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Abstract— Assistive robot arms can help humans by partially
automating their desired tasks. Consider an adult with motor
impairments controlling an assistive robot arm to eat dinner.
The robot can reduce the number of human inputs — and
how precise those inputs need to be — by recognizing what
the human wants (e.g., a fork) and assisting for that task (e.g.,
moving towards the fork). Prior research has largely focused on
learning the human’s task and providing meaningful assistance.
But as the robot learns and assists, we also need to ensure
that the human understands the robot’s intent (e.g., does the
human know the robot is reaching for a fork?). In this paper,
we study the effects of communicating learned assistance from
the robot back to the human operator. We do not focus on the
specific interfaces used for communication. Instead, we develop
experimental and theoretical models of a) how communication
changes the way humans interact with assistive robot arms, and
b) how robots can harness these changes to better align with
the human’s intent. We first conduct online and in-person user
studies where participants operate robots that provide partial
assistance, and we measure how the human’s inputs change with
and without communication. With communication, we find that
humans are more likely to intervene when the robot incorrectly
predicts their intent, and more likely to release control when
the robot correctly understands their task. We then use these
findings to modify an established robot learning algorithm so
that the robot can correctly interpret the human’s inputs when
communication is present. Our results from a second in-person
user study suggest that this combination of communication
and learning outperforms assistive systems that isolate either
learning or communication.

I. INTRODUCTION

More than 24 million American adults need external
assistance when performing activities of daily living [1].
Assistive robot arms that share autonomy with humans have
the potential to help address this challenge [2], [3]. In these
shared autonomy settings the human controls the robot arm
using an input device (e.g., a joystick) to indicate their intent,
and the robot helps automate tasks on the human’s behalf
(e.g., picking up foods and feeding them to the operator).

To achieve seamless assistance, both the human operator
and robot arm must be on the same page. Consider Figure 1,
where a human is using a robot arm to manipulate kitchen
items. The human wants the robot to pick up a fork, and
so the human provides joystick inputs that guide the robot
towards that goal. For the robot to align with the human, the
robot must learn from these inputs to determine the human’s
intent and partially automate their task. Here the robot might
correctly infer what the human wants (e.g., a fork) and then
coordinate its own motions to help reach that goal (e.g.,
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Fig. 1. Human sharing control with an assistive robot arm. (Top) The robot
tries to infer the correct task from the human’s joystick inputs. (Middle)
We show that — when the robot communicates what it has inferred — the
way humans provide inputs changes. (Bottom) If robots are aware of these
changes, they can more accurately infer the human’s goal.

fixing any errors in the human’s inputs to precisely pick up
the fork). On the other hand — for the human to align with
the robot — the robot needs to communicate its intended
assistance back to the user. Without this communication the
human does not know what to expect from the robot: is the
robot going to help automate the motion to the fork, or does
the robot think the human wants something else entirely?

Existing research on shared autonomy has largely sepa-
rated learning and communication. On the one hand, methods
such as [4]–[8] focus on inferring the human’s task and
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partially automating the robot’s motion, but do not consider
communication back to the human. On the other hand,
approaches like [9]–[11] develop visual and haptic commu-
nication interfaces for shared autonomy, but do not modify
the robot’s learning algorithm. In this paper, we explore the
intersection of learning and communication within shared
autonomy settings. More specifically, we hypothesize that:

Humans will interact with shared autonomy systems
differently when those systems communicate their learning.
This is important because — if humans do provide different
inputs in the presence of communication — then the way
the robot interprets and learns from human actions should
also be modified. Accordingly, our paper has two main parts.
First, in Section III-B we test our hypothesis and measure
how communication can affect the way humans interact with
assistive robot arms. Second, in Sections IV and V we
harness the changes caused by communication to modify the
robot’s learning algorithm. In practice, this combination of
learning and communication enables a) the robot to more
seamlessly infer the human’s task, and b) the human to more
clearly indicate their intent. Returning to Figure 1, perhaps
the human stops providing inputs because they observe from
the robot’s feedback that the fork is the robot’s most likely
goal. In response, our robot is able to confirm its prediction
(i.e., because the human released control the robot must be
correct), and complete the task more efficiently.

