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As robotic devices are applied to problems beyond traditional manufacturing and indus-
trial settings, we find that interaction between robots and humans, especially physical
interaction, has become a fast developing field. Consider the application of robotics in
healthcare, where we find telerobotic devices in the operating room facilitating dexterous
surgical procedures, exoskeletons in the rehabilitation domain as walking aids and
upper-limb movement assist devices, and even robotic limbs that are physically inte-
grated with amputees who seek to restore their independence and mobility. In each of
these scenarios, the physical coupling between human and robot, often termed physical
human robot interaction (pHRI), facilitates new human performance capabilities and cre-
ates an opportunity to explore the sharing of task execution and control between humans
and robots. In this review, we provide a unifying view of human and robot sharing task
execution in scenarios where collaboration and cooperation between the two entities are
necessary, and where the physical coupling of human and robot is a vital aspect. We
define three key themes that emerge in these shared control scenarios, namely, intent
detection, arbitration, and feedback. First, we explore methods for how the coupled pHRI
system can detect what the human is trying to do, and how the physical coupling itself
can be leveraged to detect intent. Second, once the human intent is known, we explore
techniques for sharing and modulating control of the coupled system between robot and
human operator. Finally, we survey methods for informing the human operator of the
state of the coupled system, or the characteristics of the environment with which the
pHRI system is interacting. At the conclusion of the survey, we present two case studies
that exemplify shared control in pHRI systems, and specifically highlight the approaches
used for the three key themes of intent detection, arbitration, and feedback for applica-
tions of upper limb robotic rehabilitation and haptic feedback from a robotic prosthesis
for the upper limb. [DOI: 10.1115/1.4039145]

1 Introduction

The interaction between man and machine has changed consid-
erably over the course of history. What started as a simple physi-
cal interaction with basic tools has transformed over time, with
the tools becoming complex machines with sensors and sophisti-
cated controls. This change has been even more evident in recent
years, with modern robots developing increasing autonomy and
capability to the point where they can actively interact with a
human partner toward achieving a common task: this has led to
human robot interaction (HRI) emerging as a new field of research
aimed at maximizing the performance, efficiency, and applicabil-
ity of coupled human–robot systems.

Human robot interaction can be defined as “a field of study
dedicated to understanding, designing, and evaluating robotic sys-
tems for use by or with humans” [1]. This is a broad definition,
and indeed HRI is a multifaceted discipline. For example, some
applications are natural extensions of the industrial and manufac-
turing settings that originally supported automation via robotics
[2,3]. In this domain, HRI systems enable high-level task planning
and flexibility achievable with trained human operators compared

to preprogrammed industrial robots, while still leveraging the
repeatability, precision, and load-carrying capacity of robots.
Socially interactive robots are also gaining prominence [4], and
are suited to applications where robotic systems are socially situ-
ated, embedded, and intelligent, with a focus on cognition, social
behavior, and natural interactions (verbal, visual, and typically
nonphysical) with human partners. HRI has also reached to the
medical and healthcare sector, where we see robots used for mini-
mally invasive surgery [5], and even being worn to improve
mobility and independence [6,7].

As these applications imply, some forms of human robot inter-
action involve direct physical contact [3,7,8], often referred to as
physical human robot interaction (pHRI). While much of the liter-
ature related to pHRI has traditionally had a strong focus on
ensuring safety during the interaction between human and robot
[9], we present this review from the viewpoint of the overall
shared control architecture that is designed to achieve a desired,
physically coupled, and cooperative pHRI task. First, we will pro-
vide our perspective on shared control in pHRI, and define a foun-
dation for our review based on the themes of intent detection,
arbitration, and feedback. Each theme is defined and reviewed in
detail, interactions between themes are explained, and examples
from the state of art will be presented to illustrate how similar
concepts are present in applications from seemingly different
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fields. Finally, two case studies from the authors’ prior work are
described, showing in detail how the framework can be applied in
the design of two prototypical pHRI systems.

2 Overview

In this survey, we explore human–robot shared control over a
collaborative task for applications where the human is physically
coupled to, and cooperating with, the robotic device. While the
traditional pHRI framework focuses strictly on applications where
there is a direct physical contact between human and robot [9],
here we extend our survey to also consider applications where
physical interaction is mediated through a third object. This
allows us to consider additional relevant applications, such as
cooperative manipulation tasks, where an object is jointly manipu-
lated by a human and a robot to achieve a common goal. This
extension can also include bilateral teleoperation tasks where a
human remotely controls a robot, with a haptic feedback channel
conveying information to the human user regarding the physical
interactions that are occurring between the robot and the remote
environment. We present a general framework to describe the
interaction process, with the aim of organizing design procedures
from different subfields of pHRI.

We propose a framework for considering shared control
between humans and physically coupled robots that features three
key ideas. First, in each of our selected applications, the robot
requires some knowledge of the human’s goals and intents so that
the robot behavior can be controlled accordingly. We term this
intent detection, and will begin our survey by defining intent, and
then exploring methods for measuring and interpreting intent in
pHRI systems. Second, the interaction between human and robot
and the way each affects the environment are regulated by arbi-
tration, which we define as the mechanism that assigns control of
the task to either the human or the robot. Finally, we posit that it
is essential that the human be provided with information about the
task and environment characteristics, and, where appropriate, sug-
gested trajectories or task completion strategies that are developed
by the robotic partner. Therefore, feedback from the robot to
human is returned via some sensory channel, often haptic, so as to
leverage the physical coupling that already exists between human
and robot. We have illustrated this framework in Fig. 1. In this
schematic model, arbitration is represented as a knob: when con-
trol is assigned primarily to the robot (darker shaded arrow), its
energy exchange with the environment will be greater; con-
versely, if control is assigned primarily to the human, the energy
exchanged between human and environment will be greater. The
bilateral exchange between robot and human represents the robot
detection of human intent, and the provision of feedback to the
human.

These three elements (intent detection, arbitration, and feed-
back) can be used to model many applications of physical human
robot interaction. In Ref. [10], for example, a cooperative manipu-
lation task is presented where a human and a robot collaborate to
move a bulky table. Intent detection was performed by using
force/torque sensors and processing their measurements with a
mathematical model of the task; arbitration was realized by con-
trolling a role allocation parameter derived from task modeling;
and feedback to the user was provided haptically through the
cooperatively manipulated object. The framework can also be
applied to the pHRI task of myoelectric control of a robotic upper
limb prosthesis. Here, intent detection is achieved by monitoring
surface electromyography (sEMG) signals; arbitration can be real-
ized by directly mapping EMG activity to the actuators of the
prosthesis to control grip pose, while maintaining automated low-
level control of grip force to prevent an object from slipping from
the prosthetic gripper’s grasp [11]); and feedback can be provided
to the human using haptic devices on the residual limb or embed-
ded in the socket interface. In Secs. 3–5, we expand on each
framework element, providing examples and implementation
guidelines from the literature, and comparing approaches from
different fields of pHRI. In particular, while the framework pre-
sented is general, we will focus on the context of rehabilitation in
the rest of the paper.

Rehabilitation can be thought of in two contexts. First, pHRI
applications in rehabilitation can be compensatory in nature,
where human intent is detected to control a robotic device that
replaces lost capabilities (e.g., myoelectric prostheses, or exoskel-
etons as mobility aids for paraplegics). In other scenarios, the
objective is to promote partial or complete recovery from neuro-
logical injury such as stroke or spinal cord injury. These applica-
tions clearly require a distinct set of design requirements, as the
objectives differ greatly. In the first case, we want to integrate a
robot with the human control system, while, in the second case,
we seek to promote neural recovery so that the participant can
function independent of the robot after treatment is complete.

3 Intent Detection

We will define the problem of intent detection as the need for
the robot to have knowledge of some aspect of the human’s
planned action in order for the robot to appropriately assist toward
achieving that action. Therefore, the robot’s ability to detect user
intent relies directly on some channel of communication existing
between the human and the robot. The structure of this section is
to look at the three aspects of the unidirectional channel of com-
munication of intent from user to robot (Fig. 2). First, the user’s
intention must be defined, and when referring to the many differ-
ent forms in which intent can be defined, we will use the phrase
intent information, or sometimes simply intent. Second, the
modality by which intent information is measured by the robot
must be decided, which we will refer to as the method of intent
measurement. Finally, once the information reaches the robot,
there is the more open-ended question of how this measurement is

Fig. 1 Conceptual representation of the proposed framework:
human and robot exchange information and interact with the
environment according to what is decided by the arbitration
(represented by the knob)

Fig. 2 The three steps for conveying of the human’s intent to
the robot: identification, measurement, and interpretation
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to be understood by the robot as a representation of the intent
information, and how it is to be incorporated into the robot control
structure. We will refer to this aspect of the problem as intent
interpretation. Consideration of approaches to intent interpreta-
tion begins to blur the line between intent detection and
arbitration—a larger division that we have drawn in the shared
control problem framework. Our discussion of intent detection
will make some mention of robot control strategies, but will sel-
dom descend into detail since arbitration will receive its own
treatment in Sec. 4. Further, mechanisms of communication from
the robot to the human will be discussed in the section on
communication.

The system designer has significant freedom in how to
approach all aspects of the intent detection problem; therefore, in
our review of the intent detection literature, we aim to (1) expose
the reader to some extent of the range of approaches that have
been employed in the literature and (2) draw connections across
seemingly disparate areas of research where similar strategies of
intent detection have been employed. This review is not exhaus-
tive, even within our narrowly defined list of applications. We do
believe, however, that we have at least covered examples of the
more common strategies for defining intent, measuring intent, and
interpreting intent.

3.1 Defining Intent. We propose a unified definition of user
intent. Human motor control is complex, involving activity in the
central nervous system (CNS), the peripheral nervous system
(PNS), the musculoskeletal system, and finally the environmental
interactions that are being controlled. At each of these subsystems,
there are measurable physical quantities, called state variables,
which are manifestations of the human’s intention. Additionally,
we know that the state variables local to one subsystem are tightly
linked to those of another subsystem. For instance, sensory affer-
ent neurons in the PNS send information to the CNS, which
guides motion planning in the motor cortex, while the motor cor-
tex also sends neural commands back down to the PNS. There-
fore, the user intent is most generally described by many different
subsystem states containing different forms of intent information,
which exist simultaneously and give rise to one another. Though
only some information will be relevant for a specific application,
the common characteristics of intent are that it can be represented
by states that describe the human system and that this information
has been deemed relevant to the task by the system designer.

For many applications, intent can be defined in a binary way.
For the arbitration of effort between human and robot, it seems
natural to ask, is the user actively trying to control the interaction
or not? This type of intent—active versus passive—is defined in
Ref. [12] for a hand shaking robotic application. In a more clinical
setting, the movement of a robotic exoskeleton or prosthetic limb
is often automated. This allows for the human intent to simply be
defined as a trigger to initiate motion, often ascertained from a
brain–machine interface (BMI), as seen in Ref. [13].

In other applications, there are more than two possible discrete
states for intent. For instance, in order to manage the complexity
of an upper limb robotic prosthesis, a user is often given prede-
fined poses, grasps, or functions that the prosthesis can complete
autonomously. In Refs. [14–17], upper limb prosthetics are con-
trolled by the user selecting one of these predefined functions;
therefore, the user intent is represented by a single categorical
variable.

