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Abstract

It is challenging for humans — particularly those living with physical disabilities — to control high-
dimensional, dexterous robots. Prior work explores learning embedding functions that map a hu-
man’s low-dimensional inputs (e.g., via a joystick) to complex, high-dimensional robot actions for
assistive teleoperation; however, a central problem is that there are many more high-dimensional
actions than available low-dimensional inputs. To extract the correct action and maximally assist
their human controller, robots must reason over their context: for example, pressing a joystick down
when interacting with a coffee cup indicates a different action than when interacting with knife. In
this work, we develop assistive robots that condition their latent embeddings on visual inputs. We
explore a spectrum of visual encoders and show that incorporating object detectors pretrained on
small amounts of cheap, easy-to-collect structured data enables i) accurately and robustly recog-
nizing the current context and ii) generalizing control embeddings to new objects and tasks. In user
studies with a high-dimensional physical robot arm, participants leverage this approach to perform
new tasks with unseen objects. Our results indicate that structured visual representations improve
few-shot performance and are subjectively preferred by users.

Keywords: Visual Perception for Assistive Teleoperation, Learned Latent Actions, Physically As-
sistive Devices, Human-Robot Interaction, Human-Centered Robotics.

1. Introduction

Nearly one million American adults living with physical disabilities require help when performing
everyday tasks ( , ). Assistive robots — such as wheelchair mounted robot arms — are a
promising solution, but are difficult to control. Consider operating a 7 degree of freedom (DoF)
arm to reach out and move a cup (Figure 1). We first must guide the robot to reach our high-
level goal, then carefully orchestrate all its joints to manipulate the cup. Because of their physical

1. Code for collecting demonstrations on a Franka Emika Panda Arm, pretraining visual encoders, and training visually
guided latent actions models is available here:
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Figure 1: Visually Guided Latent Actions. Starting from a small, annotated dataset of objects, we train an
object detection model — YOLO-v5 ( , ) — to encode visual state representa-
tions. Using these representations, we train a conditional autoencoder (CAE) from a small set
of demonstrations, encoding high DoF actions to a 1D latent space. During teleoperation, this
visually guided decoder provides an intuitive 1-DoF control interface for human users.

limitations, our target users cannot show the robot how to do this task directly: instead, they rely on

low-dimensional control interfaces (e.g., joysticks, sip-and-puff devices) ( , ).
Prior work tackles this by learning an embedding function that maps low-dimensional human
inputs to high-dimensional robot actions ( , ; , ). Here, an able-bodied

user kinesthetically guides the robot through an assortment of tasks. The robot embeds these high-
dimensional demonstrations to a low-dimensional latent action space, then decodes from this latent
space to reconstruct the demonstrated actions. Any user can use the resulting system to control the
robot using the low-dimensional latent space (i.e., treating joystick inputs as latent actions).

For this approach to work, the robot must reason over its confext. Consider our example in
Figure 1: when the human reaches for the cup, the robot should maneuver its gripper under the
lip of the cup. But what if the human instead reaches for the SPAM? Now, that same motion does
not make sense; instead, the robot should attempt to scoop out some food. To map users’ low-
dimensional inputs to meaningful actions, a robot must consider its current state, and the types and
locations of nearby objects. While critical, prior work avoids the challenge of considering various
contexts through hard-coding object locations; a solution that clearly fails to scale to the uncertainty
and dynamics of the real world — for example, imagine having to remap and specify the location of
items in your fridge every time you buy groceries. Moving forward, we need robots that leverage
visual inputs, applying methods that are capable of accurately detecting and localizing objects.

We introduce a framework for visually guided latent action controllers for assistive teleopera-
tion. Under our approach, robots leverage the output of pretrained object detectors to form robust
representations of context. We show that our robot with access to these structured representations is
able to learn and generalize from limited human demonstrations to a meaningful latent action space
— one suited for intuitive, low-dimensional control. Overall, we make the following contributions:

Formalizing Visual Latent Actions. We introduce a framework for incorporating visual state
representations into latent action learning for assistive teleoperation.

Evaluating a Spectrum of Visual Input Encoding Strategies. We consider a variety of visual
models, from end-to-end models that directly process pixel inputs, to structured representations that
rely on modular object detection architectures. We investigate the sample efficiency and few-shot
transfer abilities of these models over a broad suite of experiments in simulation.
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Conducting a User Study. We test these approaches with a user study, where real participants
teleoperate an assistive robot arm that must rely on visual inputs. Our results show that our detector-
backed latent action controller significantly outperforms other control strategies in terms of success
rate, as well as subjectively, in terms of naturalness, intuitiveness, and willingness to reuse in future.

