong thing.

.93
Q7: Sometimes my corrections
were just meant to fix the effect of
previous corrections I gave.

Q8: I had to re-teach the robot about
an aspect of the task that it started
off knowing well.

un
do

ea
se

Q9: When the robot learned some-
thing wrong, it was difficult for me
to undo that. .66

Q10: It was easy to re-correct the
robot whenever it misunderstood a
previous correction of mine.

Table 2. Likert scale questions from our user study comparing
All-at-Once and One-at-a-Time. Questions were grouped into
four categories: success in accomplishing the task (succ),
whether the robot’s update was what the human wanted
(correct update), how often the human needing to undo
corrections because of unintended learning (undoing), and how
easy it was to undo a mistake (undo ease).

Discussion

In this work we recognize that when humans physically
interact with and correct a robot’s behavior their corrections
become a source of information. This insight enables us to
formulate pHRI as a partially observable dynamical system:
the robot is unsure of its true objective function, and human
interactions become observations about that latent objective.
Solving this dynamical system results in robots that respond
to pHRI in the optimal way. These robots update their
understanding of the task after each human interaction, and
then change how they complete the rest of the current task
based on this new understanding.

Approximations. Directly applying our formalism to find
the robot’s optimal response to pHRI is generally not
tractable in high-dimensional and continuous state and action
spaces. We therefore derive an online approximation for
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robot learning and control. We first leverage the QMDP
approximation (Littman et al. 1995) to separate the learning
problem from the control problem, and then move from
the policy level to the trajectory level. This results in two
local optimization problems. In the first, the robot solves
for an optimal trajectory given its MAP estimate of the task
objective, and then tracks that trajectory using impedance
control (Hogan 1985). The second optimization problem
occurs at timesteps when the human interacts: here the robot
updates its estimate of the correct objective using online
gradient descent (Bottou 1998); this update rule is a special
case of Coactive Learning (Jain et al. 2015; Shivaswamy
and Joachims 2015) and Maximum Margin Planning (Ratliff
et al. 2006). Although we can practically think of the
proposed algorithm as using impedance control to track a
trajectory that is replanned after physical interactions, this
approach ultimately derives from formulating pHRI as an
instance of a POMDP.

Interestingly, this derivation enables us to interpret other
state-of-the-art responses to pHRI as simplifications of our
approximation. For example, if the robot never updates its
estimate of the correct objective function (i.e., the robot never
learns from pHRI), then our online approximation reduces
to impedance control. Alternatively, if we treat the intended
trajectory induced by the human’s correction as the robot’s
trajectory (but do not update the robot’s objective), then our
approximation reduces to deforming the desired trajectory
(Losey and O’Malley 2018). We compared our online
approximation to both of these simplifications—impedance
control and deformations—as well as to a more complete
QMPD solution. During offline simulations we found that
the performance loss between our learning method and the
QMPD policy was negligible, but our method outperformed
impedance control and trajectory deformations. During user
studies with a 7-DoF robot, our learning approach resulted in
decreased interaction time, effort, and cumulative trajectory
cost when compared to an impedance controller. We also
found that users believed the learning robot better understood
their preferences, resulted in less interaction effort, and was
more a collaborative partner than the impedance robot.

Unintended Corrections. While we assert that the human’s
physical interactions are often intentional, we also recognize
that physical interactions are inherently noisy and imperfect.
When correcting a high DoF robot the human may adjust
aspects of the robot’s behavior that they did not intend to.
If the robot treats every aspect of the human’s correction as
intentional this can result in unintended learning, which the
human must then undo with additional corrections. In order
to mitigate the effects of unintended corrections, and make
the process of correcting robots through pHRI more intuitive
for the end-user, we introduce a restriction to our online
learning rule. More specifically, we assume that the robot
should only learn about one aspect of the task from each
human correction. During offline simulations we showed that
this One-at-a-Time learning approach outperformed All-at-
Once when the simulated user acted noisily: with All-at-
Once, the noisy human unintentionally changed aspects of
the robot’s task which were already correct, but with Once-
at-a-Time these unintended corrections were avoided.

Next, we performed a user study to compare our One-at-
a-Time and All-at-Once learning strategies. Here the robot

could reason over multiple features during two tasks: one
task required correcting a single feature, and the other task
required correcting multiple features of the robots objective.
For the multiple feature task learning about one feature at a
time was objectively superior: it led to a better final learning
outcome, took a shorter path to the optimum, and had fewer
incorrect inferences and human undoing along the way. But
the results were not as clear for the single feature task: One-
at-a-Time reduced unintended learning on the weights that
were initially correct, but it hindered learning for the initially
incorrect weights. Overall, study participants subjectively
preferred One-at-a-Time to All-at-Once: they thought One-
at-a-Time was better at learning the intended aspects of their
corrections and required less undoing.

Based on these results, we hypothesize that the superior
objective performance of One-at-a-Time was due to the
increased complexity of the teaching task. It appears that
only learning a single aspect at a time is more useful when
the teaching task becomes more complex and requires that
the human alter multiple parts of the robot’s objective. When
the teaching task is simple, however, and only requires one
aspect of the objective to change, it is not yet clear whether
One-at-a-Time is a better learning strategy.

Limitations. Our work is a step towards understanding
how robots should respond to pHRI. When selecting the
approximations for online learning, as well as the method for
inferring which feature to update in One-at-a-Time, we opt
for approximations that are consistent to those in the existing
literature. Future work and hardware advances may remove
the need for some of the approximations we have leveraged.

Throughout our paper we assumed that the robot had
access to the necessary task-related features. Moreover,
during our user studies the robot’s objective contained only
two or three total features, and these features were intuitive to
the human (e.g., “distance-to-person”). In practice objective
functions will have larger features sets and may include
task-related features that are non-intuitive to the human:
additional work is needed to investigate how well our
learning strategies perform in these cases.

Finally, solutions that can handle dynamical aspects—like
preferences about the timing of the robot’s trajectory—would
require a different approach for inferring the intended human
trajectory. Here it may actually be necessary to return from
the trajectory space to the policy space.

Conclusion
In this work we present an online, in-task response to
pHRI that treats human interactions as intentional. We first
formulate the problem of responding to pHRI as a partially
observable dynamical system, where solving this system
defines the optimal way for the robot to react. Unfortunately,
this formalism is not directly applicable because we require
online solutions in high-dimensional and continuous state,
action, and belief spaces. We therefore derive an approximate
solution for real-time learning and control. During offline
simulations we compared our approximate learning method
to a complete solution and state-of-the-art baselines, which
are actually simplifications of our approach. We perform two
separate user studies on a 7-DoF robot arm to determine
(a) whether learning from pHRI is useful and (b) how the
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robot should learn from physical human interactions. While
these simulations and user studies indicate the benefits of
our approach, we recognize that this work is only a first
step towards leveraging the implicit communication present
during human-robot interactions.
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