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Abstract—Assistive robots enable people with disabilities to
conduct everyday tasks on their own. However, these tasks
can be complex, containing both coarse reaching motions and
fine-grained manipulation. For example, when eating, not only
does one need to move to the correct food item, but they
must also precisely manipulate the food in different ways (e.g.,
cutting, stabbing, scooping). Shared autonomy methods make
robot teleoperation safer and more precise by arbitrating user
inputs with robot controls. However, these works have focused
mainly on the high-level task of reaching a goal from a discrete
set, while largely ignoring manipulation of objects at that goal.
Meanwhile, dimensionality reduction techniques for teleoperation
map useful high-dimensional robot actions into an intuitive low-
dimensional controller, but it is unclear if these methods can
achieve the requisite precision for tasks like eating. Our insight
is that—by combining intuitive embeddings from learned latent
actions with robotic assistance from shared autonomy—we can
enable precise assistive manipulation. In this work, we adopt
learned latent actions for shared autonomy by proposing a new
model structure that changes the meaning of the human’s input
based on the robot’s confidence of the goal. We show convergence
bounds on the robot’s distance to the most likely goal, and develop
a training procedure to learn a controller that is able to move
between goals even in the presence of shared autonomy. We
evaluate our method in simulations and an eating user study. See
videos of our experiments here: https://youtu.be/7BouKojzVyk.

I. INTRODUCTION

There are nearly one million American adults living with
physical disabilities that need external assistance when eating
[32]. Physically assistive robots—such as wheelchair-mounted
robotic arms—promise to help these people eat independently,
without relying on caregivers [14, 21]. We envision a future
where users teleoperate assistive robots (e.g., through joysticks
[12], sip-and-puffs [1], or brain-computer interfaces [22]) to
seamlessly perform complex and dexterous eating tasks.

For instance, imagine that you are controlling an assistive
robotic arm to get a bite of tofu. You have a high-level goal:
you want to guide the robot to reach for the tofu on the table
in front of you. But just reaching the tofu is not enough; once
there, you also need to precisely manipulate the arm to cut off
a piece and pick it up with your fork (see Fig. 1). An effective
robotic partner should assist with both the high-level reaching
motions and the fine-grained manipulation tasks.

We will refer to the human’s high-level objectives as goals
(e.g., reaching the tofu), and their low-level manipulation as
preferences (e.g., cutting, stabbing, or scooping). Completing a
task according to your goals and preferences is challenging—
particularly because today’s assistive robots are teleoperated

Fig. 1. User teleoperating an assistive robot to perform eating tasks. The
human starts by controlling the robot’s high-level motion. As the robot gets
more confident about the human’s goal, the meaning of the inputs becomes
more refined, and the human precisely adjusts the robot’s movement.

using low-dimensional interfaces [12, 1, 22], while these tasks
require high-dimensional, coordinated, and precise control.

Shared autonomy can make eating tasks easier by predicting
the human’s intent and then augmenting their input [16, 8, 15].
But current works focus on goals—i.e., helping the human
move the robot between a set of discrete options—and do not
provide assistance after reaching the goal, when the human
must control the robot along a continuum of preferences.

Another approach is to develop better interfaces for directly
controlling the robot. For example, the robot can use demon-
strations to learn an intelligent mapping between the human’s
low-dimensional inputs and the robot’s high-dimensional ac-
tions [19]. This approach makes sense when moving along
the continuum of preferences; but the robot does not provide
any additional guidance, so that any imperfect or noisy human
inputs will move the robot away from the precise goal.

Viewed together, humans must be able to intuitively control
the robot while performing complex and precise manipulation
tasks. These tasks involve moving between discrete, high-level
goals and fine-tuning along continuous, low-level preferences.

We combine learning intuitive embeddings with shared
autonomy to enable precise assistive manipulation.

https://youtu.be/7BouKojzVyk


We view these methods as complementary types of assistance.
Shared autonomy constrains the robot to high-level goals,
while intuitive mappings embed the robot’s motion into a sub-
manifold of preferences. Returning to our eating example: the
human starts by guiding the robot arm towards the tofu. As
the robot becomes more confident about this goal, shared au-
tonomy completes the motion, and the user’s inputs transition
to control the robot’s fine-grained preferences (see. Fig. 1).