2. Related Work

We build our approach atop a long-line of work around dimensionality reduction for assistive teleop-
eration ( , ; , ) —including prior work on visually-guided
manipulation and learned latent actions ( , ; s ; R ).

Dimensionality Reduction for Assistive Teleoperation. In assistive teleoperation, the dimen-
sionality of the human control interface (for example, a wheelchair-attached joystick) does not usu-
ally match up with the degrees of freedom (DoFs) of the robot (in many cases 6+), increasing control
difficulty. Teleoperating these robots with devices like joysticks or sip-and-puff devices requires fre-
quent “mode-switching,” using multiple sets of joystick axes to control the linear or angular mode
of the end-effector. This is time-consuming, challenging, unintuitive, and fails to provide the user

with fine-grained control ( , ). Conversely, other teleoperation methods that mea-
sure and replicate users’ limb movement ( , ; , , ) often require
access to specialized hardware and are difficult to use by users with disabilities.

Learned latent actions ( , ) tackles this issue by using conditional autoencoders
(CAEs) ( , ) to map from low-dimensional inputs to high-dimensional actions, provid-
ing users with intuitive, task-conditional control. Prior work combined latent actions with shared
autonomy for increased precision ( , ), as well as personalized the mapping of the
learned latent space to individual users ( , ). However, these methods assume a fixed

environment with ground-truth access to the environment state — unrealistic assumptions if we want
to deploy robots in new, dynamic scenarios.

Visually-Guided Manipulation and Control. Recent work leverages advances in deep learning
and computer vision to facilitate precise and robust manipulation. These approaches often perform
pose estimation of various objects of interest (after supervised training) and plan the respective
actions ( R ; , ; R ). Additional work has shown progress
in learning visual representations end-to-end using task reward signals ( , ; ,

; , ; , ), or through self-supervised encoding of play behavior (

, ; , ). Building off these advances, our work uses pose-based visual
representations of the environment to condition low-dimensional embedding spaces for high-DoF
robot actions, allowing for generalization to unseen object layouts.

3. Formalism for Visually Guided Assistive Teleoperation

Motivating Example. Figure | presents a workspace with several objects positioned in front of a
Franka Emika Panda robot arm. Each user teleoperates the robot to perform a series of tasks: in this
case pushing objects around the table. In real world settings, a user would like robots to perform
goal-directed behavior (e.g., turning doorknobs or retrieving items from the fridge); similarly, in
this work, we assume each object is associated with its own unique task. For example (Figure 1),
the SPAM is associated with pushing south, while the Rubik’s Cube is associated with pushing
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south-east. Success is defined by whether the user is able to teleoperate the robot to guide the object
a set distance in the desired direction.

We need an assistive teleoperation method that can handle disparate tasks across multiple object
categories and varying positions. One path towards this goal is through leveraging visual inputs;
given an image of a workspace, we 1) identify the types of objects on the workspace (detection),
and 2) identify the corresponding positions (localization). Here, we describe the formalism we use
for learning an effective and intuitive visually guided assistive teleoperation interface.

Formalism. We assume the visual input for our assistive interface is provided by an RGB camera
mounted at a fixed point relative to the robot (as in Figure 1). A robot manipulation task is formu-
lated as a fully-observable, discrete time Markov Decision Process (MDP) M = (S, A, T,C, R,~, po).
The state space S is represented by the cross-product of robot joint states and visual observations
R™ x REXWX3 where m denotes the robot-DoF, and (H, W) denote the resolution of the image
observation. A C R™ is the robot action space, 7 (s, a) is the transition function, 7y € [0, 1] is the
discount factor, and py is the initial state distribution.

Let C be the discrete set of object categories that may appear (for example, the SPAM and
Cup from Figure 1). The environment contains a set of objects O C C; at each timestep ¢, the
human teleoperator has a goal object o; € O that they wish to manipulate (for example, the SPAM
in Figure 1); each object has a unique action associated with it that dictates reward (we want to
push the SPAM south), where reward R(s, o) is a function of the object o; and current state s;.
Building a successful interface for assistive teleoperation involves learning components capable of
both detecting and localizing objects, in addition to producing the context-specific actions necessary
to perform the requisite motion. Our core contribution is processing visual inputs to guide the
learning of low-dimensional representations for generalizable and intuitive assistive teleoperation.