The control of lower limb exoskeletons and orthoses is another
application where intent can often be reduced to selecting from a
set of predefined motions. In Ref. [18], the wearer of the lower
extremity assistive device is defined to have one of eight possibly
intended motion states related to sitting, standing, or walking. The
definition of user intent is similar in several of the devices
reviewed by Yan et al. [19].

Intent can also be defined in terms of continuous variables. For
those working with patients who are undergoing neurorehabilitation,

one of the most important questions is whether or not the user is
actively engaged in completing the motor task at hand. Sarac et al.
[20] extend a typical method for extracting a binary classification of
move/rest to now output a continuously varying signal. They inter-
pret this signal to be the “level of intention” of the user, which is
then mapped to the speed of task execution.

In many examples, user intent is defined in terms of a velocity
or position trajectory—the predicted forward path of the user and/
or robot. In Ref. [21], an intelligent walker defines the intent of
the user in the form of a predicted forward path over a short time
horizon, while in Ref. [22], a cane robot uses similar methods to
ascertain the user’s direction of intended motion and the
“magnitude” of the intention in that direction. Short-time-horizon
forward paths can also be parameterized, as in Refs. [23] and [24],
so that the parameter estimates serve as the user intent.

A slightly different form of user intent is a continuously time-
varying desired position. It can be thought of as the reference tra-
jectory for the control of a robotic manipulator, and it is often
used as the input to a robot impedance controller. Ge and
coworkers [25,26] define the motion intention in this way for a
human and robot performing collaborative motions with shared
end-effector position, as do Erden and Tomiyama [27].

The human’s intent can be defined as a continuously time-
varying force or torque. In the 2015 review by Yan et al., we see
this as a common definition of intent for lower-limb exoskeletons.
Pehlivan et al. [28] define the user’s intent as the interaction force
between the person and the wrist exoskeleton at the handle, and
Lenzi et al. [29] look at the effective torque about the user’s elbow
within an elbow exoskeleton. In Ref. [28], the interaction force is
estimated from position sensing and modeling of the robot dynam-
ics, while in Ref. [29], the interaction torque is estimated
from measurements of the user’s muscle activation. Still, both
applications could be said to have defined the same type of intent
information.

Finally, we consider the example of a human wearing a seven
degrees-of-freedom (DoF) upper-limb exoskeleton in work done
by Kiguchi and Hayashi [30]. This is one example of how defining
the human intent for a shared control problem requires us to con-
sider multiple forms of intent information simultaneously. In
Ref. [30], the exoskeleton is to provide powered assistance to the
user as they perform unstructured tasks. The resulting controller
structure defines signals such as the user’s muscle activation sig-
nal, the estimated joint torque generated by the user, the force vec-
tor at the hand that results from the estimated joint torques, and
the acceleration of the hand that should result from the hand force
vector. All of these signals could possibly be under the control of
the user, and therefore be a part of their intention. In theory, the
designer should be able to measure any one of these signals and,
with appropriate modeling techniques, reconstruct the others for
the use of the robot controller.

3.2 Measuring Intent. In this section, the details of the
selected applications will become clearer as we describe the spe-
cific methods by which researchers measure the different forms of
intent information that were described in Sec. 3.1. The different
methods of measurement—or, measurement modalities—that we
discuss should be thought of as not entirely dependent on the
intent information that is being measured. In other words, there is
not a one-to-one mapping between an intent definition and a cor-
responding measurement modality.

There are a variety of neural methods for measuring intent
information that have recently become available to us thanks to
advancements in neuroscience. The first we will discuss is the
technique of electroencephalography (EEG), which is an example
of what is commonly referred to as a BMI. In brief, an array of
electrodes measure electrical activity of the cortex at varying
degrees of proximity to the surface, depending on the method. In
order to measure user intent, researches have used surface EEG,
where the electrodes are placed noninvasively along the scalp
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[20]. They have also made use of intracranial EEG, also called
electrocorticography, where the electrodes have been placed on
the surface of the brain as the result of a surgical procedure [13].
In both cases, the electrodes measure voltage relative to some ref-
erence, and the signal is referred to as the local field potential
(LFP). We know that encoded within the LFP is information about
the activity of the region of the brain local to the electrode. From
there, depending on the intent information that we wish to extract,
decoding the LFP can be carried out in a number of ways. This is
reserved for Sec. 3.3.

Myography is the measurement of the activations of human
muscles and their resulting contractile forces, and it can be
accomplished in a number of ways. The most common method
seen in the literature is EMG, which measures changing electrical
potentials that result from the activation of motor units near elec-
trodes. Surface EMG is more commonly used because it is com-
pletely noninvasive, though it is limited to measuring superficial
muscles near the surface of the skin. We see examples of surface
EMG being used to measure user intent in Refs. [14] and [31–33].
If greater specificity or deeper muscle recordings are needed, there
is intramuscular EMG, which uses a fine needle electrode inserted
into the muscle.

Recently, force myography (FMG), also known as topographic
force mapping or muscle pressure mapping, has received attention
as a possibly less expensive and, in some cases, more robust
method of myography. FMG is also noninvasive; it infers muscle
forces by detecting changes in muscle volume underneath tactile
sensors placed on the surface of the limb. We see it used in
Refs. [15–17] with success that certainly warrants further
investigation.

Another form of myography, known as sonomyography, is
based on ultrasound imaging and has only recently been intro-
duced. Akhlaghi et al. [34] use a conventional clinical ultrasound
system to generate images of a cross section of the forearm
muscles, which are then used to train a database of ultrasound
activity corresponding to different hand motions. A simple nearest
neighbor classifier is then tested on real-time data to identify hand
motions with a classification accuracy that lies within the range of
reported results for similar sEMG systems. The main advantage
of the sonomyography technique is that it can sense the activity of
deep muscles, such as those in the forearm that control the fingers.

Traditional load cells can measure force and torque with a high
accuracy in up to 6DoF. In the case where a human and a robot
interact through a simple interface such as a handle, load cells
provide the best measurement of the exchange of effort at the
interaction point. They also come with a high cost and increased
fragility. Nonetheless, Wang et al. use a 6DoF force/torque sensor
at the robot end effector to monitor the human–robot interaction
during a hand shaking task [12]. Huang et al. sensorize their intel-
ligent walker with a load cell in each of its two handles [21].
Wakita et al. also use a 6DoF load cell in the interface of their
omnidirectional-type cane robot as the primary source of sensory
information [22]. By contrast, a popular force-sensing alternative
is the use of compliant force sensors in series with the actuator
and the user, commonly known as series elastic actuation. Pratt
et al. demonstrate the integration of a series elastic actuator into a
knee exoskeleton in Ref. [35], the principle being that by adding a
linear spring into the actuator’s ball-screw transmission, measure-
ments of the spring deflection can be converted directly into actu-
ator output force by Hooke’s law.

At this point, we will note that the accessibility of a type of
intent information, when paired with the chosen measurement
modality, will determine the robustness of the signal measurement
to environmental noise. For instance, the detailed activity of the
CNS is generally inaccessible without invasive surgery, due to the
fact that this intent information arises deep within the human
body. Using EEG, one of the most direct, noninvasive techniques
at our disposal, to study the motor cortex is much more sensitive
to noise than simply measuring the resulting motion of the body.
Likewise, surface EMG measurement of muscle excitation is

increasingly sensitive to noise the deeper the muscle is relative to
the skin surface, while a direct measurement of the forces pro-
duced by that same part of the body in contact with a force/torque
sensing load cell will be more reliable. However, in exchange for
robustness, the external measurements of kinematics and kinetics
lack any information regarding how the body is planned to
achieve that outcome. The external signals also occur after some
time delay in comparison to signals generated by the nervous sys-
tem, which may or may not be acceptable depending on how
quickly the robot should react to the human. Taking into account
such tradeoffs, system designers may choose to measure one type
of intent signal in order to estimate another, thanks to the flexibil-
ity that comes with intent interpretation.

3.3 Interpreting Intent. Now that we have covered what
the intent information is that we are trying to measure, and what
measurement tools we have at our disposal, the final component
of the intent detection problem is our interpretation of the mea-
surement. This deserves particular attention because for many
applications, the intent information that we wish to know and the
signal that we are able to measure are not necessarily the same
thing, but they are related. It is at this point that we will make
greatest use of our modeling of the system, both human and
robotic, as well as simplifying assumptions that need to be made.

A common neural-based approach to intent interpretation
for BMIs uses the neural intent to predict the user’s movement
intention, with the output being simply a trigger that initiates the
movement of a robot or prosthesis. McMullen et al. [13] use the
method of decoding, or classification, of the inputs called linear
discriminant analysis (LDA), and, along with support vector
machines, it is one of the most common techniques for making
inferences about neural data. Sarac et al. [20] make a clever exten-
sion of the LDA algorithm to obtain more than just a binary output
of move/rest. The same two classes (move and rest) are used, but
for each new data point, the posterior probabilities of each class
are calculated providing a continuous output between zero and
one. The authors map this continuous output to the task execution
speed, which is a single parameter in the robot motion controller.
This slightly artificial mapping is used to encourage patient
engagement in therapy, and is an excellent example of the flexibil-
ity that exists in the interpretation step for the designer of the
shared control architecture.

There are two main approaches in interpreting myographic
signals: pattern recognition and mapping to continuous effort.
Despite its complexity, we see an early example of using pattern
recognition on the features of a single sEMG channel to control
an upper-limb prosthesis in Ref. [31]. The pattern recognition
approach is to map patterns of any number of signal features to
desired prosthesis poses, grasps, or functions. The way in which
control algorithms learn this mapping varies, but common
approaches are LDA, support vector machines, and artificial neu-
ral networks. Simpler versions can use only a few features, such
as the use of three electrode signals variances in Ref. [32], to learn
to distinguish between a few discrete operating states. There has
been much progress in this method over the years, with more
current work involving many channels of EMG [14] or FMG [17].
In both Refs. [14] and [17], the authors also show improved
robustness to potential disturbances such as limb position.

While pattern recognition approaches are appealing for their
ability to learn arbitrary mappings between myographic signal
features and intent information, they are most commonly used to
select from a relatively small number of discrete control states.
For applications such as neurorehabilitation, where sometimes
the goal is only to trigger the appropriate robot motion at the
appropriate time, this is acceptable. However, other applications,
including other modes of neurorehabilitation, would benefit from
extracting continuously time-varying information such as the
user’s desired joint torques. A simple approach to this problem is
to match the EMG signal amplitudes of agonist–antagonist muscle
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pairs to antagonistic cable actuation systems for rotary exoskele-
ton joints, and then to hand tune a proportional gain from the
EMG signal, postprocessing, to the assistive torque provided by
the robot [33]. The assumption here is that subjects that have been
weakened by neurological damage will benefit from a robot pro-
viding torque that is in the same direction and roughly propor-
tional to the user’s desired torque. Lenzi et al. take an interesting
approach, which is to leverage the ability of the human CNS to
adapt their EMG activation to minimize the error between their
intended motion and observed robot motion [29] so that propor-
tional control becomes a sufficient control strategy for the robot.
While this approach has the potential to greatly simplify the
design of control systems for powered exoskeletons, it has the sig-
nificant drawback of disturbing a user’s natural motor function at
the neural level.