Overall, we make the following contributions:
Measuring the Effects of Communication. We consider
shared autonomy settings where a human is operating a robot
arm, and the robot updates the likelihood of each potential
task based on the human’s inputs. For these settings, we
perform online and in-person user studies with and without
robot communication. We find evidence that humans behave
differently in the presence of communication.
Updating the Robot’s Learning Rule. Our experimental
results suggest that — when communication is present —
humans are more likely to intervene if the robot has inferred
the wrong task, and more likely to relinquish control if the
robot is correct. We use these findings to modify the human
model of an existing shared autonomy algorithm.
Combining Learning and Communication. We conduct
another in-person user study with three conditions: learning
(where the robot does not provide explicit feedback), com-
munication (where the robot communicates its intent but does
not adjust its learning rule), and our proposed approach. Our
results suggest that the combination of learning and commu-
nication increases subjective and objective performance in
shared autonomy settings.

II. RELATED WORKS

Below we discuss shared autonomy research that focuses
on either learning (i.e., inferring the task and providing as-
sistance) or communication (i.e., visual and haptic interfaces
to convey the robot’s internal state).
Learning in Shared Autonomy. Shared autonomy is a
collaborative framework for human-robot interaction where

the robot’s behavior is a blend of the human’s inputs and
the robot’s autonomous assistance [12]. The human’s inputs
convey the high-level task (e.g., grasping a fork), and the
robot’s inputs provide fine-grained corrections (e.g., coordi-
nating the motion of the arm to reach that fork). Prior works
develop algorithms to learn both the high-level task and low-
level assistance. For example, in [4]–[8], [13] the human’s
desired task is to reach a goal from a discrete set of options,
and the robot infers this goal based on the human’s inputs. As
the robot becomes more confident in which goal the human
wants, it can increasingly provide assistance to automate that
task. Similarly, in [14]–[17] the robot builds an estimate of
the task’s reward function, and overrides any accidental or
incorrect human inputs that would result in poor performance
(e.g., preventing the human from moving the robot arm into a
collision). Other methods such as [18]–[22] learn to assist the
human by imitating their previous behaviors. For instance,
if the human showed the robot how to pick up a fork in a
past interaction, the robot leverages that data to help pick
up forks during future interactions. Overall, each of these
works provides a way for the robot to learn from and assist
the human. However, they do not explicitly communicate
what the robot has learned — hence, the user may not know
what to expect from the autonomous agent.
Communication in Shared Autonomy. Research outside of
shared autonomy contexts suggests that communicating robot
learning has benefits for both the human and the robot. From
the human’s perspective, communication increases the user’s
acceptance and trust in the system [23]; from the robot’s per-
spective, communication can result in more effective human
teaching and accelerated robot learning [24]. Accordingly,
recent works have started to apply communication strategies
to shared autonomy [25]. In some scenarios, it is possible
for the robot to implicitly convey what it has learned by
exaggerating its motions [26]. However, for the robot to
clearly indicate its latent state in everyday settings, explicit
communication with visual, auditory, or haptic interfaces is
often necessary. In [9] and [11] augmented reality headsets
show the operator what the robot has learned about their
high-level task (e.g., placing visual markers at the most likely
goals) and how the robot plans to assist (e.g., displaying the
robot’s planned trajectory). Similarly, in [10] a wearable hap-
tic interface notifies the human when the shared autonomy
system is uncertain about their intent. Our paper will build
upon these related works by using explicit communication to
convey the robot’s inferred task back to the human. However,
instead of focusing on the communication interface itself,
we are interested in the effects of this communication on the
human operator and assistive agent.

III. EFFECTS OF COMMUNICATION
IN SHARED AUTONOMY

We consider shared autonomy settings where the human
and robot collaborate in achieving a common goal. A key
aspect of shared autonomy is the ability of the robot to infer
the human’s goal (i.e., the task they are trying to complete). If
the robot correctly infers the human’s goal, it can complete



the remaining task without requiring further human input.
Alternatively, if the robot’s inference is incorrect, the human
must keep providing inputs towards their intended goal.
However, it can be challenging for humans to determine what
goal the robot has inferred without explicit communication.

In this section, we investigate how explicitly communicat-
ing the robot’s belief about the human’s goal affects their
actions. We first introduce the policies of the human and the
robot collaborator in the absence of communication. Then,
we conduct a user study to understand the role of commu-
nication in shared-autonomy settings and determine how the
users’ actions change when communication is introduced. We
aim to use these findings to improve the robot’s inference of
the human’s goal and provide better assistance.