4. Visually Guided Latent Actions

We leverage latent actions to learn visually guided low-dimensional control interfaces for assistive
teleoperation. Latent actions is an umbrella term, referring to a class of approaches that learn low-
dimensional representations of high-dimensional actions through dimensionality reduction (

, ; , ; s ). In this work, we take the ap-
proach proposed by ( ) that uses conditional autoencoders (CAEs) ( , )
for learning latent actions. Given a set of demonstrations consisting of state-action pairs (s, a), the
robot jointly encodes the state s and high-DoF action a into a low-dimensional embedding space,
producing a latent embedding (i.e., latent action) z. Conditioned on z as well as the original state
representation s, the robot then attempts to learn a decoder ¢(z,s) : Z x S — A that reconstructs
the original high-DoF action a.

This approach works well in practice — conditioning the output of ¢ on the state representation s
allows the robot to learn a low-dimensional embedding space that captures the mode of the demon-
strations conditioned on the context, learning smooth, intuitive mappings. The secret, however, is
in the structure of the state representation s: any representation that is too unstructured prohibits
the decoder ¢ from fitting the demonstration distribution, as there are too many contexts to identify
meaningful patterns and learn representative low-dimensional actions. Prior work circumvents this
problem by assuming fixed environments or access to the ground truth environment state — which is
unrealistic when deploying assistive robots in dynamic, real-world settings. Addressing this prob-
lem of learning a good state representation is particularly challenging given visual inputs — what is
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the best way to encode observations? In the next section, we explore three strategies with different
structural biases for detecting object types and localizing object positions, with the hope of learning
a visual state representation that can be used as a conditioning input for learning latent actions.

4.1. Reliable and Efficient Detection and Localization
We study three strategies for mapping visual inputs (raw RGB images) to state representations.

Fully End-to-End Approaches. We first look at training a convolutional neural network (CNN)
encoder from scratch solely using visual observations paired with demonstrations in our dataset.
We pass the RGB image through a CNN architecture with max-pooling, recovering a dense feature
vector f. The fused robot & environment state representation s is a 7-DoF joint state concatenated
with this dense feature vector: s = sjoine © f. We learn this CNN encoder jointly with the latent
actions CAE.

Learning Localization. Jointly learning detection as well as localization in the scope of a single
CNN encoder may be difficult given limited examples (in our case, no more than 10 demonstrations
for a given object class). To test this, we experiment with a “localization-only” model provided
with the ground-truth object class by an oracle prior to teleoperation. We use an identical CNN
encoder as the end-to-end approach to learn how to localize objects, and concatenate the final dense
“localization” vector g with a one-hot encoding of the object type c. The fused robot & environment
state representation s is: § = Sjoint O g @ C.

Structured Representations & Leveraging Static Data. Both prior approaches are uninter-
pretable; it is not clear what the CNN encoders are learning or what information they preserve. This
is particularly concerning when teleoperating a robot arm in safety critical settings. To combat this,
we propose using a third strategy with a strong structural inductive bias: predicting object classes
and (z, y) coordinates directly from an RGB image. We use the YOLO-v5 architecture (
, , ), due to its detection accuracy and speed on existing benchmarks.
We found that we needed only 75-100 labeled images of 2-4 objects each to train a reliable detector.
The structural inductive bias present in YOLO-v5 directly addresses both detection and local-
ization. Crucially, after pretraining YOLO-v5 on our static dataset, we hold it fixed during CAE
training, theoretically allowing for more stable and reliable training dynamics than with the prior
approaches. The fused state representation is given as the joint state concatenated with the detected
class one-hot vector c, and the predicted (z,y) coordinates from YOLO-v5: s = sjoint @ ¢ @ [z, ).

4.2. Few-Shot Adaptation

Reliably detecting and localizing multiple objects enables robots to learn a wide-variety of object-
specific behaviors. Furthermore, as the latent actions model is shared across all objects (and thus,
all tasks), there is an opportunity for positive transfer and robust few-shot learning when faced with
brand new tasks or objects; as long as there is plausible shared structure between the new task and
a task seen at training (e.g., pushing south at train to push south-west at test), we might expect the
latent actions model to adapt with fewer demonstrations than if it were learning from scratch. We
perform experiments to this effect, evaluating how latent action models degrade as we 1) decrease
the number of provided demonstrations for an unseen task (in a “few-shot setting”), and 2) increase
the distance between the unseen and seen behaviors.
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5. Robosuite Environments

We first perform experiments with a simulated Franka Emika Panda robot arm (7-DoF) to evaluate
the various visual encoding schemes and few-shot potential described in Section 4. We use the
Surreal Robotics Suite (Robosuite) ( , ), a simulation toolkit based off the MuJoCo
physics engine ( , ) to render environments.