Other researchers have worked to develop control systems that
explicitly learn the mapping between EMG signals and user’s
desired joint torque. An excellent example by Kiguchi and
Hayashi is the use of an adaptive neuro-fuzzy modifier to learn
the relationship between the root-mean-square of measured EMG
signals and the estimated user’s desired torques [30]. The
approach is to use an error-backpropagation learning algorithm to
modify the mapping, which is expressed as a weighting matrix.
The neuro-fuzzy modifier takes as inputs the joint angle measure-
ments provided by the robot in order to account for the effect of
varying limb position on EMG signals.

Examples of lower-limb exoskeletons from previous decades,
which are covered more extensively in Ref. [19], make use of
ground reaction force sensing and lower-limb kinematics to esti-
mate joint torques [35]. Once again, the estimated joint torque at
the knee has a hand-tunable scaling factor applied to produce the
commanded actuator torque, under the assumption that the user’s
desired torque is reflected accurately in the torque they are able to
generate. Such assumptions must be applied carefully to situations
where there is user impairment or other environmental factors that
limit the user’s ability to tightly control the measured force/torque
at the interaction point.

When designing controllers for mechanical systems, the vari-
able to be controlled is often position and the variable represent-
ing the controller effort is force. It is then no surprise that in
applications of human–robot shared control systems, the user
intent is often defined as the force generated by the user. Conse-
quently, many examples of user intent detection revolve around
estimating the user contribution to the interaction force. Pehlivan
et al. use an inverse dynamics model of the robot, along with
knowledge of the actuator commands and a predefined motion tra-
jectory, to estimate the user force applied to the robot from the
robot encoder measurements [28]. This user-intended force is then
subtracted from the robot controller effort so that it assists the
user minimally in achieving the predefined trajectory.

Instead of measuring robot position to estimate interaction
force, one can measure interaction force between the human and
the robot at the end effector and estimate the desired human posi-
tion. Ge et al. [25] extract the user’s desired position by assuming
a model of the user’s control strategy—in this case, a linear
impedance (mass-spring-damper). The user’s intended position is
then assumed to be the equilibrium point of the spring. The
authors use a radial basis function (RBF) neural network, which
has the property of universal functional approximation, to learn an
estimate of the human dynamics. Li and Ge [26] extend their pre-
vious work so that the synaptic weight vector of the neural net-
work can be updated in real time to respond to changing human
impedance.

Just as researchers have used interaction force measurements to
estimate a desired position of the human [25,26], the measured
interaction force can be used to estimate other forms of motion
intention. For example, in Ref. [21], the interaction forces meas-
ured in the handles of an intelligent walker are fed into a model
of the nonholonomic walker dynamics to predict the walker’s
forward path over a short time horizon. Force/torque sensing in

the handle of an assistive cane was used by Wakita et al. to ascer-
tain the hidden walking state of the user [22]. The user’s state is a
discrete variable representing possible walking modes, e.g., “go
straight forward” or “turn to the right,” as in Ref. [18]. The detec-
tion of the walking state is paired with the use of a Kalman filter-
ing (KF) technique—based on the forward dynamics of the cane
robot—to estimate the direction and magnitude of the user’s
desired acceleration. Finally, Erden and Tomiyama [27] present a
unique interpretation of human intent obtained from the measured
interaction force between a human hand and a HapticMaster
robot. The robot is under impedance control; thus, using the prin-
ciple of preservation of momentum, it follows that the integral of
the controller force applied by the robot in the time period
between two stable resting states is equal to the total momentum
delivered by the human interaction. Therefore, the authors use the
integral of the robot controller force—which can also be called
the impulse—as a measurement of the human intention and define
a user’s desired change in set point position of the robot as being
proportional to the impulse by some tunable scaling factor. This
final relationship is based solely on an intuitive understanding of
the load dynamics and the ways in which humans tend to manipu-
late objects. It is a convenient substitution, since relating the
impulse to the desired set point position means the intent can eas-
ily be given as an input to the robot impedance controller.

Another paradigm for intent interpretation involves the use of
robot position measurement to predict future motion. Corteville
et al. [24] assume the human to be in control, so the motion of
the human–robot interaction point is assumed to result entirely
from the human intention. Position sensing is used to estimate a
minimum jerk, bell-shaped profile of the user’s desired speed that
is continuously updated. The minimum-jerk speed trajectory has
been in used by many researchers as a model for human move-
ments [36]. Corteville et al. have allowed the robot to assume that
at any instant, the intended human velocity is to have this bell
shape; therefore, estimation of the curve parameters is equated
with estimation of the human’s motion intent. Under the same par-
adigm, Brescianini et al. make use of a combination of simple
position and force sensing embedded in a pair of augmented
crutches [23]. From these signals, the authors extract gait parame-
ters such as stride length, height difference, direction, and opera-
tion mode. These values are then used to generate motion
trajectories for a lower-limb exoskeleton that is being worn along
with the crutches.

The final example of intent interpretation we will examine is
the use of force and position to estimate human impedance. Wang
et al. [12] have a 10DoF hand-shaking robot with a force/torque
sensor mounted in the end effector. The robot end effector is sim-
ply a metal rod that a human may grasp as if it is the other partner
in a hand shake. An impedance relationship can be defined
between the measured position and orientation of the robot end
effector and the resulting forces and torques measured at the end
effector, resulting from interaction with the human. The human is
then modeled as a linear impedance with three parameters—mass,
damping, and stiffness. Using the recursive least squares algo-
rithm for online parameter estimation, the current human imped-
ance parameters are heuristically classified as being “low” or
“high” and are then used as the inputs to a hidden Markov model
(HMM) to decide if the person intends to be “active” or “passive”
in the handshake interaction with the robot. The authors have
made extensive use of their model of the human control, i.e., the
consistent relationship between a hidden user state and their
resulting impedance parameters, and the linear impedance control
employed by the human—to infer a more abstract definition of
user intent from mechanical sensing at a lower level.

4 Arbitration

Arbitration here refers to the division of control among agents
when attempting to accomplish some task. More specifically,
during physical human–robot interaction with shared control,
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arbitration determines how control is divided between the human
and robot. Many different types of arbitration are possible; for
instance, the human might be responsible for controlling the posi-
tion of the robot’s end effector, while the robot controls the end-
effector’s orientation. Alternatively, both the human and robot
could be jointly responsible for the position and orientation of the
robot’s end effector, but have different relative levels of influence.
A simple example of this kind of arbitration for shared control is
shown in Fig. 3.

Clearly, whenever the human and robot are both actively work-
ing together to accomplish some task, arbitration of some sort is
either implicitly or explicitly present. Recalling the trio of fea-
tures, which Bratman [37] has theorized, are essential to shared
cooperative activity, we observe that shared control requires a
“commitment to mutual support.” Within shared control, each
agent has an objective, and, if either the human or robot needs
help, they should be able to expect the other agent to provide
assistance toward achieving that objective. Without arbitration, it
would be unclear how (or when) the other agent is meant to inter-
vene and provide this “mutual support”—if the human communi-
cates an unexpected intent, for example, should the robot (a)
attempt to correct that intent, or (b) defer to the human? An under-
standing of arbitration within physical human–robot interaction is
therefore necessary for shared control.

In fact, arbitration—in some form or fashion—has already been
described as an integral part of human–robot interaction, even out-
side the field of shared control. In their 2007 review, Goodrich
and Schultz [1] describe the “level and behavior of autonomy” as
one of the five key attributes that affect interactions between
humans and robots. Our use of arbitration is roughly analogous to
these “levels of autonomy”; the first level of autonomy, where the
robot does nothing and the human completes the task, and, at
the other end of the spectrum, the tenth level of autonomy, where
the robot completes the task while ignoring human intent, are sim-
ply two very different instantiations of arbitration. On the one
hand, to reduce the human’s burden, we generally want the robot
to be as autonomous as possible. On the other hand, however, we
note that autonomy in shared control is limited by Bratman’s com-
mitment to mutual support, since, if the completely autonomous
robot ignores the human’s intent altogether, there is no opportu-
nity to work collaboratively or offer assistance. So as to resolve
this conflict and better understand arbitration within our context
of shared control, we briefly turn to recent studies of physical
human–human dyads, where two humans are working together to
accomplish the same task.

Reed and Peshkin [38] examined physical human–human inter-
action during a simple 1DoF task, and focused on haptic commu-
nication of information (see Fig. 4). They found—like other
researchers—that dyads of humans working together completed
the task more quickly than a single individual working alone, and,
of particular interest, they discovered that humans naturally
assume different roles during task execution. For instance, one

human might take a “leader” role, and actively move the
co-manipulated object, while the other human could take a
“follower” role, and passively resist motion. Although this phe-
nomenon is not yet fully understood, subsequent work by Ueha
et al. [39] explored not only the tangential forces, which Reed and
Peshkin [38] had reported, but also the radial forces during a simi-
lar 1DoF rotational task. Here, the authors found that one human
naturally assumed control of the tangential forces, which are
related to larger motions, while the second human took control of
the radial forces, which are related to finer positioning; again, a
natural arbitration of roles emerges.

Finally, Feth et al. [40] provided further experimental evidence
for the existence of roles in physical human–human interaction
based on the asymmetric energy flow between agents. Like in
Ref. [38], one human is active, injecting energy, and the second
is passive, dissipating energy. Moreover, these studies of
human–human dyads found that roles varied dynamically over
time so that a human who once served as leader could become a
follower, or, by the same process, the human who had assumed a
follower role could transition into leadership. Hence, in order to
make human–robot interaction more similar to human–human
interaction, arbitration in shared control should assign dynamic
“roles,” i.e., provide a framework that allows both agents to con-
tribute, and meaningfully change their type of contributions over
time.

Viewed together, these concepts of arbitration in cooperative
activity and studies of arbitration within human–human dyads
suggest two fundamental questions for arbitration and shared

Fig. 3 A simple arbitration between human and robot, where together the human and robot
are sharing control of the position of the robot’s end effector. On the left panel, the robot uses
intent detection in order to infer the human’s desired motion, uh. In the middle panel, we show
the robot’s intended direction of motion, ur, which is tangent to the desired trajectory. Finally,
on the right panel, we arbitrate between the human and robot intents, and thus the robot’s end
effector moves in a direction u, which compromises between uh and ur.

Fig. 4 Experimental setup used by Reed and Peshkin [38]. Two
human partners are working together to rotate a crank to a
desired orientation (gray boxes). During these experiments, the
vision of the partners was occluded, and only haptic communi-
cation was allowed. It was found that human partners naturally
assume different roles, and that performance improves when
the task is performed by human dyads, as opposed to a single
human operator.
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control: (a) how should roles be allocated and (b) how should
these roles be dynamically updated? In Secs. 4.1 and 4.2, we will
review the ways in which other research groups have addressed
these questions when considering physical human–robot interac-
tion with shared control. This review is not meant to be compre-
hensive, and will almost certainly omit several exciting works; the
works we have included, however, are meant to provide the reader
with a sense of the complexities and benefits associated with the
different types of static and dynamic role arbitration.