Overall, we make the following contributions:
Controlling Goals and Preferences. We formalize assistive
tasks with goals and preferences and introduce the properties
that intuitive interfaces should have during these tasks. Next,
we propose a new model structure where the meaning of the
human’s inputs changes based on the robot’s confidence.
Balancing Convergence with Change. We theoretically iden-
tify a convergence bound on the robot’s distance from the most
likely goal. To ensure that users are not trapped at the wrong
goal, we add a novel entropy term that encourages versatility,
and test this with a spectrum of simulated humans.
Conducting User Study with Eating Task. Participants
teleoperate a 7 degree-of-freedom (DoF) robot arm with a
2-DoF joystick. We compare our approach to state-of-the-art
baselines, and measure precision with and without both shared
autonomy and the intuitive embedding.

II. RELATED WORK

We combine latent actions—a representation learning tech-
nique for discovering low dimensional input spaces for con-
trolling a high dimensional system—with shared autonomy, a
well established paradigm for incorporating both human and
robot inputs to control a system.

Application Area – Assistive Robotics. Among the chal-
lenges of eating is the ability to prepare and transport food
[14], a skill that assistive robotics has tried to enable. Re-
searchers have developed robot policies that can autonomously
manipulate and deliver different types of food to users with
disabilities [10, 25]. However, designing a fully autonomous
system to handle a task as variable and personalized as eating
is exceedingly challenging: one size does not fit all. We
therefore develop a partially autonomous algorithm that allows
users to perform precise manipulation tasks with a robotic arm.

Shared Autonomy. Our partially autonomous system falls
under shared autonomy, a framework in which the robot
receives human user inputs and combines them appropriate
autonomous inputs for a safer and more efficient outcome.
Many shared autonomy algorithms provide robotic assistance
to users who must reach for a goal objects in the environment
[8, 16, 22, 11, 2, 13]. Several of these works infer human
intent by maintaining a belief over the set of possible goals,
and using human inputs as evidence in a Bayesian framework
to continually update this belief [8, 16, 22, 29, 30]. The
algorithms often apply more assistance as confidence in a goal
increases.

Other works in shared autonomy propose or learn suitable
dynamics models to translate user inputs to robot actions [26,

28, 27]. The learned latent actions in our approach mirror the
work of Reddy et. al [28], but have the added challenge of
mapping a low dimensional input to a high dimensional action.
Latent Actions. Controlling robots is difficult when they con-
tains many degrees of freedom (DoFs). To control the entire
system, joysticks often include a button to toggle between
different modes, each of which controls a subset of the full
system. This can be extremely taxing for the users [12]. Prior
work has tried to prune away unnecessary control axes through
Principal Components Analysis (PCA) [5, 3]. More recently,
researchers have learned non-linear mappings to control high
dimensional robot arms through low dimensional inputs [19].
There is also extensive work in learning latent representations
for components in RL [4, 6, 33, 20, 9]. These methods use
autoencoders [18, 7] to learn mappings between structurally
sparse high dimensional data and low dimensional embedding
spaces without supervision. We build on work in learned latent
actions [19] and task-conditioning [24] to learn an embedding
for teleoperation in the presence of shared autonomy.

III. USING LATENT ACTIONS & SHARED AUTONOMY

We explore tasks where the robot’s movements naturally
become more refined and precise over time. Recall our eating
example: users start by indicating where the robot should go
(e.g., reach for the tofu), and then control what the robot
does at that goal (e.g., cut off a piece and pick it up with
the fork). Completing these tasks is particularly challenging
with assistive robots, where the user must interact with a low-
dimensional control interface (e.g., a joystick).
Overview. In this section, we propose an algorithm that refines
the robot’s assistance. At the start of the task, the human’s
low-DoF inputs coarsely move the robot towards a high-level
goal (e.g., reaching the tofu). Once the robot reaches this goal,
the low-DoF inputs change meaning to precisely manipulate
along the human’s low-level preferences (e.g., cutting a piece).
We leverage latent actions to learn this changing mapping:
specifically, we learn a decoder φ(·) that enables the human
to control a spectrum of goal-directed motions and fine-grained
preferences. In order to guide the robot to the user’s goal—
and maintain this goal while the human focuses on conveying
their preference—we apply shared autonomy.
Formulation. We formulate the human’s task as a Markov
Decision Process (MDP) M = 〈S,A, T ,G,Θ, R, γ〉. Let s ∈
S ⊆ Rn be the robot’s state and let a ∈ A ⊆ Rm be the
robot’s action: when the robot takes action a in state s, it
transitions according to T (s, a). The human has a high-level
goal g∗ ∈ G and low-level preference θ∗ ∈ Θ. Together, the
goal (e.g., reaching the tofu) and preference (e.g., cutting the
tofu) determine the robot’s reward function: the robot should
maximize R(s, g∗, θ∗) with the discount factor γ ∈ [0, 1).