A. Shared Autonomy without Communication

We let s ∈ S be the environment state which includes the
state of the robot, aH ∈ A and aR ∈ A be the human’s and
robot’s actions respectively. The environment state transitions
based on both the human and robot actions.

st+1 = f
(
st, aH, aR

)
(1)

We assume that the human chooses actions to minimize an
internal cost-value function Q⋆:

aH ∼ π⋆
H (◦ | s, θ,Q⋆) (2)

Correspondingly, as the robot is trying to achieve the same
goal as the human, it should take actions that minimize the
human’s cost-value function Q⋆. The robot does not directly
observe the human’s goal or their cost-value function. In-
stead, the robot selects actions according to an approximation
Q of the cost-value function from prior work [4] where the
robot’s belief is not directly communicated to the human:

aR ∼ π⋆
R (◦ | s, b (θ) , Q) (3)

where b(θ) is the robot’s belief of the human’s goal θ.
We suspect that the human’s actions will change in the

presence of communication. If the belief communicated by
the robot aligns with the human’s goal — will the human
continue to provide actions that navigate the robot towards
their goal or will they allow the robot to assume full control?
On the other hand, if the robot’s belief is incorrect — will
the human exaggerate their corrective actions because they
know that the robot’s belief is incorrect? To evaluate how
real users respond to robots that communicate their belief,
we conducted two user studies in the absence and presence
of communication.

B. Shared Autonomy with Communication

We performed online and in-person user studies to gain
insight into the effect of communication on shared autonomy.
Participants collaborated with a robot to reach a goal while
choosing how much input they think is enough for the
robot to learn the task. In half of the interactions, the
robot communicated its current belief of the user goal as
a percentage using a digital interface. Our results from 25
online users and 10 in-person users show that people provide

less input when the robot communicates its belief over the
user goal. Additionally, the subjective polled results from the
in-person study show a significant preference for a system
that communicates the robot’s intention for its cooperation.
Experimental Setup. In the online study, participants taught
a robot to reach a goal in multiple shared autonomy settings.
In each setting, there were three objects with varying colors
and the user’s goal was to reach the green square (see
Figure 2 (Left)). The position of these objects varied between
settings. To simulate the settings we used an animated 2D
environment with a top-down view. Online participants first
watched the beginning of the robot arm’s motion and then
selected their choice of input to guide the robot toward the
desired goal or to allow the robot to continue on its partially
demonstrated path. In the in-person study, users commanded
a robot arm using a Logitech F710 gamepad to perform a
similar task of reaching a green cube.

We had five different settings for the objects in the online
study and three settings in the in-person study. All partici-
pants interacted with the robot in each setting twice — with
and without communication. In total, participants had six
interactions in the in-person study and ten interactions in the
online study. Each interaction ended when the robot reached
the correct goal. The order of the settings was randomly
counter-balanced across all users.
Independent Variables. For the online study, the users
interacted with the robot in each setting across two variations.
In one variation, the users had to infer the robot’s intended
goal through its animated motion (Without Interface). In the
other variation, users were provided with the probabilities of
the robot’s belief over the goals (With Interface) in addition
to their observation of the robot’s motion.

For the in-person study, the robot used a state-of-the-art
shared autonomy algorithm [4] to select its action aR in each
setting. In half of the interactions, the robot communicated
its current belief b(θ) as percentages using a digital interface
(With Interface) and for the other half, the users had to infer
the robot’s belief from its motion (Without Interface).
Dependent Variables. In both studies, we focused on how
the user responses change when performing the shared auton-
omy tasks with and without communication. For the online
study, we recorded whether the human chose to command the
robot toward the desired goal or not. For the in-person study,
we recorded the time that users spent using the gamepad and
other joystick inputs (Total Human Inputs) as well as their
subjective responses on a 7-point Likert scale for whether
they preferred the settings with explicit communication or
without the interface.
Participants. For the online study, we recruited 25 anony-
mous participants. We included an instruction and a quali-
fying question at the beginning of the survey for this study.
For the in-person study, we recruited 10 participants from
the Virginia Tech community (2 female, ages 23± 9 years).
All participants provided informed consent as per university
guidelines (IRB #20-755). To assist the participants in be-
coming familiar with the gamepad and the robot we provided
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Fig. 2. Example settings and results from our user studies in Section III-B. Here we explored how communicating the robot’s inferred distribution over a
discrete set of tasks affected the human’s inputs during shared autonomy. In all conditions, the robot used the same learning algorithm. (Left) Results from
the online survey with and without a communication interface. Humans were more likely to release control to an assistive robot that conveyed its learned
distribution over the tasks (t(24) = 4.271, p < 0.005). (Right) Corresponding results from our in-person study. Here humans required fewer inputs to
guide the robot to their goal when the robot communicated its learning (t(29) = 2.986, p < 0.005). Overall, these results suggest that humans are more
willing to yield control to a communicative system. An asterisk (*) denotes statistical significance.

practice time at the beginning of the interaction.