4.1 Types of Role Arbitration. An excellent taxonomy for
the different types of role arbitration in shared control was
recently published by Jarrass�e et al. [41], and is based on con-
cepts from neuroscience and game theory. The authors argue that
both the human agent and the robotic agent have an inherent cost
function, which consists of a sum of error and effort compo-
nents, and each agent naturally attempts to minimize their indi-
vidual cost function at a Nash equilibrium. By error, we here
mean a difference in position or orientation with respect to the
agent’s desired trajectory or goal pose, and by effort, we mean
the amount of force, torque, or muscle activation, which an agent
applies during interaction. In what follows, we will classify the
types of role allocation using the same general convention intro-
duced by Jarrass�e et al. [41]: co-activity, master–slave, teacher–
student, and collaboration. These four types of role allocation are
distinguished by differences in the robotic cost functions; the
human is always assumed to minimize their own perceived error
and effort.

Within co-activity the task is divided into subtasks, and the
human and robot are assigned unique subtasks which can be com-
pleted independently. In this case, the cost associated with an
agent is a function of that agent’s own error and effort, and when
one agent changes his or her error or effort, it does not directly
alter the cost of the other agent. By contrast, in a master–slave
role allocation, both agents are attempting to complete the same
task, and the cost of the robot is defined to be the sum of the
human’s error and effort. Therefore, the robot will here exert as
much effort as possible to minimize the human’s error and effort
without any regard for the robot’s own error and effort, i.e., the
human is the “master” and the robot is the “slave.” Next, within a
teacher–student role allocation, the robot again seeks to minimize
the error of the human, but does this while encouraging human
involvement. Accordingly, the robot considers its own effort, and
gradually attempts to reduce its effort as the human performs
more of the task independently, i.e., the human is the “student”
and the robot is the “teacher.” Finally, in collaborative or
partner–partner role allocation, the robot and human are assumed
a priori to be equals, and together complete the same task while
considering their individual errors and efforts. This role allocation
for pHRI is most similar to the human–human dyads previously
discussed. We will now attempt to classify examples of arbitration
in shared control based on these four types of role allocation, not-
ing that some research is difficult to place in a single category
because it contains elements of multiple role allocation types.

4.1.1 Co-Activity. To begin, we consider co-activity, or a
division of subtasks, which is particularly applicable when there
are aspects of the task that one agent is unable to perform. Per-
haps, the most illustrative instances of this can be found in pow-
ered prosthetics, where the human is necessarily unable to actuate
the prosthesis herself, and must instead rely on the prosthesis
correctly carrying out their communicated intent. Work by Varol
et al. [42] considers this problem for lower-limb prosthetics.
These authors assume that the human wants their prosthesis to be
in one of three different states—either sitting, standing, or
walking—and the authors have also developed automated transi-
tions between these states. Given the robot’s interpretation of the
human’s intent to sit, stand, or walk, the robot transitions to or
remains in the most appropriate state. Hence, the roles are allo-
cated such that the human’s subtask is to decide on the desired

state, and the robot’s subtask is to execute the motions relevant to
that state. Wakita et al. [22] likewise use stop, going forward, and
turning as discrete states for a cane-like mobile robot, which
assists and supports human walking. It is assumed in Ref. [22]
that the human cannot walk without help from the cane, but the
human can communicate intents related to their desired state; as
before, the robot is allocated the subtask of stabilizing the
human’s movement.

Myoelectric control of upper-limb powered prostheses likewise
relies on the robot performing the human’s desired motions. In
this case, the main difficulty is leveraging signals generated by the
human’s muscles in order to control artificial hands that often pos-
sess a high number of actuated DoF. Typically, this problem is
resolved with pattern recognition techniques [43,44]. While clas-
sification results can be reasonably accurate, users have reported
that the prosthesis is still difficult to control [45], and so this pro-
cess remains an open avenue for research. Interestingly, while
upper-limb prostheses generally try to leave full control to the
user, they can also include some levels of autonomy, such as for
lower level slip prevention tasks [11].

Along these same lines, we should also quickly mention brain
controlled wheelchairs [46–48], where the human again has a
higher level decision task, and the robot is responsible for a lower
level navigation subtasks. Philips et al. [46] suggest that the
robotic system should be responsible for collision avoidance,
obstacle avoidance, and/or orientation recovery while the human
communicates EEG signals, which correspond to moving the
wheelchair left, right, or straight ahead. A similar scheme is pre-
sented by Carlson and Millan [47], where by default, the wheel-
chair moves forward while avoiding obstacles, and the human
communicates the arbitrated intention to move right or left. The
subtask of the robot can further be expanded to include holistic
navigation; in Rebsamen et al. [48], the user specifies a goal loca-
tion from a set of discrete options, and the robot’s subtask
involves generating and following a trajectory to reach that goal.

Co-activity in shared control, however, is not limited simply to
applications where the human is physically unable to carry out
certain aspects of the task. Aarno et al. [49] developed an
approach for teleoperation and co-manipulation where the desired
task is segmented into several states, and each of these states has
an associated virtual fixture. It may be possible for the human to
perform the teleoperation or co-manipulation task completely
alone, but the inclusion of these subtasks, and a probabilistic esti-
mation of the current subtask, was found to improve the human’s
performance. Indeed, since the human is involved in all aspects of
the task’s execution, this research combines components of both
co-activity (the delegation of subtasks) and master–slave arbitra-
tion (virtual fixtures along those subtasks).

4.1.2 Master–Slave. The master–slave role allocation, with
human masters and robotic slaves, is likely the most traditional
and ubiquitous type of role arbitration in shared control. We con-
tend that virtual fixtures and impedance/admittance controllers are
classical instances of the master–slave role allocation, since for
both virtual fixtures and impedance/admittance control, the
robot’s error is the same as the human’s error—i.e., the deviation
from the desired trajectory—and the robot has no explicit cost
associated with its effort. Although the term “master–slave” might
imply that the robot has little autonomy, in fact this role allocation
scheme can encourage the robot to do as much of the task as pos-
sible. Utilizing impedance control, for instance, a robot can follow
the desired trajectory without any human participation, while still
responding naturally to external perturbations [9]. Moreover, we
would point out that in some sense, the (human) master and
(robot) slave arbitration should always be present within shared
control, because, for safety purposes, the human must always
retain final authority during situations where the human and robot
are in conflict [9].

Abbott et al. [50] and Bowyer et al. [51] provide surveys of
recent work on virtual fixtures, which are synonymously referred
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to as active constraints. Although Refs. [50] and [51] describe a
wide variety of different virtual fixtures, we can generally state
that virtual fixtures attenuate or nullify the human’s intent in cases
where performing this intent would lead to undesirable outcomes,
such as increasing error or decreasing performance. Virtual con-
straints have primary applications in surgical teleoperation and
co-manipulation, and can deal with situations where certain areas
of the workspace are out of bounds (forbidden-region virtual fix-
tures) or where the human seeks to follow a desired trajectory
(guidance virtual fixtures). Impedance/admittance controllers can
be thought of as guidance virtual fixtures.

Of special interest for our study of arbitration are the unique
works on virtual fixtures by Yu et al. [52] and Li and Okamura
[53]. Yu et al. [52] augment the role of the robotic slave to include
more autonomy so that the robot is responsible not only for identi-
fying the human’s overarching intent but also for defining corre-
sponding virtual fixtures to satisfy that intent. Li and Okamura
[53] provide a methodology for the robot to discretely switch the
virtual fixture on or off, depending on the human’s communicated
intent. Practically, turning off the virtual fixture provides humans
the freedom to the leave the desired trajectory when seeking to
avoid unexpected obstacles. Theoretically, removing the virtual
fixture amounts to shifting from a master–slave role allocation to
a role allocation where the human completes the task alone, in
other words, the first level of autonomy as described by Goodrich
and Schultz [1].

Interestingly, this switch between discrete master–slave and
single-agent role allocations is also prevalent in rehabilitation
robotics studies; for example, see Mao and Agrawal [54]. These
authors implement a virtual tunnel around the desired trajectory,
within which only a constant tangential force is applied to
help keep the human moving (see Fig. 5). If the human acciden-
tally moves outside of the tunnel, however, a master–slave role
allocation is invoked, and the robot uses impedance control to
correct the human’s positional error. Another combination of
master–slave and single-agent role allocation for rehabilitation
applications is offered by Duschau-Wicke et al. [55]. Here, the
human is completely responsible for the timing of their motions—
without robotic assistance—but the robot uses impedance control
to constrain positional errors with respect to the given path. Thus,
as pointed out by Jarrass�e et al. [41], the master–slave role arbitra-
tion can lead to an unanticipated contradiction; because control

over so much of the task is arbitrated to the slave—even to the
extent where the slave performs the task autonomously—the mas-
ter has little or no incentive to participate in cooperative shared
control. Fortunately, this is not an issue for surgical applications,
where the human’s involvement is required due to safety concerns
[51]. On the other hand, master–slave role allocations can undesir-
ably de-incentivize human participation during rehabilitation
applications [56], which, in turn, leads to both the combinations
of master–slave and single-agent arbitration that we have dis-
cussed, as well as teacher–student role allocations.

4.1.3 Teacher–Student. The teacher–student role arbitration is
well suited for situations where we are attempting to train humans
using robotic platforms [57], which, considering the application
areas focused on in this review, primarily entails robotic rehabili-
tation. The teacher–student role allocation is distinguished from
discrete combinations of master–slave and single-agent arbitra-
tion, since teacher–student role arbitrations constantly attempt to
reduce the amount of robotic effort. As explained by Blank et al.
[56], extensive research in the field of rehabilitation robotics has
argued that increasing the patient’s level of engagement is impor-
tant to improving neural plasticity, and is therefore a means to
facilitate recovery from stroke or spinal cord injury. Shared con-
trol strategies, which employ the teacher–student role arbitration
in the field of rehabilitation robotics, are typically referred to as
assist-as-needed (AAN) controllers.

Assist-as-needed controllers balance the cost of decreasing the
human’s error with the cost of increasing the robot’s effort; the
objective of AAN controllers can therefore be posed as maintain-
ing a suitable level of “challenge” such that the human always
remains actively engaged in their therapy. In other words, as
argued by Wolbrecht et al. [58] and Pehlivan et al. [28], AAN
controllers should strive to provide the minimal amount of assis-
tance, which guarantees that the human completes his rehabilita-
tion exercise without an unreasonable amount of error—as
determined by the human’s capabilities—but the human is ulti-
mately responsible for further reducing their error. Since, as
experimentally shown by Emken et al. [59], the human motor sys-
tem learns new motions while greedily minimizing kinematic
errors and muscle activation, AAN controllers intentionally allow
or introduce errors, and these, in turn, desirably motivate the
human’s muscle activation.

In practice, teacher–student role arbitration is often effected by
starting with a master–slave role arbitration, and then reducing the
robot’s effort whenever possible. Our group has employed this
technique in Ref. [28], where we decreased the gains of an imped-
ance controller if the human’s performance satisfied some thresh-
old, or, conversely, increased the gains if the human was unable to
complete the task successfully. Hence, as the human grows more
adept at the task over time, the initial master–slave impedance
controller can gradually become a single-agent role allocation,
where the human is responsible for performing the task alone. A
similar instantiation of the teacher–student role allocation may
also be achieved using forgetting factors, such as in Wolbrecht
et al. [58] and Emken et al. [60], which introduce a scheduled and
exponential decrease in the robot’s contributed effort. Again, the
arbitration here gradually shifts from master–slave—where the
robot can complete the task even with an unskilled or passive
human operator—to a single-agent arbitration—where the human
must complete the task without any assistance.