The space of candidate goals G is discrete and known by
the robot a priori. We let b ∈ B denote the robot’s belief over
this space of candidate goals, where b(g) = 1 indicates that
the robot is convinced that g is the human’s desired goal.

The space of preferences Θ is continuous and unknown by
the robot. We do not maintain a belief here; instead, we assume



the robot has access to D, a dataset of relevant demonstrations
(e.g., examples of reaching for and then manipulating the tofu).
These demonstrations consist of state-action-belief tuples:
D = {(s0, a0, b0), (s1, a1, b1), . . .}.
Dynamics. The human teleoperates the robot by using a low-
dimensional interface (e.g., a joystick). Let z ∈ Z ⊂ Rd be
the human’s input—where d < m—and let φ(·) be a decoder
function that maps these low-dimensional human inputs into
the robot’s action space, A. We denote the resulting action
as ah ∈ A. The robot’s overall behavior combines this input
action and ar ∈ A, the robot’s assistive guidance [8, 23]:

a = (1− α) · ah + α · ar (1)

α ∈ [0, 1] parameterizes the trade-off between direct teleoper-
ation (α = 0) and complete autonomy (α = 1).

Problem Statement. Our objective is to intuitively decode the
human’s low-DoF inputs by learning φ(·), and then combine
these inputs with the robot’s autonomous high-DoF actions ar.
This problem is made challenging by the need to assist users
as they control dexterous robots along coarse, goal-directed
movement and precise, preferred manipulations.

A. Learned Latent Actions (LA)

Latent actions refer to low-dimensional representations of
high-dimensional actions that are learned through dimen-
sionality reduction techniques [19, 20, 17]. Given a set of
demonstrated motions, the robot embeds the high-DoF actions
into a latent action space, and then decodes these latent actions
to reconstruct the original action (see Fig. 1, bottom). Previous
works have leveraged latent actions for intuitive low-DoF
control of assistive robots, where latent actions enable users
to express their desired high-DoF motion [19, 5, 3].

Unlike these prior works, we recognize that often the
meaning of latent actions changes within a precision task.
Imagine that you are using a 1-DoF interface to perform the
task in our eating example. At the start of the task, you need
pressing left and right on the joystick (i.e., z) to move the
robot towards the tofu. But as the robot approaches the tofu,
you no longer need to keep moving towards a goal; instead,
you need to use those same joystick inputs to carefully align
the orientation of the fork, so that you can cut off a piece.

While latent actions provide an intuitive way to convey the
user’s intent, there are often more actions to convey than the
latent space can embed. We thus need latent actions that can
convey different types of meanings—indicating the human’s
goal, preference, or some combination of the two.

Conditioning on Belief. In order to learn latent action spaces
that can continuously alternate between controlling high-level
goals and fine-grained preferences, we will condition on the
robot’s current context. This context includes the state s – the
configuration that the robot is in – as well as the belief b –
the robot’s confidence in the goal. Intuitively, conditioning on
belief enables the meaning of latent actions to change based on
the robot’s confidence. As a result of this proposed structure,
latent actions purely indicate the desired goal when the robot is

unsure; and once the robot is confident about the human’s goal,
latent actions change to convey the preferred manipulation. We
design and enforce models that decode the meaning of latent
actions based on context: φ : Z × S × B → A.
Reconstructing Actions. We now have a robot that decodes
the user’s input based on its state and confidence; but how do
we ensure the decoded actions are accurate? Put another way,
how do we ensure that the robot learns latent actions that can
actually move the high-dimensional robot towards the human’s
goal and then correctly manipulate the object? To resolve this
problem, we turn to the dataset D, which contains examples
of these desired, high-DoF actions. Specifically, consider the
state-action-belief tuple (s, a, b) ∈ D: we want to learn a latent
action space Z such that given s, b, and some z ∈ Z , the
robot reconstructs the demonstrated action a. Let ah ∈ A be
the reconstructed action, where ah = φ(z, s, b), and let ea =
ah−a be the error between the reconstructed and demonstrated
actions. To learn latent spaces that accurately reconstruct the
demonstrated actions, we explore models that actively attempt
to minimize the reconstruction error ‖ea‖2 in the loss function.