Hypothesis. We hypothesized that:

H1. When the robot communicates its belief over
the goal, users will require less effort in command-
ing the robot to reach the desired goal.

H2. Users will prefer using a shared autonomy
system where the robot’s belief is communicated.

Results. Our results from the online and in-person user
studies are summarized in Figure 2. To address H1, we
evaluate the level of effort that users exhibited through the
number of human inputs given through the gamepad. Here,
there was a significant difference (t(24) = 4.271, p < 0.005)
in the requisite human effort to reach the given goals. This
result shows that when the robot communicates its belief, the
user no longer has to provide the same level of effort for the
robot to reach the goal, supporting H1.

For H2, we turn to our Likert-scale survey. We performed
a Paired-Samples T-Test across polled user preferences
for communication; these results were significant (t(9) =
17.676, p < 0.001). In our in-person user study, participants
preferred interacting with a robot that communicated its
belief of the human’s intent.

IV. HARNESSING COMMUNICATION
TO IMPROVE LEARNING

Our results from the first user study (Sec. III-B) demon-
strate that humans behave differently in settings with com-
munication than those without it. In this section, we leverage
the human’s response to the robot’s communication in a
novel shared-autonomy formalism. Instead of solely using
communication to aid the human’s guidance of the robot,
we treat the human’s feedback to the communication as an
indication of the user’s confidence in the robot.

We use this idea to present model human policies for both
modalities: in the presence and absence of communication.
The robot policy uses the appropriate human model to choose
assistive actions that minimize the human’s modality-specific
cost-value function.

Human. The human takes actions that minimize their in-
ternal cost-value function Q. Following previous works [5],
[26], we model the human as a nosily rational agent accord-
ing to the Boltzmann distribution:

πH (aH | s, θ) = exp (β ·Q (s, aH, θ))∫
exp (β ·Q (s, a′H, θ, )) da′H

(4)

Here, πH is a model of the human’s true policy π⋆
H.

In the Boltzmann rational distribution, β ∈ [0,∞) is the
rationality hyperparameter: as β approaches 0, the human is
considered to be more irrational; their actions are essentially
uniformly distributed. On the other hand, as β increases, the
human’s actions are increasingly optimal (i.e. "rational"). The
robot does not have access to the human’s policy; instead,
it assumes an apriori model of the human. In continuous
spaces, Equation 4 is intractable. Similar to [5], we tractably
estimate the human’s policy using the principle of maximum
entropy: the probability of a goal decreases exponentially as
its cost increases. This yields the following approximation:

πH (aH | s, θ) ∝ exp (−β ·Q(s, aH, θ)) (5)

Firstly, in the absence of communication, we approximate
the human’s cost-value function as:

Q(s, aH, θ) = dist(aH + s, θ)− dist(s, θ) + ∥aH∥ (6)

The first two terms measure the distance by which the human
actions move the robot away from the human’s goal, while
the last term measures the magnitude of the human actions.
Formally, Equation 6 is minimized when the human takes
low-effort actions that minimize the distance between the
robot and their goal and require the least effort to do so.
However, in the absence of communication, humans cannot
directly observe whether or not their actions have influenced
the robot’s belief to a state where they no longer need to
provide input actions and thus, have no reliable basis on
which to determine when they can minimize their effort.

In the absence of communication, the human must infer
the robot’s belief by observing the robot’s actions. However,
in many cases there can be uncertainty in determining the
robot’s goal — for example, if the spoon and the fork are



close to one another, how can the human reliably tell which
goal the robot is moving towards? On the other hand, in
the presence of communication, the human has a reliable
prediction of the robot’s future assistive actions given its
belief and can respond to this communication positively by
removing input or negatively by continuing to work against
the robot. Our key insight is that when the robot’s belief is
communicated, human inputs can be interpreted as assurance
or rebuttal of this communicated belief.