It should be understood, however, that teacher–student role
allocation does not monotonically shift from master–slave to sin-
gle agent; the mentioned works [28,58,60] all incorporate features
that can increase the robot’s (teacher’s) assistance when the
human (student) is regressing. Extending this line of reasoning,
Rauter et al. [61] developed an AAN scheme that shifts among
master–slave, single-agent, and antagonistic allocations, where in
the antagonistic role arbitration, the robot expends effort to inten-
tionally increase the human’s error. Perhaps the teacher–student
role arbitration, particularly in AAN or rehabilitation applications,

Fig. 5 Using a virtual tunnel to arbitrate roles between human
and robot, the human and robot are attempting to follow a
desired trajectory during a 1DoF task. The current position, x,
is given by the torus, and the desired position, xd, is given
by the sphere. When the current position is within the
virtual tunnel, the robot does not provide the human any assis-
tance. When the current position is outside of the virtual tunnel,
like shown, the robot provides haptic feedback (arrows) to
guide the human back toward the desired trajectory. This
combines both master–slave (human master, robotic slave)
and teacher–student (robotic teacher, human student) role
arbitrations.
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is best characterized as a dynamic role arbitration, where the
robot’s role continuously adjusts from more helpful (slave) to less
helpful (uninvolved or antagonistic) depending on the human’s
motor learning and participation.

4.1.4 Collaboration. Collaborative arbitration for shared
control is thus similar to teacher–student arbitration, because the
equitable relationship between human and robot implied by col-
laboration also leads to very changeable, or dynamic, roles.
Unlike teacher–student arbitration, however, which we discovered
to be applied primarily within rehabilitation, collaborative arbitra-
tion has more general application areas. The majority of papers
surveyed below [10,62–65] use collaborative arbitration for co-
manipulation tasks, where the human and robot are both grasping
a real or virtual object, and together are attempting to move that
object along a desired trajectory, or place that object in a desired
goal pose. We might imagine, for example, a human and robot
moving a table together. Alternatively, work by Dragan and Srini-
vasa [66], which includes a brief review of arbitration, atypically
develops a collaborative arbitration architecture for teleoperation
applications. Here, the human’s inputs are captured using motion
tracking, from which the robotic system probabilistically esti-
mates the human’s desired goal via minimum entropy inverse
reinforcement learning. The robot then arbitrates between the
inputs of the human and its own prediction of the human’s goal in
order to choose the manipulator’s motion. We note that for both
co-manipulation and teleoperation applications of collaborative
arbitration, the robot is theoretically meant to act as a human-like
partner—i.e., an equal partner—and therefore the arbitration of
roles should emulate what is naturally found in physical
human–human collaborative interaction.

As we have previously discussed, roles naturally develop
during physical human–human interaction [38–40]. These roles
can be generally classified as an active leader role and a passive
follower role [38,40], where both human participants can dynami-
cally take and switch between the complementary roles. Extend-
ing these experimental results into human–robot interaction,
researchers such as Li et al. [64] argue that the robot ought to
actively reduce the amount of human effort, and accordingly
assume a leader role by default. Furthermore, at times when the
human and robot disagree, the robot should yield control back to
the human, and quickly transition into a follower role.

Consider, for instance, the work conducted by Evrard and
Kheddar [62]; these authors provide a simple mathematical frame-
work for the robot to interpolate between leader and follower
roles. The robot simultaneously maintains a leader controller, which
minimizes errors from the desired trajectory (high-impedance), and
a follower controller, which reduces the forces felt by the human
(zero-impedance). The robot then continuously switches between
these two controller outputs based on externally assigned leader/fol-
lower role arbitration. M€ortl et al. [10] further formalize the concept
of leader and follower role allocations for co-manipulation applica-
tions by using redundant degrees-of-freedom—where both the
human and robot can contribute forces—and nonredundant
degrees-of-freedom—where the actions of the human and
robot are uniquely defined. When dividing forces within the
redundant (voluntary) degree-of-freedom, the human can provide
more of the voluntary effort, making the robot a follower, or the
robot can perform more of the voluntary effort, thereby taking a
leader role.

We might wonder, however, how the robot should behave when
this correct arbitration between collaborative leader and follower
roles is not externally provided. Works by Medina et al. [63], Li
et al. [64], and Thobbi et al. [65] address this question by intro-
ducing a level of confidence in the robot’s predictions. When the
robot is confident that the human will behave a certain way—for
instance, follow a known trajectory [63,65]—the robot assumes a
leader role in order to reduce the human’s effort. On the other
hand, when the robot is confident that the human wants to deviate
from the robot’s current trajectory—i.e., the human is persistently

applying strong forces on the robot’s end-effector [64]—the robot
takes a follower role in order to resolve this conflict and reduce
the human’s effort.

Although the leader and follower roles appear to be the most
prevalent form of collaborative arbitration, research by Kucukyil-
maz et al. [67] and Dragan and Srinivasa [66] combine aspects of
co-activity with collaborative arbitration. Here, the human takes
the leader role during larger scale motions, which direct the robot
toward its goal pose, while the robot takes the leader role during
finer, smaller scale motions, i.e., precise positioning of the end
effector when approaching the goal pose. This form of collabora-
tive arbitration, which was also found in human–human dyads
[39], is somewhat akin to co-activity, where the human’s subtask
might entail larger, less constrained movements, and the robot is
tasked with the smaller, intricate motions.

4.2 Dynamic Changes in Role Arbitrations. In the preced-
ing discussion of the different types of role arbitration, we have
already seen indications that role arbitrations can dynamically
change during task execution. These changes could occur within
the same type of role allocation—such as switching between
leader and follower roles during collaborative arbitration—or
between two different types of role allocation—such as gradually
transitioning between master–slave and single-agent roles during
teacher–student arbitration. In general, however, dynamic changes
in role arbitration are meant to either increase the robot’s level of
autonomy at the expense of the human’s authority, or, conversely,
increase the human’s control over the shared cooperative activity
at the expense of the robot’s autonomy. Referring back to Fig. 3,
the arbitrated movement (panel 3) can shift to become more like
the human’s intent (panel 1) or the robot’s intent (panel 2). In
what follows, we will outline the two predominant tools employed
within the shared control literature to determine when to change
arbitration: machine learning and performance metrics.

By “machine learning,” we here refer to techniques such as
HMMs [49,52,53,68], Gaussian mixture models [42], and RBFs
[58]. These data-driven approaches typically require a supervised
training phase, where the human practices communicating intents
with known classifications; after the model is trained, it can be
applied to accurately change role arbitrations in real time. Works
by Li and Okamura [53], Yu et al. [52], and Aarno et al. [49]
leverage HMMs in order to change role arbitrations for teleopera-
tion and co-manipulation applications. Using the robot’s measure-
ments of the human’s intent, as well as precomputed transition
and emission matrices, these HMMs probabilistically determine
which role arbitration “state” the human is currently attempting to
occupy. For instance, in Ref. [53], HMMs are used to determine
whether or not the human wants to follow a given trajectory—if
the human is attempting to follow that trajectory, the stiffness
of the virtual fixture increases, and thus our arbitration shifts
toward the robot; on the other hand, if the human is attempting to
leave the given trajectory, the compliance of the virtual fixture
increases, and arbitration shifts toward the human. Similarly, in
Ref. [52], the states include (a) following the trajectory, (b) avoid-
ing obstacles, and (c) aligning the end effector, while in Ref. [49],
the states consist of virtual fixtures along different line segments;
just like before, once a state is detected, the role arbitration shifts
toward the human or robot as appropriate.

Another interesting approach for adjusting arbitration using
HMMs was recently proposed by Kulic and Croft [68]. In their
research, the HMM attempts to estimate the human’s affective
(emotional) state from measured physiological signals including
heart rate, skin conductance, and facial muscle contractions. First,
the human and robot are placed in close proximity, and the
human’s affective state is estimated in response to the behavior of
the robotic manipulator. Next, if the human is “alarmed” by the
robot’s movement, arbitration shifts toward the human, and the
robot begins to move more slowly and/or away from the human.
Though this application with affective states is not particularly
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common, it certainly provides a natural way to convey a sense of
the human’s “confidence” or “trust” in the robot’s actions, which
can then be used to intuitively update the role arbitration.

Indeed, a 2011 meta-analysis by Hancock et al. [69], which
examined the different factors that can affect human–robot inter-
action, found that robotic performance has the largest and most
identifiable influence on trust in HRI. It seems reasonable, there-
fore, to employ performance metrics as a means to dynamically
change role arbitrations between human and robot. A straightfor-
ward performance metric for this purpose could simply be the
amount of force or torque applied by the human; both Kucukyil-
maz et al. [67] and Li et al. [64] implement this method for co-
manipulation applications. In essence, when the human applies
larger efforts, these authors argue that the human is actively
attempting to take control of the task, and hence arbitration should
shift toward the human. Conversely, when the human is passive,
and not significantly interacting with the robot, arbitration
switches to grant the robot a larger portion of the shared control.
A related performance metric was developed by Thobbi et al. [65]
and M€ortl et al. [10]; here, when the human consistently applies
forces in the direction of the robot’s motion, the robot becomes
more confident in its prediction, and assumes a greater arbitration
role. Alternatively, when the human interacts with the robot in a
manner at odds with the robot’s internal predictions, the robot
returns control to the human and begins to develop new predictive
models.

More generally, we can imagine that the human has a reward
function, which the robot can learn from human–robot interac-
tions [66,70,71]. As before, the robot lets the human take control
during interactions, and then resumes autonomous behavior after
the human stops interacting. Next, based on how the human inter-
acted, the robot updates its estimate of the human’s reward
function—i.e., what behavior is optimal—and then replans the
rest of the task in accordance with this new reward function.
Dragan and Srinivasa [66] have applied this concept to robotic tel-
eoperation systems which are unsure of the human’s goal position:
when the human inputs new commands into the teleoperation
interface, the robot updates its estimate of the desired goal. Once
the robot is quite confident that the human is trying to reach a par-
ticular goal, then the robot becomes more dominant in the shared
control; when the robot is unsure, however, the human moves
with little robotic assistance. Works by Losey and O’Malley [70]
and Bajcsy et al. [71] have extended this online adaptation to learn
the robot’s desired trajectory based on physical interactions
between the human and robot, leading to changing role allocations
during the current task. At the other end of the spectrum, we can
also use measured outcomes from the previous task to update role
allocations for the next task—in Pehlivan et al. [28], the human’s
cumulative error with respect to the desired trajectory is used to
adjust the impedance gains for subsequent trials.