B. Latent Actions with Shared Autonomy (LA + SA)

Latent actions provide an expressive mapping between low-
dimensional user inputs and high dimensional robot actions.
But controlling a robot with latent actions alone still presents a
challenge: any imprecision or noise in either the user’s inputs
or latent space is reflected in the decoded actions. Recall our
eating example: when the user is trying to guide the robot
towards their preferred cutting motion, their inputs should not
unintentionally cause the robot arm to drift away from the tofu
or suddenly jerk into the table. Accordingly, we here leverage
shared autonomy to facilitate precise robot motions, which
assist the human towards their goals, and then maintain these
goals as the human focuses on their preferences.
Providing Assistance. Recall that the robot applies assistance
via action ar in Eq. (1). In order to assist the human, the
robot needs to understand the human’s intent—i.e., which goal
they want to reach. The robot’s understanding of the human’s
intended goal is captured by the belief b, and we can leverage
this belief to select an assistive action ar. Similar to [8] and
[16], let the robot provide assistance towards each discrete goal
g ∈ G in proportion to the robot’s confidence in that goal1:

ar =
∑
g∈G

b(g) · (g − s) (2)

So now—if the robot has a uniform prior over which morsel
of food the human wants to eat—ar guides the robot to the
center of these morsels. And—when the human indicates a
desired morsel—ar guides the robot towards that target.
Algorithm. Our approach for combining latent actions (LA)
with shared autonomy (SA) is summarized in Algorithm 1. We
emphasize that LA+SA is different from either latent actions or
shared autonomy alone. Without latent actions, a robot using

1Our approach is not tied on this particular instantiation of shared autonomy.
Other instances of shared autonomy can similarly be used.



Algorithm 1 Latent Actions & Shared Autonomy (LA+SA)
1: Given a discrete set of goals G and a dataset of example

trajectories D = {(s0, a0, b0), (s1, a1, b1), . . .}
2: Train a model on D to learn the decoder φ(z, s, b)
3: for t← 1, 2, . . . , T do
4: Set zt as the human’s low-DoF input
5: ath ← φ(zt, st, bt) . map zt to high-DoF action
6: atr ←

∑
g∈G b

t(g) · (g − st) . get robot assistance
7: at ← (1− α) · ath + α · atr . blend both ah and ar
8: bt+1 ∝ P (ah|s, g)P (g) . update belief over goals
9: st+1 ∼ T (st, at) . take action and transition states

10: end for

shared autonomy must rely on predetermined, one-size-fits-
all mappings from z to ah. Without shared autonomy, latent
actions require perfect teleoperation to reach and maintain
goals. Put another way: shared autonomy constrains the robot
to goals, while latent actions embed the robot’s motions into
a continuous sub-manifold of preferences.

IV. THEORETICAL ANALYSIS

We propose LA+SA as an approach for tasks involving goals
and preferences. Both latent actions and shared autonomy have
an independent role within this method: but how can we be
sure that the combination of these tools will remain effective?
Returning to our eating example—if the human inputs latent
actions, will shared autonomy correctly guide the robot to the
desired morsel of food? What if the human has multiple goals
in mind (e.g., getting a chip and then dipping it in salsa)—can
the latent actions change goals even when shared autonomy
is confident? And what if the environment changes—how do
we transfer the learned latent actions to new goals?