Therefore, we propose that the human’s internal cost-
value function in the presence of communication can be
modeled by incorporating the robot’s belief into the cost of
the human’s actions.

Q(s, aH, θ) = dist(aH+ s, θ)− dist(s, θ)+ b(θ) · ∥aH∥ (7)

In the presence of communication, if the robot’s belief is
correct, then the human’s cost is minimized by providing
little effort in agreement with the robot’s assistance. If the
robot’s belief is incorrect, then the human will provide
inputs that contradict this belief. For example, in the case
of ambiguous goals (i.e., the spoon and fork placed close
together), with the presence of communication, the human
will hold a definite answer for whether the robot is correct.
This will result in either further adjustments to correct a
misaligned belief or a submission of control seeing that they
can minimize their effort by relying on the robot’s assistance.

Robot. The robot updates its belief b (θ) based on the
observed human actions. Let P (θ | s, aH) denote the
probability that the human is optimizing for the goal θ given
the state s and human action aH. Using Bayes’ theorem, the
posterior probability is defined as:

P (θ | s, aH) ∝ P (aH | s, θ) · P (θ) (8)

Here, P (θ) is the prior of the robot’s belief over the human’s
goal and P (aH | s, θ) is the likelihood function for the
robot’s prediction. Note that P (aH | s, θ) is equivalent to
π⋆
H, which we model as πH. Similar to Equation 5, we use

the principle of maximum entropy to derive an equivalent
form for Equation 8:

P (θ | s, aH) ∝ exp (−β ·Q (s, aH, θ)) · P (θ) (9)

The robot takes actions aR that minimize Equation 6 in the
absence of communication and Equation 7 in the presence
of communication according to:

aR =
∑
θ∈Θ

P (θ | s, aH) · (θ − s) (10)

Since the robot’s belief may be incorrect, the robot blends
the human’s commanded action with an assistive action:

aB = (1− α) · aH + α · aR (11)

The hyperparameter α ∈ [0, 1] is determined by a threshold
according to the human’s action such that when the robot
displays the correct belief and the human surrenders control,
the robot is allowed to take a higher level of control to assist.
For this, we transition alpha from a minimum value in the
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Fig. 3. Tasks and user inputs from the user study in Section V. (Left)
The items the human led the robot to interact within each task. (Right) The
magnitude of the human’s inputs over time averaged across all users. These
results show that users completed the tasks more quickly with Ours, and
overall needed fewer inputs to convey their intended goals to the robot.

presence of human action to a maximum value when the
robot is in full control.{

α = α+ step, α ≤ αmax if ∥aH∥ ≈ 0

α = α− step, α ≥ αmin if ∥aH∥ ̸≈ 0
(12)

Here step is a hyperparameter chosen by the designer to
control the rate at which the robot will increase its assistance
proportionally to the number of timesteps that the user has
allowed for complete robot assistance.

Altogether, Equations 7-12 form our method for selecting
optimal actions in the presence of communication. These
equations build upon existing shared autonomy approaches
for inferring the human’s goal and providing assistance [4]–
[6]. But we have modified this existing learning framework
to explicitly account for communication and the effect com-
munication may have on the human’s internal cost function
Q∗. Without communication, earlier works such as [4] sug-
gest that the human optimizes for their error and effort as
shown in Equation 6. However, with communication, our
experimental results from Section III-B indicate that humans
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Fig. 4. Objective and subjective results from the user study in Section V. (Left) Total user inputs for Seasoning, Drink, and Utensil tasks. To count the
number of inputs, the robot measured whether the human had pressed the joystick every 0.02 seconds. Across each task, users provided fewer inputs and
relied on the robot’s assistance more when using Ours (p < 0.001, p < 0.001, p < 0.001). These results support H3: Users spent less effort when using
Ours. (Right) Subjective results for the three baselines. Across the four Likert-Scale items, users preferred Our method: they felt that they could easily
control the system (p < 0.001), the robot provided effective assistance (p < 0.005), the robot better predicted their goal (p < 0.001), and the robot
adapted more quickly to their actions (p < 0.001).

are willing to increase their effort if the robot is wrong and
release control when the robot is correct. Using these findings
we update our human model for Q in Equation 7. Up to this
point, our modified learning rule is informed by experiments
but has not yet been tested. Accordingly, in Section V we
will compare our proposed method for aligning learning with
communication against baselines that separately learn and
communicate.