Updating between trials is best suited for applications where
the human and robot will be performing the same task for multiple
iterations [56], just like the optimization approach proposed by
Medina et al. [63]. Within their work, Medina et al. explicitly con-
sider how to deal with uncertainty in human behavior. The human
is recorded performing the task multiple times, and, by incorporat-
ing the Mahalanobis distance, arbitration shifts to favor the human
over portions of the trajectory where large motion uncertainty is
present: for instance, should the robot and human go around an
obstacle in a clockwise or counterclockwise direction? Next, risk-
sensitive optimal control is introduced to determine how the robot
will respond to conflicts with the human: should the robot yield
leadership, or take a more aggressive, dominant role? To con-
clude, we summarize the discussed performance metrics
[10,28,63–67] as fundamentally derived from the concept of trust
between human and robot. As the human comes to trust that the
robot will behave as expected, and, simultaneously, as the robot
better learns what the human wants to accomplish, arbitration can
dynamically change to increase the robot’s level of shared
control.

Once a type of role arbitration has been determined, and the
current role allocation is decided, the robot can provide feedback
to the user based on both the environment and this arbitration.
From this feedback, the user can better infer the current arbitration
strategy, and understand their role within the interaction.

5 Communication

When a human and robot are physically coupled and sharing
control of a task, such as an amputee using an advanced prosthetic
device, the user depends on the robotic system to not only replace
the function of the missing limb, detect their intent, and arbitrate
control of the task, but also to communicate back to the human
operator the properties of the environment. A similar situation
occurs in bilateral telemanipulation, where force cues that arise
between the remote tool and environment are relayed to the
human operator at the master manipulator. In applications where a
robotic device held or worn by the human operator is intended to
instruct or assist with task performance, such as would be the case
for surgical simulators, motor learning platforms, and exoskele-
tons for gait rehabilitation or upper limb reaching, to name a few,
it is necessary to convey not just task or environment forces either
real or virtual, but also the desired actions and behaviors that the
human should execute. Further still, one can picture scenarios
where the human user should be informed of the intent or future
actions of the robot. In this section, examples of the methods
employed by robotic systems to communicate with the human
operator in shared control scenarios are surveyed using example
applications.

5.1 Modalities of Sensory Feedback. The communication
mechanism between human and robot in a coupled shared control
system typically relies on the sensory channels available for
information conveyance. For example, feedback can be provided
visually, aurally, or haptically. For applications of physical
human–robot interaction, the haptic channel is of particular inter-
est because the force–motion coupling between action on the
environment and resultant forces and actions can be leveraged in
much the same way that our own body uses sensors embedded in
the muscles to modulate the forces that we impose on the environ-
ment. A depiction of these different types of sensory feedback can
be seen in Fig. 6.

Fig. 6 Simplified schematic of communication between the
human and robot during shared control. Three different modal-
ities of communication are shown: haptic, visual, and aural
feedback. Feedback is based on the robot’s interaction with the
environment, on right, where the environment could be virtual
(such as in rehabilitation) or physical (such as for prosthetics).
Thus, the kinesthetic haptic feedback force, fa, emulates
virtual or real robot–environment interaction forces. The visual
feedback depicts the desired trajectory, as well as the desired
position at the current time, xd. Aural feedback can provide
information on errors or instructions to assist the human
operator.
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5.1.1 Haptic Feedback. Haptic feedback, which is a general
reference to cues that are referred via our sense of touch, can be
subdivided as kinesthetic feedback (forces and torque applied
to the human body and sensed at the muscles and joints), and
cutaneous or tactile (forces and sensations sensed through the
mechanoreceptors in our skin). Kinesthetic feedback requires
complex, custom haptic devices unique to a particular task to be
trained (for example, multi-degree-of-freedom devices to simu-
late rowing [72,73] or tennis swings [74]). Some devices are
used to convey forces to the upper limb moving on a planar
working surface [75] using an end effector-based design. Alter-
natively, exoskeletal-based robotic designs aim to provide pre-
scribed feedback to the joints of the upper [76] or lower [77–79]
limbs. Such devices must convey large forces and torques, and
therefore tend to be heavy and expensive. Further, for applica-
tions such as haptic guidance for training, kinesthetic-based hap-
tic feedback devices have been ineffective when it comes to
demonstrating retention of skill or transfer to a similar task
[57,80,81], despite their success at enhancing performance when
the individual is coupled to the device [82]. These results provide
further support for the guidance hypothesis [83], which advises
that augmented feedback, such as the haptic guidance used in
these studies, can be detrimental to learning if relied upon for
more than just reducing errors. In these haptic guidance studies,
we suspect that subjects were additionally depending on the
guidance to develop strategies for task completion. Work by
Winstein et al. showed that frequent physical guidance in a target
reaching task resulted in poor retention and skill transfer [84],
which provides explanation for the observed findings in these
haptic guidance studies.

Given these drawbacks to kinesthetic type haptic feedback
systems, our recent work has focused on the development of
prototype wearable haptic feedback devices that could, for
example, be used to provide sensory information to an amputee
[85–89]. These devices use a variety of haptic feedback modal-
ities, including vibration, skin stretch (resulting from shear
force on the skin), and pressure to encode haptic information
about the state of a prosthetic device. We have demonstrated, in
a few focused studies, the potential of these devices to improve
object manipulation in prosthesis control in human subject
experiments focused on grasp and lift tasks, which are common
in activities of daily living and therefore of interest to prosthe-
sis users. A grasp and lift task is an appealing choice to investi-
gate touch feedback in dexterous manipulation because it
involves coordinating grip force and load force with object
weight [90]. It is a planned movement and requires an internal
model of the object’s properties. Healthy individuals can use
touch sensations to develop this internal model, but upper limb
amputees rely primarily on vision since their prosthetic devices
lack the provision of touch feedback. Therefore, it is imperative
to investigate the effect of haptic feedback via sensory substitu-
tion in human performance of grasp and lift tasks. These studies
will illustrate the value of providing haptic feedback, both to
understand the impact on task performance, and on the partici-
pant’s ability to maintain and update their internal model of the
objects and task.

We have conducted a series of experiments using a simplified
grasp and hold task in a virtual environment and haptic feedback
to explore the effectiveness of such feedback for improving per-
formance in object manipulation, specifically for grasping and lift-
ing objects without slipping. In these experiments, a user interacts
with a virtual environment via a SensAble Phantom, an off-the-
shelf haptic interface device. The user controls the Phantom to
hold a fragile virtual object against a wall, with the goal of keep-
ing the object from breaking or slipping. This task is simple
enough that we can fully model the interactions and control the
feedback available to the user, yet complex enough to preserve
the most interesting parts of a real grasp and lift task: the coordi-
nation of grasp and load force and the tradeoff between risks of
dropping the object and damaging the object.

In our experiments, the different feedback combinations corre-
spond to different real-world scenarios. With only visual feed-
back, the situation is similar to that experienced by a user of a
typical myoelectric prosthesis; the user is forced to carefully
watch the interaction with the object to get any information about
grip forces and object slip. The addition of haptic feedback pro-
vides extra information via sensory substitution that can be used
to supplement visual information; this case corresponds to an ideal
advanced prosthesis with haptic feedback. When visual feedback
is turned off, the situation is similar to prosthesis use without care-
ful visual attention; this case corresponds to real-world scenarios
of a prosthesis user being unable to watch the prosthesis move or
being distracted and giving less than full attention. We are partic-
ularly interested in these no-vision cases, because these are the
cases in which we expect haptic feedback to be most necessary.
Without vision, the case of no haptic feedback corresponds to typ-
ical prosthesis use without vision, and the cases with haptic feed-
back correspond to prosthesis use with an advanced system that
includes extra sensory information.

Analysis of the no-vision results from these experiments
showed two main findings. First, vibrotactile feedback of gross
slip velocity and skin stretch feedback of incipient slip cues con-
siderably improved performance; when participants could not see
the virtual object slipping, they were able to rely on the slip cues
to recover the virtual object from slips much more frequently than
with force feedback alone. These results, coupled with previous
results from our collaborators showing that force feedback
reduced the user’s likelihood to damage an object [91], clearly
indicate the importance of haptic feedback for object manipula-
tion. Second, users rated ease of use highest for conditions with
more feedback types active, suggesting that incorporating all three
types of haptic feedback (force feedback, vibrotactile feedback,
and skin stretch feedback) into a prosthetic limb could be benefi-
cial. These results are consistent with prior studies showing that
multisensory feedback does not have any negative effects on per-
formance in haptic control tasks [92,93].

5.1.2 Multimodality Feedback. Though there is some evi-
dence that combining modalities of sensory feedback can result in
worse performance than a using single modality [94], other stud-
ies have shown that using haptic feedback combined with visual
feedback has no negative effects on performance [92,93], and
multichannel sensory information feedback can surpass single
modality interfaces in some cases [95]. Although the previously
mentioned findings were for relatively simple tasks, using multi-
modal feedback has also proven effective during complex motor
tasks. Indeed, incorporating haptic guidance with visual feedback
during complex motor tasks has been shown in Ref. [96] to
improve both motor learning and performance, while reducing the
human’s perceived workload. Leveraging a multimodal feedback
strategy for complex tasks is also preferred by users over unimo-
dal interactions [97] and well suited for complex tasks with high
workload in one modality, so as to prevent cognitive overload and
in turn enhance motor learning [98].

5.2 Conveying Environment Characteristics. Bilateral tele-
operation systems enable a human operator to manipulate a
remote environment, and in such shared control systems, there is
typically a faithful mapping of the remote environment forces
back to the master manipulator. Most master–slave systems
employ kinematically similar (though sometimes scaled) robotic
devices, and force sensors at the remote end effector capture inter-
action forces which are then mapped to the master and displayed
by commanding forces via the actuators on the master robotic
device. Such systems typically relay kinesthetic type forces from
the remote environment.

Upper-limb prostheses are prototypical pHRI systems that ena-
ble amputees to manipulate their environment. These devices pro-
vide a context for discussion of methods to convey environment
characteristics and forces that arise during manipulation with
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objects and the environment in a broader sense. Despite rapid
advances in mechanism design and control leading to multi-DOF
robotic hands with dexterity capabilities comparable to able bod-
ied humans, advanced prosthetic devices still lack the touch feed-
back necessary for dexterous manipulation of objects [99,100].
The result of this critical absence is that many prosthesis users opt
to abandon their devices [101–103]. The challenge of providing
an amputee access to sensory feedback from these devices is sig-
nificant. Consider the numerous types of sensory cues available to
an individual interacting with an object such as a coffee cup. The
person feels various haptic feedback sensations: the object weight,
the grasping force, the object texture, and many other sensations
[90,104–106]. These sensations allow us to manipulate objects
almost effortlessly, even without visually attending to the task.
The importance of such feedback should not be underestimated;
people with impaired sensory feedback have difficulty interacting
with objects, often dropping or damaging objects in their grasp
[107–109]. Thus, if a highly articulated prosthetic limb fails to
offer sensory feedback to the amputee, they must watch carefully
when interacting with objects, lest they damage or drop some-
thing. Alternatives to this constant, inefficient, and cognitively
taxing visual monitoring are needed to reduce the mental effort
required for interactions between the prosthetic and the environ-
ment, and prosthesis users often express a desire for more sensory
feedback from their devices [110].