Setup. The robot state sjoin € R” consists of joint positions, while the action a € R corresponds
to joint velocities. The robot’s next state is given by s, = Sjoinc + @ - dt, where dt corresponds
to step size (held fixed at 1.0). Our visually guided latent action models are trained to map to latent
actions z € R! (1-DoF), and we use the corresponding decoder ¢ as our visually guided assistive
controller. In simulation, we use a planner to generate oracle demonstrations for individual tasks.
When accomplishing tasks, we extract a single image at the beginning of the interaction episode
to feed to our visual encoders to obtain the environment state information for the entire episode;

constantly running the image processing loop significantly impacts latency, with minimal benefit.

Simulated Teleoperator. In lieu of a real human using a 1-DoF joystick to control the robot with
our visually guided latent actions model, we build a simulated teleoperator that greedily searches
over a discretized range in R for the action that minimizes projected distance to a target waypoint
in joint space Wjoint € R”. In other words, given our visually guided latent action decoder ¢,
our robot’s joint state sjoint, our fused robot & environment state s (computed separately for each
encoding strategy, as described in Section 4.1), and action step size dt we compute the locally-
optimal latent action z* to take as: z* = argmin,c z||Wjoint — (Sjoinc + @ (2, 5)dt)||2.

Most of the tasks in our evaluation are pushing tasks; as such, they cannot be captured with a
single waypoint wjoin, (With just the final point, the robot would just try to navigate directly there,

without interacting with the object). To mitigate this, we sample 2 waypoints, w’- and wﬁ)oi;tt

1n
denoting the pre-push (prior to making contact with the object) and post-push (aftje(:)r tcompleting
the push) points respectively. We use timeouts for switching between waypoints; for the first &k
seconds we optimize our choice of latent actions z* with respect to the first waypoint (we use
k = 15 seconds), then optimize z* with respect to the second for all future timesteps. We emphasize
defining such intermediate waypoints is only to aid our simulated teleoperator that can later be used
for evaluation of our method in Robosuite. In general (and as evidenced by our User Study in

Section 7), human users use our visually guided assistive controller without a task breakdown.

Pretraining YOLO-v5 on Simulated Workspaces. To build our initial dataset for pretraining our
YOLO-v5 detector in simulation, we sample 1000 random configurations of individual objects (in-
cluding the few-shot target type) on the workspace, with the robot joint state also sampled randomly,
and programmatically annotate them with (x, y) coordinate and object class.

Note that to generalize to unseen objects, we require retraining our detector given annotated im-
ages of the novel object. As part of our experiments in Section 5.2, we evaluate our visually guided
model’s ability to generalize to new tasks given a previously unseen object; for those experiments
we include static images of the “unseen” object in our YOLO-v5 dataset (part of the 1000 random
configurations above); however, we do not train on any demonstrations for the given object ahead
of time (making these objects effectively ungrounded). This is an approximation of how one might
deploy a visually guided system in practice (perhaps after pretraining on several objects at scale).
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5.1. Evaluating Visual Encoding Strategies

To evaluate the relative performance of our visual encoding strategies (End-to-End, Localization-
Only, and YOLO-v5), we select 4 different objects (bread, soda can, milk carton, and glass bottle)
and collect 10 base demonstrations for each of them, with each object assigned a unique pushing
task (pushing east, south, south-west, and west). We evaluate our strategy by looking at performance
relative to the number of training demonstrations provided, looking at model performance after
training on 1 demonstration per object, then 2 demonstrations, and so on, up through the full dataset
of 10 demonstrations per object (10 iterations total). After training each visually guided latent
actions model with a given encoder on a dataset of demonstrations, we evaluate performance by
using the Simulated Teleoperator on a set of 10 validation tasks for each of the 4 objects.

5.2. Few-Shot Generalization: Efficiently Learning Latent Actions for Unseen Objects

To evaluate the few-shot/transfer learning potential of our approach, we: 1) Train a no-transfer
variant of the latent actions model, where the demonstrations only consist of the unseen class (the
few-shot demonstrations), and 2) Train a transfer variant of the latent actions model where the
demonstration dataset consists of all 40 demonstrations from each the base classes in addition to
demonstrations from the unseen class. For all simulation experiments, the unseen object is a cereal
box. Critically, we look at varying the “difficulty” (behavior novelty) of the unseen tasks as follows:

SEEN. Given a new object, try and replicate a task from the base set. For example, one of the the
base tasks is Push the bread south, so our SEEN task is Push the cereal box south.