A. Converging to the Desired Goal

We first explore how LA+SA ensures that the human reaches
their desired goal. Consider the Lyapunov function:

V (t) =
1

2
‖e(t)‖2, e(t) = g∗ − s(t) (3)

where e denotes the error between the robot’s current state s
and the human’s goal g∗. We want the robot to choose actions
that minimize Eq. (3) across a spectrum of user skill levels and
teleoperation strategies. Let us focus on the common setting
in which s is the robot’s joint position and a is the joint
velocity, so that ṡ(t) = a(t). Taking the derivative of Eq. (3)
and substituting in this transition function, we reach2:

V̇ (t) = −1

2
e>
[
φ(z, s, b) +

∑
g∈G

b(g) · (g − s)
]

(4)

We want Eq. (4) to be negative, so that V (and thus the error
e) decrease over time. A sufficient condition for V̇ < 0 is:

b(g∗) · ‖e‖ > ‖φ(z, s, b)‖+
∑
g∈G′

b(g) · ‖g − s‖ (5)

2For notational simplicity we choose α = 0.5, so that both human and
robot inputs are equally weighted. Our results generalize to other α.

where G′ is the set of all goals except g∗. As a final step, we
bound the magnitude of the decoded action, such that ‖φ(·)‖ <
σh, and we define σr as the distance between s and the furthest
goal: σr = maxg∈G′ ‖g − s‖. Now we have V̇ < 0 if:

b(g∗) · ‖e‖ > σh +
(
1− b(g∗)

)
· σr (6)

We define δ := σh+
(
1−b(g∗)

)
·σr. We therefore conclude that

LA+SA yields uniformly ultimately bounded stability about the
human’s goal, where δ affects the radius of this bound [31]. As
the robot’s confidence in g∗ increases, δ → σh, and the robot’s
error e decreases so long as ‖e(t)‖ > σh. Intuitively, LA+SA
guarantees that the robot will move to some ball around the
human’s goal g∗, and the radius of that ball decreases as the
robot becomes more confident.

B. Changing Goals

Our analysis in Sec. IV-A suggests that the robot becomes
constrained to a region about the most likely goal. This works
well when the human correctly conveys their intentions to the
robot—but what if the human makes a mistake, or changes
their mind? How do we ensure that the robot is not trapped
at an undesired goal? Re-examining Eq. (6), it is key that—
at every (s, b) pair—the human can convey sufficiently large
actions ‖φ(z, s, b)‖ towards their preferred goal, ensuring that
σh does not decrease to zero. Put another way, the human must
be able to increase the radius of the bounding ball, reducing
the constraint imposed by shared autonomy.

To encourage the robot to learn latent actions that increase
this radius, we introduce an additional term into our model’s
loss function. We reward the robot for learning latent actions
that have high entropy with respect to the goals; i.e., in a given
context (s, b) there exist latent actions z that cause the robot
to move towards each of the goals g ∈ G. Define p(s,b)(g) as
proportional to the total score η accumulated for goal g:

p(s,b)(g) ∝
∑
z∈Z

η(g, s, b, z) (7)

where the score function η indicates how well action z taken
from state (s, b) conveys the intent of moving to goal g, and
the distribution p(s,b) over G captures the proportion of latent
actions z at state (s, b) that move the robot toward each goal.
Intuitively, p(s,b) captures the comparative ease of moving
toward each goal: when p(s,b)(g) → 1, the human can easily
move towards goal g since all latent actions at (s, b) induce
movement towards goal g and consequently, no latent actions
guide the robot towards any other goals. We seek to avoid
learning latent actions where p(s,b)(g) → 1, because in these
scenarios the teleoperator cannot correct their mistakes or
move towards a different goal! Recall from Sec. III-A that the
model should minimize the reconstruction error, ea = ah− a.
We now argue that the model should additionally maximize
the Shannon entropy of p, so that the loss function becomes:

L = ‖ea‖2 + λ ·
∑
g∈G

p(g) log p(g) (8)

Here the hyperparameter λ > 0 determines the relative trade-



off between reconstruction error and latent action entropy. For
clarity, we emphasize that this loss function L is leveraged
offline, when training a model to learn the decoder φ(·).

C. Introducing New Goals

We have covered how the robot can reach and change goals
during the task—but what about situations where new goals
are introduced dynamically? For instance, imagine that in our
eating scenario a new plate of food is set in front of the user.
The decoder φ(·) has already been trained using the dataset
D, which does not include example trajectories reaching for
this plate. Accordingly, the latent action space may not contain
actions that move the robot towards this new plate, preventing
the human from interacting with this new goal!