V. TESTING THE COMBINATION
OF LEARNING AND COMMUNICATION

Lastly, we conduct an in-person user study to evaluate
the performance of our proposed method in comparison to
the state-of-the-art shared autonomy baseline [4] with and
without a communicative interface. We wish to demonstrate
that accounting for the knowledge of the robot’s belief in
the human’s cost function, in addition to communicating the
robot’s belief, allows the robot to provide better assistance
than simply communicating the robot’s belief with the base-
line shared autonomy approach.
Experimental Setup. Users were instructed to complete
three tasks in a more complicated environment than the first
in-person user study to highlight the utility of this approach:

1) Seasoning: Retrieve a salt or pepper shaker, bring it to
a plate of food, and then return it to its base position.

2) Drink: Go to the can of soda, bring the can of soda
to a mug, and return the can to its base position.

3) Utensil: Retrieve the spoon or fork and bring it to the
relevant side of the plate.

Participants commanded the robot using a Logitech F310
gamepad to complete each of the three tasks using one
of three methods: Without Interface, With Interface, and
Ours. The order in which participants interacted with these

methods was randomized to avoid any proficiency bias.
Details of these tasks are illustrated in Figure 3 (Left).

Independent Variables. In each task, the robot starts with
a uniform prior over the goals which is gradually updated
according to the methods discussed in section IV. Partici-
pants performed each task three times — using the baseline
shared autonomy approach Without Interface, using the
same baseline With Interface, and using our method of
feedback-enabled shared autonomy - Ours (which combines
learning with communication).

Dependent Variables. We recorded the Total User Inputs to
measure the amount of effort spent by the users in completing
each task. We also recorded subjective User Scores through
a 7-point Likert scale survey with four items — for how
easy it was to Control the robot, how often they could tell
when the robot Assisted them, whether the robot was able to
Predict their goals, and if the robot Adapted to their actions.

Participants. A total of 12 participants from the Virginia
Tech community took part in this study (2 female, ages
28.5±6.5 years). Two of the twelve users had not interacted
with robots before. Users provided written consent as per
university guidelines (IRB #20-755).

Hypothesis. We hypothesized that for this study:

H3. The human will spend less effort in completing
the tasks when using Our method.

H4. Users will provide higher scores on the sub-
jective metrics for Our method than the baselines.

Results. The results of our user study are summarized in Fig-
ure 4. To address H3, we measured the number of user inputs
across three separate tasks for each method. Here, a lower
score is better: fewer inputs imply that the user is exhibiting



less effort when completing the task. Paired-sample T-tests
showed that participants used significantly fewer inputs when
the robot used Ours for each task (t(11) = 4.106, p < 0.001,
t(11) = 5.806, p < 0.001, t(11) = 9.636, p < 0.001). Figure
3 shows the average magnitude of the user input over time
for each task; these results further support H3.

Regarding H4, we present the subjective results from our
Likert-scale survey in Figure 4 (right). A one-way ANOVA
analysis of the users’ responses showed a significant differ-
ence in the perceived Control, Assistance, Prediction, and
Adaptation that the robot exhibited when using our method
(F (69) = 11.901, p < 0.001, F (69) = 6.368, p < 0.005,
F (69) = 8.794, p < 0.001, F (69) = 13.345, p < 0.001).
Actions chosen by Ours were preferable to those selected
by baselines; this supports H4.

VI. CONCLUSION

In this paper, we explored the effects of communicating
learned assistance back to the human operator in shared au-
tonomy. While previous research has focused on learning the
human’s task and providing assistance, we instead focused on
harnessing the effect of the communication. We hypothesized
that humans will interact with shared autonomy systems
differently when those systems communicate their learning
back to the human. Using the results from online and in-
person user studies, we showed that humans are more likely
to intervene when the robot incorrectly predicts their intent,
and release control when the robot correctly understands
their task. We used the insights from these results to modify
the robot’s learning algorithm: under our proposed approach,
the robot adjusts its model of the human’s cost function to
account for how communication changes the human’s input
patterns. Finally, we compared our approach for combining
learning and communication against shared autonomy base-
lines that separately handle learning or communication. In a
user study with 12 in-person participants across three kitchen
tasks, we found that our proposed approach for combining
learning and communication increased the subjective and
objective performance of the human-robot team.
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