NEAR. Given a new object, perform a task slightly different from the base set. Base tasks include
pushing south, south-west, west, and east, so our NEAR task is Push the cereal box south-east.

FAR. Given a new object, perform a task different from any of the base tasks. Our FAR task is
Rotate around the cereal box in a circle, a motion that is not represented in the base set.

6. Simulation Experiments

Model Details. In all of our experiments, both the encoder/decoder in our latent actions CAE are
Multi-Layer Perceptrons (MLPs) with 2 hidden layers. The CAE has a single-node bottleneck (the
learned latent action space is 1-dimensional), and is trained to minimize the Ly reconstruction loss
on the dataset of robot actions. State-action pairs for training are computed from pairwise joint state
differences for subsequent states (within a fixed window) in a demonstration. To prevent overfitting,
we augment states in our dataset by adding noise € ~ N(0, 0?), where o = 0.01.

Configuration & Metrics. We optimize for Final State Error, measured as the L2 Distance be-
tween the final joint state of the robot and the final waypoint provided to the teleoperator, after
a time limit of 30 seconds. We average performance over 10 runs, sampling different subsets of
demonstrations for each new run. We additionally perform qualitative analyses of the end-effector
trajectories for each strategy to identify common failure modes and other patterns.

Hypotheses. We have the following three hypotheses:

H1. Provided sufficient demonstrations, each of the three visual encoding strategies from Section
will learn accurate latent actions that accomplish the appropriate tasks for each object class.
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Figure 2: Robosuite Simulation Experiments, with plots and visualizations investigating the sample effi-
ciency of the various visual encoding strategies, and the benefit of transfer learning when trying
to generalize to unseen objects and new tasks. Shaded regions denote standard error across runs.

H2. Of the three visual encoding strategies we evaluate, the YOLO-based detection model that
produces the most structured state representation — detected object class labels and coordinates —
will be the most sample efficient of the visually guided latent action models.

H3. Transfer learning will almost always be better than learning latent actions from scratch given
a small dataset of unseen demonstrations.

6.1. Results & Analysis

Evaluating Visual Encoding Strategies. Figure 2a presents a graph of final state error vs. # of
demonstrations per object class for the three visual encoding strategies. Surprisingly, access to the
ground-truth object class does not seem to provide the localization-only model with an advantage
over the end-to-end model. Generally, while all visual encoding strategies improve as they are
exposed to more demonstrations, the structured, pretrained representation output by the YOLO-v5
model leads to superior performance; with just 2 demonstrations, the YOLO-v5 model is able to
achieve better final state error than either CNN-based model trained with 10. Figure 2b presents
a qualitative take; even after 10 demonstrations, the end-to-end model fails to make contact with
the object (the bread), whereas the localization-only model is able to successfully start pushing, but
not far enough to make it to the target location. Only the YOLO-v5 latent actions model is able to
smoothly push the object to the desired location.

Few Shot Generalization to Unseen Objects. Figure 2c depicts the transfer (orange) and non-
transfer (gray) performance across the SEEN, NEAR, and FAR settings. Unsurprisingly, in the SEEN
setting, the transfer models are able to get incredibly low final state error starting with just 1 demon-
stration. With the NEAR results, transfer models start off with an advantage at just a 1 demonstra-
tion, and continue to outperform the non-transfer models all the way up through training on the full
set of 5 demonstrations available. However, looking at the FAR results, we see that with just a single
demonstration, the non-transfer model is able to outperform the transfer model by a large margin.
That being said, this margin goes away completely after adding a second demonstration, at which
point the transfer models take the lead for the remainder of the demonstration budget.

7. User Study — Teleoperating a 7-DoF Arm

In addition to the simulation experiments, we perform a user study that evaluates three different
control strategies for accomplishing tasks with a 7-DoF robotic arm (also a Franka Emika Panda
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Figure 3: Visualized trajectories from our user study. The Localization-Only model fails to reach the target
object in most cases. Whereas the YOLO-v5 strategy allows for smooth and precise movement,
the End-Effector trajectories are jagged and blocky, contraindicating its use for fine-grained tasks.

arm) with a 1-DoF joystick. Alongside our assistive approaches, we also include an end-effector
control baseline, where users directly teleoperate the robot’s motion by switching control modes

( ; )-

Setup. To build a real-world visual latent actions model, we 1) collected an annotated image
dataset of objects and their corresponding coordinates to train our YOLO-v5 Detector, and 2) col-
lected demonstrations for the different tasks in our base setup. This included pushing in 4 directions
— south, south-west, west, and east. We additionally needed a smaller number of demonstrations for
our few-shot generalization experiments; the same SEEN (pushing south), NEAR (pushing south-
east), and FAR (circling an object) tasks used in simulation.