We resolve this issue by leveraging the goals that the robot
has already seen, without collecting new demonstrations or
retraining the latent space. Let g be the new goal, and define
h(s, b) → (ŝ, b̂) as a function that maps the robot’s current
context (s, b) to an equivalent context with respect to the
previously seen goal ĝ. As a simple example, h could project
the robot’s current state s to a straight-line path between the
start and g, and output the equivalent state ŝ along the straight-
line path between the start and ĝ (while assigning the same
confidence to ĝ as the robot currently has over g). Using h,
the overall process is as follows: (a) Convert to an equivalent
context (ŝ, b̂) where training data exists. (b) Decode the user’s
latent input in this equivalent context to identify the high-DoF
action âh = φ(z, ŝ, b̂). (c) Transform âh back to the original
state to obtain the commanded action ah. Robots can harness
the models they have already learned with newly added goals,
so that—if the robot has learned to pour, scoop, and stir at one
bowl—the human still has these same latent actions available
at a second bowl that has just been introduced.

V. SIMULATIONS

Our theoretical analysis highlights the benefits of combining
latent actions with shared autonomy. However, it is not clear
how this approach will work when interacting with a spectrum
of different users. In this section we test our algorithm in a
controlled environment with simulated humans. We compare
models for learning latent actions with and without shared
autonomy, and we simulate teleoperators with various levels
of expertise and learning rates. We will investigate if different
types of users can interact with our algorithm to precisely reach
and change goals consistent with their preferred trajectory.

Model. We test latent actions used by themselves (LA), as well
as latent actions combined with shared autonomy (LA+SA).
For both LA and LA+SA we learn the latent space with an
autoencoder conditioned on state and belief (as described in
Sec. III-A). Building on our analysis from Sec. IV-B, we also
test LA+SA+Entropy, where the autoencoder leverages Eq. (8)
to additionally reward entropy in the learned latent space.

Environments. We implement these models on both a simu-
lated and a real robot. The simulated robot is a 5-DoF planar
arm, and the real robot is a 7-DoF FrankaEmika. For both
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Fig. 2. Simulated humans for different levels of rationality. As β → ∞, the
human’s choices approach optimal inputs. Final State Error (in all plots) is
normalized by the distance between goals. Introducing shared autonomy (SA)
improves the convergence of latent actions (LA), particularly when the human
teleoperator is noisy and imperfect.

robots, the state s captures the current joint position, and the
action a is a change in joint position, so that: st+1 = st+∆·at.
Task. We consider a manipulation task where there are two
coffee cups in front of a robot arm. The human may want
to reach either cup (i.e., goals), and grasp that cup along a
continuous spectrum from the top to the side (i.e., preferences).
We embed the robot’s high-DoF actions into a 1-DoF input
space: the simulated users had to convey both their goal and
preference only by pressing left and right on the joystick.

Simulated Humans. The users attempting to complete this
task are approximately optimal, and make decisions that guide
the robot accordingly to their goal g∗ and preference θ∗. Let s∗

be the final pose that the human wants the robot to reach: s∗ is
based on both the position of their desired coffee cup (g∗) and
the orientation of their preferred grasp (θ∗). The humans have
reward function R = −‖s∗− s‖2, and choose latent actions z
to move the robot directly towards s∗:

p(z) ∝ exp
{
− β(t) · ‖s∗ − (s+ φ(z, s, b))‖2

}
(9)

Within Eq. (9), β ≥ 0 is a temperature constant that affects the
user’s rationality. When β → 0, humans select increasingly
random z, and when β → ∞, humans always choose the z
that moves the robot arm along their goal and preference. We
simulate different types of users by varying β(t).

A. Users with Fixed Expertise

We first simulate humans that have fixed levels of expertise.
Here expertise is captured by β from Eq. (9): users with high
β are proficient, and rarely make mistakes with noisy inputs.
We anticipate that all algorithms will perform similarly when
humans are always perfect or completely random—but we are
particularly interested in the spectrum of users between these
extremes, who frequently mis-control the robot.

Our results relating β to performance are shown in Fig. 2.
In accordance with our convergence result from Sec. IV-A,
we find that introducing shared autonomy helps humans reach
their desired grasp more quickly, and with less final state error.
The performance difference between LA and LA+SA decreases
as the human’s expertise increases—looking specifically at the
real robot simulations, LA takes 45% more time to complete
the task than LA+SA at β = 75, but only 30% more time
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Fig. 3. Simulated humans that change their intended goal part-way through the task. Change is the timestep where this change occurs, and Confidence refers
to the robot’s belief in the human’s true goal. Because of the constraints imposed by shared autonomy, users need latent actions that can overcome misguided
assistance and move towards a less likely (but correct) goal. Encouraging entropy in the learned latent space (LA+SA+Entropy) enables users to switch goals.

when β = 1000. We conclude that shared autonomy improves
performance across all levels of expertise, both when latent
actions are trained with and without Entropy.