In an effort to recreate natural touch sensations for amputees,
many methods have been explored [100], ranging from invasive
techniques (e.g., peripheral nerve stimulation [111,112]) to non-
invasive sensory substitution methods (e.g., encoding grip
force, hand/arm configuration, or other information in vibration
patterns applied to a user’s skin [92,113–117], stretching of the
user’s skin [118,119], or pressure/shear forces [87,91,94,120],
see Ref. [121] for a review). Targeted re-innervation, involving
the surgical re-implantation of nerve bundles to alternate mus-
cle sites, appears to hold promise for chronic use. A muscle
such as the pectoralis serves to amplify peripheral nerve signals
associated with activation of the phantom limb, and transduc-
tion to electrodes takes place across the skin using myoelectric
technology. Sensory feedback that is referred to the phantom
limb is an added bonus, as afferent fibers implant on cutaneous
sensors in the skin of the targeted area [122]. However, targeted
re-innervation involves a substantial surgical intervention
and seems to be indicated only for a small population of ampu-
tees [123].

An alternative approach for conveying sensory feedback to the
amputee is necessary, and an approach that is gaining traction is
to use sensory substitution-based haptic feedback designs opti-
mized for translation to the amputee population. Typically, haptic
devices based on sensory substitution are designed as modular
devices to be worn on other parts of the user’s body [100]. Our
own recent work includes several wearable devices, used to pro-
vide information about grip force, gripper aperture, and object slip
to the user of a prosthesis performing a manipulation task
[85–89]. Many of these devices have been shown to help users
manipulate objects [85,88,89,100]. Indeed, the matched modality
of sensory feedback in these examples may contribute to these
positive outcomes, and can be explained by the recent finding that
when a prosthesis interface feeds back the mechanical response
from the environment to the muscle that activated that response,
then the brain seems to adopt that prosthesis as an extension of the
body [124].

5.3 Conveying Desired Actions of the Human. The addition
of haptic feedback to virtual environment simulations and telero-
botic systems is known to provide benefits over visual-only dis-
plays, such as reduced learning times, improved task performance
quality, increased dexterity, and increased feelings of realism and
presence [125–131]. Haptic feedback in virtual environments also
enables a wider range of applications, including manipulation and

assembly tasks where force cues are necessary, and medical appli-
cations, such as training for palpation, needle insertion, minimally
invasive surgery, and rehabilitation [132]. When a virtual environ-
ment is to be used for training, it can be augmented with addi-
tional feedback that can convey the key strategies for successful
task completion [133,134]. We have shown that several
mechanisms for displaying fundamental movement strategies are
beneficial to enhancing performance [135,136], including visual
representation, verbal instructions, and haptic assistance. Other
groups provide additional strong evidence to support the addition
of haptic cues to assist with task completion for performance
enhancement [98,137,138]. Haptic augmentation can improve per-
formance in dynamic tasks [82], tactile cueing systems have been
extensively studied to determine appropriate methods for guiding
wrist rotation movements [139], and motion guidance has been
effectively conveyed through tactile cues both vibrational [140]
and skin stretch [141]. There is strong consensus in the literature
to suggest that vibrotactile cueing is a useful tool for guiding
human movements [140,142–146] though a meta-analysis of 45
studies indicated that vibrotactile cues should provide redundant
information or supplement another modality such as vision [147].

In some applications of virtual environment training, it is desir-
able to realize both the performance gained with the addition of
cues to guide successful task completion, and the ability of the
human to transfer that skill to an unassisted task. Consider surgi-
cal skill training or sports applications where ultimately the indi-
vidual will need to complete the task independently. In these
cases, the desired strategies or methods of task completion must
be acquired by the trainee during those interactions with the
augmented virtual training environment, and retained when per-
forming the task without assistance from the robotic device. Some
types of kinesthetic haptic assistance, while beneficial for enhanc-
ing performance, have been ineffective when it comes to demon-
strating retention of skill or transfer to a similar task [57,80,81]. In
these cases, tactile feedback has the potential to be widely applied
for the training of complex movements in later stages when task
execution strategies need to be refined, where subjects are already
familiar with the basics of completing a particular task, but lack
the dexterity to do so efficiently and repeatedly. Using visual and
vibrotactile feedback to teach users a desired oar trajectory was
shown in Ref. [148] to result in slightly better learning than teach-
ing with only visual feedback or only vibrotactile feedback. Stud-
ies on drawing different shapes [149] and on handwriting [150]
have demonstrated an improvement in movement fluidity by the
addition of haptic feedback during training.

5.4 Haptic Feedback Architectures. Some thought must be
given to the architecture of the haptic communication channels,
particularly in the case where the robotic system is attempting to
guide the human operator to a particular task completion strategy,
such as is the case with shared control haptic guidance. Imagine a
surgical trainee using a virtual reality simulator to rehearse a pro-
cedure, with the simulator providing haptic cues that suggest the
most appropriate trajectories that should be followed through the
anatomy. The defining characteristic of robot-mediated training is
that guidance is administered physically to a novice subject via a
haptic interface.

In Ref. [57], we proposed a taxonomy for the various
approaches that have been used to convey this duality of feedback.
The taxonomy is based on three factors. The primary factor differ-
entiating guidance paradigms is whether the additional haptic
cues (beyond environment force feedback) are assisting or resist-
ing the novice in completing the task. Next, the paradigm must
resolve the co-presentation of task and guidance forces by some
means of separation (temporal, spatial, or multimodal), or in the
absence of such a strategy, will settle for summation of task and
guidance forces, which we term gross assistance. Third, shared
control haptic guidance paradigms may feature a mechanism for
adjusting the amount of assistance provided by the robotic device.
We summarize the taxonomy categories here:
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(1) Type of guidance: guidance cues are intended to assist in
task performance (reducing difficulty), or the task is
increased in difficulty with perturbing or resistive forces;

(2) Reconciliation of co-presentation of cues: the mechanism
by which the paradigm conveys task cues versus guidance
cues to the novice (e.g., temporally separated, spatially sep-
arated, or multiple modalities of feedback); and

(3) Progressive guidance: reducing the amount of guidance
based on some factor (e.g., time or performance).

In our prior work, we have exposed difficulties in successful
implementation of gross assistance since guidance cues can inter-
fere with task performance [57,151]. When different haptic
modalities are employed, such as kinesthetic cues for task forces
and tactile cues for guidance forces, these guidance cues have
been shown to enhance dexterous performance of tasks [89]. This
is an example of spatial separation of haptic guidance and task-
inherent forces, which also has been demonstrated with
kinesthetic-only devices [57,152]. Temporal separation of haptic
guidance [57,153] can be realized by using terminal feedback
after completed trials, and is suggested to reduce user reliance on
the feedback [80,138], as per the guidance hypothesis [83,84].
Across all of these applications, it is vital to properly match a
guidance paradigm to a task’s dynamic characteristics in order to
achieve high efficacy and low cognitive workload for the trainee
[57].

6 Case Studies

In Secs. 3–5, we have separately focused on intent detection,
arbitration, and communication within shared control, defining
each formally and briefly providing examples taken from the state
of the art. In this section, we will emphasize two case studies of
shared control within the intent detection, arbitration, and commu-
nication framework, while providing more detail on how our
research groups incorporated and implemented these three funda-
mental aspects of shared control. Speaking in general, and recall-
ing the concept introduced in Sec. 2 as well as the scheme
presented in Fig. 1, arbitration can be seen as an overseer that
decides how to distribute control between human and robot, while
intent and feedback are the means through which the human and
the robot exchange information. From this point of view, intent
detection and communication feedback can be seen as being sym-
metric entities, with the important difference that feedback is gen-
erally used as a way to convey information to the human, while
intent can be directly used as part of the arbitration process. We
argue that the following case studies exemplify these concepts,
and illustrate our intent detection, arbitration, and communication
framework.

6.1 Case Study: Rehabilitation Robotics With the Minimal
Assist-as-Needed Controller. Within the mechatronics and hap-
tic interfaces lab at Rice University, our research group has
applied concepts from shared control to upper-limb rehabilitation
robotics. We consider situations where a human and robot are
working together to successfully complete repetitive motions; the
robot cooperates with the human by correcting the human’s
actions whenever necessary. In particular, our minimal assist-as-
needed (mAAN) controller, recently presented in Pehlivan et al.
[28], employs specific intent detection, arbitration, and communi-
cation methods to better help subjects recover from neurological
injuries. The following discussion highlights the intent detection,
arbitration, and communication aspects of this mAAN controller,
and demonstrates their underlying influence on our shared control
application.

6.1.1 The Minimal Assist-as-Needed Controller. Robots pro-
vide an effective means for rehabilitation after stroke because
they can cooperate with humans to provide consistent, repetitive,
and intense therapeutic interactions. Indeed, a 127 person clinical

trial conducted over a 6 month period found that there was no sig-
nificant difference in the improvements of motor function for
stroke subjects trained by robots as compared to those receiving
traditional human-mediated therapy [154]. To further improve the
performance of rehabilitation robots, researchers have developed
control strategies, which focus on promoting subject engagement
[56]. The problem of maximizing human engagement—i.e.,
encouraging the human to complete as much of the motion as
possible—can also be posed as minimizing robotic assistance—
i.e., helping the human as little as the task requires. We must
remember, however, that the ability of neurologically impaired
individuals to perform these desired motions varies in a highly
nonlinear and unpredictable fashion, in part due to the effects of
movement disorders [155]. Hence, within our research, we argue
that the robot can only provide minimal assistance to the human if
the human’s ability is measured in real time (intent detection).
Using this estimate of the human’s current ability, the mAAN
controller then offers therapists a simple and intuitive way to tune
the amount of trajectory error which the subject is allowed (arbi-
tration). Finally, we experimentally realize this controller on the
RiceWrist-S [156], a 3DoF wrist-forearm exoskeleton, which ren-
ders desired haptic environments to the subject (communication).
An image of the RiceWrist-S can be seen in Fig. 7.

6.1.2 Intent Detection: Sensorless Force Estimation.
Although the subject’s capability could be measured using force/
torque sensors on the exoskeleton’s handle, we instead elected to
utilize sensorless force estimation so as to reduce the overall sys-
tem cost. On the one hand, we can use our dynamic model of the
robot, as well as the known controller torques, to predict the
robot’s expected state (joint position and velocity) when given an
estimate of the human’s force input. On the other hand, we have
rotary encoders to measure the actual position of each joint, and
we can take the derivative of these measurements to estimate the
actual joint velocities. We combined these two sources of
information—predicted and actual—using a KF. By then applying
Lyapunov stability analysis in conjunction with the KF, we were
able to find adaption laws that, when integrated, provided an esti-
mate of the human’s current force input. Moreover, these adaption
laws ensured that the system was stable in the sense of Lyapunov,
and therefore both the estimated system states and the estimated
human inputs desirably converged to the moving average of their
actual values.

From our perspective, the most interesting aspect of this intent
detection method was that it did not require the subject’s abilities
to consistently follow some underlying pattern. Prior work by

Fig. 7 RiceWrist-S wrist-forearm exoskeleton, with labeled
joints for pronation/supination (PS), flexion/extension (FE), and
radial/ulnar deviation (RU). The human and robot share control
of the handle position during trajectory following tasks, with
applications in upper-limb rehabilitation (Reproduced with per-
mission from Pehlivan et al. [28]. Copyright 2016 by IEEE).
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Wolbrecht et al. [58] had employed Gaussian RBFs to learn the
human’s force inputs as a function of position; each location in
the shared workspace was thus associated with a certain intent.
When comparing our KF approach to this state-of-the-art RBF
method, we found that the described KF intent detection scheme
was faster and more accurate (see Fig. 8). More precisely, during
cases where the human’s input was nonposition dependent—as
might occur with neurologically impaired individuals [155]—the
performance of RBF intent detection degrades, while our time-
dependent KF approach provides relatively constant performance.