We needed only 100 images (90 train, 10 validation), with each image containing on the order of
2-4 objects to train an accurate YOLO-v5 detector in our lab workspace. Similar to the simulation
experiments, we also collect static annotated detection data for our “unseen object” (a Campbell’s
Soup Can), to be used for our few-shot generalization experiments.

We collect demonstrations for our tasks kinesthetically, by manually backdriving the robot end-
effector to make the appropriate pushing motions while recording the robot joint states. For our
4 base objects — SPAM (south), Cup (east), Stuffed Animal (west), Rubik’s Cube (south-west) we
collect 9 demonstrations each; for each of our unseen-settings, we only collect 3 demonstrations.

We keep the CNN encoder and CAE model architectures identical to the simulation experiments,
and use the same training hyperparameters and augmentation scheme, except for batch size, which
was much larger than in simulation. Similar to prior setup, we only run the first webcam frame of
each episode through our visual encoders; again, we saw no benefit in running the detection loop on
each action.

Experiment Procedure. For the study, we recruited 9 volunteers that provided informed consent
(4 female, ages 24.22 + 1.6), with 8/9 participants having prior robot teleoperation experience.

Participants used a 1-DoF joystick to control a 7-DoF robot arm with the 3 strategies above. Each
participant completed 4 tasks x 2 trials for each evaluation mode (base object manipulation, and
the three few-shot experiments). On exposure to a new model or object, participants were given
an opportunity to practice; we reserved a single fixed point on the workspace that the participant
could reset the object to as many times as they wanted. Then, after verbally agreeing to move on,
we moved the object to a separate starting point on the workspace, and had the users complete two
trials back to back. We ran a qualitative survey that the participants filled out after each control
strategy, where we asked questions about usability and intuitiveness, amongst others (see Figure 4).

2. Due to the COVID-19 pandemic, we could only recruit users with preapproved access to the robotics lab.
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Figure 4: User Study. [Left] Participants found YOLO-v5’s structured representations crucial for better
control, typically leading to high success rates on new and unseen tasks. [Right] Users preferred
this structured approach across the board. Error bars denote std. error across the participant pool.

7.1. Results & Analysis.

Results are consistent with simulation; the YOLO-v5 latent actions outperform Localization-Only
on all objective and subjective metrics (Figure 4), showing consistently higher success rates across
the base (train) tasks, as well as the three few-shot tasks. Figure 3 shows that the Localization-Only
model’s failures stemmed from a failure to localize the object correctly, often going to a completely
wrong point on the table (contributing to its 0% success rate for certain tasks). However, it does
succeed reliably on two of the harder tasks, indicating that learning to localize with an end-to-end
model may still be viable, even with the complexity of the real-world.

More surprising is how well the End-Effector control strategy performed relative to the YOLO-
v5 latent actions model, particularly in the SEEN task. There are two explanations: the first is that
given real-world demonstration data, 3 demonstration episodes are not enough for even the YOLO-
v5 latent actions CAE to fit properly to the task. The second is that SEEN is straightforward for the
End-Effector control strategy, and requires only a few control inputs. Overall though, the YOLO-
v5 model beats the End-Effector strategy on all subjective, Likert-scale metrics (Figure 4), most
notably in terms of “ease of use,” “helpfulness,” “intuitiveness,” and most importantly, “whether the
participant would use the given strategy again.” Looking at the visualizations in Figure 3 completes
the story; most of the End-Effector controller’s successes stem from very jagged, blocky motions,
in contrast to the YOLO-v5 latent action model’s smooth, natural-looking motion.

8. Conclusion

Summary. We developed a framework for incorporating visual state representations into latent
action-based assistive teleoperation. Our simulations and results demonstrate that structured repre-
sentations enable users to rapidly generalize learned control embeddings to new objects and tasks.

Limitations & Future Work. We built our system under the assumption that once detected, ob-
jects would stay mostly static; while this was an assumption that allowed us to make meaningful
progress on building a working version of this system, it is not a hard or fast constraint. Future work
will look into expanding the existing models to deal with dynamic objects, as well as more robust
evaluations with users who already employ assistive robots in their everyday lives.
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