B. Users that Change their Mind

One downside of shared autonomy is over-assistance: like
we discussed in Sec. IV-B, the robot may become constrained
at likely (but incorrect) goals. To examine this adverse scenario
we simulate humans that change which coffee cup they want to
grasp after N timesteps. These simulated users intentionally
move towards the wrong cup while t ≤ N , and then try to
reach the correct cup for the rest of the task. We model humans
as near-optimal immediately after changing their mind about
the goal, following Eq. (9) with a high β value.

We visualize our results in Fig. 3. When the latent action
space is trained only to minimize reconstruction loss (LA+SA),
users cannot escape the shared autonomy constraint around
the wrong goal as N increases. Intuitively, this occurs because
the latent space controls the intended goal when the belief b is
roughly uniform, and then switches to controlling the preferred
trajectory once the robot is confident. So if users change
their goal after first convincing the robot, the latent space no
longer contains actions that move towards this correct goal!
We find that our proposed entropy loss function addresses this
shortcoming: LA+SA+Entropy users are able to input actions
z that alter the robot’s goal. Our results support Sec. IV-B, and
suggest that encouraging entropy at training time improves the
robustness of the latent space.

C. Users that Learn within the Task

We not only expect real users to change their mind when
collaborating with the robot, but we also anticipate that these
teleoperators will learn and improve as they gain experience
during the task. For instance, the user might learn that holding
left on the joystick causes the robot to grasp the cup from the
side, while holding right guides the robot towards a top grasp.
To simulate this in-task learning, we set β(t) = m · t, where
the slope m determines how quickly the user learns. All users
start with random actions (β = 0), and either learn quickly

(high m) or slowly (low m). We point out that slow learners
may effectively “change their mind” multiple times, since they
are unsure of how to control the robot.

Our findings are plotted in Fig. 4. Interestingly, we see
that—for both fast and slow learners—LA+SA+Entropy im-
proves in-task performance. We attribute this improvement to
the inherent versatility of latent spaces that maximize entropy:
as humans gain expertise, they can use these latent actions to
quickly undo their mistakes and correct the robot’s behavior.

D. Users Reaching for New Goals

So far the simulated humans are grasping coffee cups that
the robot observed at training time. Here we introduce new
coffee cups, and ask the users to reach for these goals without
retraining the latent space. If we make no changes to our
approach, the latent actions can only ever reach the original
cup—there are no demonstrations that grasp this new goal!
We therefore geometrically map the robot’s current context—
which is outside of the decoder distribution—into a equivalent
context defined relative to a known goal—where the robot can
actually decode z. Our results on the real robot are summarized
in Fig. 5. We observe a linear relationship between distance
and error (y ≈ 0.11x, R2 = 0.98): when the new coffee cup
moves farther from the training cup, the robot’s grasp becomes
less accurate. But using goals as references has reduced this
error: without mapping the context to a known goal, the robot
only ever reaches for the training goal (y = x).

VI. USER STUDY

Motivated by the application of assistive robotics, we de-
signed a user study with eating tasks. Participants teleoperated
a 7-DoF robotic arm with a 2-DoF joystick to perform precise
manipulation: users controlled the robot towards a goal plate,
and then carefully adjusted the robot’s motion to cut, stab, and
scoop different foods (see Fig. 1).
Experimental Setup. Each participant attempted to complete
two dishes: an Entree task and a Dessert task. In Entree, users
had to perform multiple precise motions at the same goal. Here
participants (a) guided the robot towards a bowl with tofu, (b)
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cut off a slice of tofu, and (c) stabbed and scooped the slice
onto their plate. In Dessert the participants had to convey their
preferences at multiple goals: they (a) stabbed a marshmallow
in the middle goal, (b) scooped it through icing at the right
goal, and then (c) dipped it in rice at the left goal before (d)
setting the marshmallow on their plate. In both tasks subjects
sat next to the robot, mimicking a wheelchair-mounted arm.