6.1.3 Arbitration: Subject-Adaptive Algorithms. Like other
applications of shared control for rehabilitation robotics, our
mAAN controller employs a teacher–student role arbitration. The
robot ensures that the human follows the desired trajectory
by incorporating an impedance controller together with a
“disturbance” rejection term, where this disturbance is just the
human force input as estimated by our KF intent detection

approach. Applying Lyapunov stability analysis again, we discov-
ered that the human’s trajectory tracking error is uniformly ulti-
mately bounded when using the mAAN control law, and the
bounds on the human’s allowable error can be manipulated by
changing the gain of the impedance controller. Hence, we achieve
a teacher–student role arbitration by decreasing the amount of
allowable error when unskilled subjects are attempting to learn
the desired motion, and increasing the amount of allowable error
when these subjects demonstrate proficiency.

This arbitration of shared control between human and robot is
dynamically changed by two subject-adaptive algorithms: an error
bound modification algorithm and a decay algorithm. As previ-
ously discussed, the error bound modification algorithm updates
the gain of the impedance controller between trials based on the
human’s total trajectory error during the previous trial. Next, the
decay algorithm permits able subjects who are capable of reaching
the goal faster than the given trajectory to exceed, or surpass, that
reference trajectory (as shown in Fig. 9). Viewed together, these

Fig. 8 Comparison of pre-existing RBF intent detection scheme (dark bar) with our proposed
KF intent detection approach (light bar). The normalized error between the actual and esti-
mated human intents for both methods is plotted over 20 s intervals (disturbance estimation
error). After 60 s, nonposition-dependent human inputs of increasing magnitude were applied
(circles) (Reproduced with permission from Pehlivan et al. [28]. Copyright 2016 by IEEE).

Fig. 9 Average trajectory velocities with our decay algorithm (left) and without our decay
algorithm (middle). When the decay algorithm was present, arbitration is dynamically shifted
toward able subjects, and users were allowed to reach the goal more quickly than the refer-
ence trajectory (right) (Reproduced with permission from Pehlivan et al. [28]. Copyright 2016
by IEEE).
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algorithms shift arbitration toward the human when the human
can perform the desired motions, but shift arbitration toward the
robot for less capable subjects. Importantly, our teacher–student
role arbitration ensures that error is always present when the
human is not actively involved in the task, thereby encouraging
subject involvement.

6.1.4 Communication: Feedback With the RiceWrist-S.
Shared control was communicated between the human and robot
using both haptic and visual feedback. Haptic feedback consisted
of the assistive torques output by the mAAN controller, which
was then perceived by the human grasping our RiceWrist-S exo-
skeleton. In order to more accurately convey the desired virtual
environment to the human, the RiceWrist-S reduced mechanical
friction and backlash by means of cable drive transmissions; the
device was also designed to have a low apparent inertia, sufficient
workspace, and adequate torque outputs for wrist rehabilitation
[156]. Visual feedback was provided in real time on a desktop
monitor, which the subject viewed while performing their trial
motions. This visual interface showed the current position of the
coupled human and robot, as well as the desired trajectory and
goal positions. Accordingly, by combining haptic and visual feed-
back, the human simultaneously “felt” corrective forces and
observed their current error; without this communication, the
robot would have been unable to assist the human, and the human
would have been unaware of their mistakes.

6.2 Case Study: From the Pisa/IIT SoftHand to the Soft-
Hand Pro. Another example application of shared control in
physical HRI is the transition of the Pisa/IIT SoftHand (SH) from
a robotic manipulator to the prosthetic hand SoftHand Pro (SH-P).
While the design process and evolution of the hand through the
years was not explicitly developed in the intent-arbitration-
communication approach proposed in this paper, it is possible to
cast it within that framework. In this section, we will describe the
use of this hand as an upper-limb prosthesis, and show how each
element fits into our shared control approach.

6.2.1 The Pisa/IIT SoftHand. Inspired by mechanisms natu-
rally found in human hands, the Pisa/IIT SoftHand design [157]
was developed as an intuitive, easy-to-use robotic hand for manip-
ulation tasks. In particular, we know from neuroscientific studies
that humans control their own hands—not by independently
actuating each degree-of-freedom—but rather by leveraging

coordinated co-activations, which can be referred to as synergies
[158,159]. Previous work [160] has introduced an interaction
strategy based on “soft” synergies: in this framework, postural
synergies serve as a reference posture for the hand, and the hand’s
actual posture when grasping an object is determined by both (a)
the shape of the object and (b) the stiffness of the grasp.

Based on this research, the Pisa/IIT SoftHand (Fig. 10) was
designed to achieve a single synergy with human-like grasp
stiffness. In particular, the Pisa/IIT SoftHand is a 19DoF artificial
hand, where the thumb has 3DoF, and each other finger has
4DoF. Revolute joints and rolling contact joints with elastic liga-
ments are used so that the robotic hand’s motions are both physio-
logically accurate and compliant. All of the joints are connected
with a single tendon; by actuating this tendon, the fingers flex and
adduct along the path of a single predefined human grasp synergy
from Ref. [158]. Using this synergy reduces the mechanical com-
plexity of the device—only one DC motor is needed to actuate the
entire 19DoF hand. Moreover, since the fingers are compliant, the
Pisa/IIT SoftHand has a flexible grasp pattern, which allows the
robot to intuitively manipulate many different objects. Under the
current iteration, the hand can apply a maximum force of 130 N per-
pendicular to its palm. To see more—including a model of the Pisa/
IIT SoftHand as well as the design of its accompanying electronic
board—visit the Natural Machine Motion Initiative Website.1

6.2.2 Intent Detection and Arbitration: Myoelectric Control
for Prosthetic Use. The intelligence of this hand is embedded in
its hardware since complex manipulation is achieved by deform-
ing and adapting the primitive synergistic shape, instead of using
a complex control strategy. This greatly simplifies the intent
detection and arbitration components, since a simple opening-
closure signal is all that is necessary to control the hand. For
this reason, adaptation of the hand for prosthetic use was rela-
tively straightforward, at least in as far as the control strategy is
concerned.

Electromyography control was obtained with two electrodes
placed on the proximal forearm [161], and two different myoelec-
tric controllers were tested: a standard controller in which the
EMG signal is used only as a position reference, and an imped-
ance controller that determines both position and stiffness referen-
ces from the EMG input. Grasp performance was similar under
the two control modes, but in questionnaires, subjects reported

Fig. 10 First implementation of the Pisa/IIT SoftHand (left—Reproduced with permission
from Catalano et al. [157]. Copyright 2014 by Sage Ltd.) and a recent release of the SoftHand
Pro (right—Reproduced with permission from Fani et al. [162]. Copyright 2016 by authors,
including Antonio Bicchi and Marco Santello.)

1http://www.naturalmachinemotioninitiative.net/
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that impedance control was easier to use. This result was con-
firmed by lower muscles activation measured by the EMG
sensors.

Although EMG seems a promising approach for detecting user
intent, it is not necessarily clear how that intent should be used to
control the human’s prostheses. Accordingly, a comparison of
three possible myoelectric control strategies is described by Fani
et al. [162]. Within this experiment, subjects performed reach-to-
grasp movements using their native hand, while their EMG sig-
nals were recorded. These EMG signals were simultaneously used
as inputs to the SoftHand Pro, which was controlled by one of the
following three strategies: differential control, first-come-first-
served (FCFS), or FCFS-Advanced. For the differential controller,
the difference between the EMG signals was used to control the
robot; for the FCFS controller, the first EMG signal which
exceeded a threshold was used to control the robot; for the FCFS-
Advanced controller, an additional requirement was added to pre-
vent involuntary direction changes. Assessments were used to
determine how well the SoftHand Pro mimicked the native human
hand using each controller type. Based on the results in Ref.
[162], differential control leads to the most natural behavior, and
appears to be a promising method of arbitration for myoelectric
prostheses.

6.2.3 Communication: Haptic Feedback Devices. Despite
their high level of technology, myoelectric prostheses do not have
a high level of acceptance among users, and there is indication
that a reason for this is the inherent lack of sensory feedback in
EMG controlled prostheses [163]. Apart from being helpful dur-
ing grasp and manipulation of objects, haptic feedback has poten-
tial for increasing embodiment of the prosthetic hand. For these
reasons, parallel work regarded design of haptic devices to be
integrated with the Pisa/IIT SoftHand, to convey feedback to the
user, together with investigation of the effectiveness of such devi-
ces in improving grasp quality. Two different approaches have
been presented so far.

Communication to the human operator has been explored in a
couple of ways. First, the clenching upper-limb force feedback
(CUFF) was introduced [164], which is a device consisting of two
motors commanded in position that are used to control a piece of
fabric so that both normal and tangential forces can be applied on
the user’s arm (the device is shown in Fig. 11). In Ref. [164], it
was shown that the device can be used successfully to delivering
information on the grasp force of the SoftHand, which also helps
the user discriminate softness. In the later work [165], effect of

haptic feedback from the CUFF on grip force modulation was
investigated: results suggested an overall reduction of grasp force
when using the CUFF compared to use of the SoftHand Pro alone,
which, however, did not reach the effect of statistical significance.

Another approach is vibrotactile feedback, which was studied
in both Refs. [161] and [166]. In particular, Godfrey et al. [161]
report that for healthy subjects, the perceived cognitive load from
using the SoftHand is lower when using vibrotactile feedback,
while in Ref. [166], subjects using vibrotactile feedback were
shown to be able to correctly discriminate between textures. Inter-
estingly, Ajoudani et al. [166] also proposed a mechano-tactile
feedback device similar to the CUFF. During their experiments,
this device was found to effectively convey meaningful texture
information by itself, as well as to improve blind grasping.

7 Conclusion

We have presented a unified view of shared control systems
that feature pHRI, with a focus on applications in healthcare
that critically depend on collaborative and cooperative actions
between man and machine. Three key themes were explored in
the review. First, we surveyed methods of intent detection,
focused on defining, measuring, and interpreting the human’s
intent in the shared control scenario. Second, we reviewed arbitra-
tion, the modulation of control authority over a task between
human and robot. Here, we defined types of arbitration, and the
more advanced topic of dynamically changing role arbitration in
shared control tasks. Finally, we discussed the role of feedback in
shared control scenarios. We presented a survey of types of feed-
back (with an emphasis on the haptic sensory channels which are
prominent in pHRI), and examples of feedback both of environ-
ment characteristics and methods of guiding or instructing the
human operator to execute desired task completion strategies or
trajectories. We described taxonomy for the approaches that are
typically used for providing feedback in shared control systems.
The paper also provides an illustration of shared control in pHRI
through two case studies (rehabilitation robotics and robotic pros-
thetics). In these case studies, we elucidate the realization of
intent detection, arbitration, and feedback in such prototypical
applications.
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