Independent Variables. We conducted a 2x2 factorial design
that separately varied Control Interface and Robot Assistance.

For the control interface, we tested a state-of-the-art direct
teleoperation scheme (Retargetting), where the user’s joystick
inputs map to the 6-DoF end-effector twist of the robot [26].
We compared this direct teleoperation baseline to our learned
Latent Actions: here the robot interprets the meaning of the
human’s inputs based on the current context.

For robot assistance, we tested With and Without Shared
Autonomy. We implemented the shared autonomy algorithm

from [16], which assists the robot towards likely human goals.
Crossing these factors, we totaled 4 different conditions:
• Retargeting (R)
• Retargetting + Shared Autonomy (R+SA)
• Latent Actions (LA)
• Latent Actions + Shared Autonomy (LA+SA)

The LA+SA condition is our proposed approach (Algorithm 1).
Model Training. We provided kinesthetic demonstrations D
that guided the robot towards each plate, and then performed
cutting, stabbing, and scooping motions at these goals. The
robot learned the latent space (LA) from a total of 20 minutes
of kinesthetic demonstrations.
Dependent Measures – Objective. We recorded the amount
of time users took to complete each task (Total Time), as well
as the amount of time spent without providing joystick inputs
(Idle Time). We also computed proxy measures of the high-
level goal accuracy and low-level preference precision. For
goals, we measured the robot’s total distance to the closest
plate throughout the task (Goal Error). For preferences, we
recorded the dot product between the robot’s actual end-
effector direction and the true end-effector directions needed
to precisely cut, stab, and scoop (Preference Alignment).
Dependent Measures – Subjective. We administered a 7-
point Likert scale survey after each condition. Questions were
organized along five scales: how Easy it was to complete the
tasks, how Helpful the robot was, how Precise their motions
were, how Intuitive the robot was to control, and whether they
would use this condition again (Prefer).
Participants and Procedure. We recruited 10 subjects from
the Stanford University student body to participate in our study
(4 female, average age 23.5±2.15 years). All subjects provided
informed written consent prior to the experiment. We used a
within-subjects design: each participant completed both tasks
with all four conditions (the order of the conditions was coun-
terbalanced). Before every trial, users practiced teleoperating
the robot with the current condition for up to 5 minutes.
Hypotheses. We tested three main hypotheses:
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H1. Users controlling the robot with Shared Auton-
omy (SA) will more accurately maintain their goals.
H2. Latent Actions (LA) will help users more pre-
cisely execute their preferences.
H3. Participants will complete the task most effi-
ciently with combined LA+SA.

Results – Objective. To explore H1, we analyzed the Goal Er-
ror for methods with and without SA (see Fig. 7). Across both
tasks, users interacting with SA reached their intended goals
significantly more accurately (F (1, 18) = 29.9, p < .001).
Breaking this down by condition, users incurred less error with
LA+SA than with LA (p < .001), and—similarly—users were
more accurate with R+SA than with R (p < .05).

So shared autonomy helped users more accurately maintain
their goals—but were participants able to complete the precise
manipulation tasks at those goals? We visualize the Preference
Alignment for Dessert in Fig. 6, specifically comparing R+SA
to LA+SA. We notice that—when using direct teleoperation—
participants remained in a stabbing preference throughout the
task. By contrast, users with latent actions adjusted between
preferences: stabbing the marshmallow, scooping it in icing,
and dipping it in rice. These results support H2, suggesting
that LA enables users to express their preferences.

Now that we know the benefits of SA and LA individually,
what happens when we focus on their combination? Inspecting
Fig. 8, participants using LA+SA were able to complete
both tasks more efficiently. Summing times across both tasks,
and then performing pair-wise comparisons between each
condition, we found that LA+SA outperformed the alternatives
for both Total Time (p < .05) and Idle Time (p < .05).

Results – Subjective. We find further support for H3 in the
user’s feedback. The results of t-tests comparing LA+SA to the
other conditions are reported in Fig. 6 (where an ∗ denotes p <
.05). Responses suggest that users were most “comfortable”
when performing precise manipulation with LA+SA.

Limitations. The 10 participants in our user study were able-
bodied, and had equal practice time with each tested condition.
By contrast, people applying these assistive control strategies
on a daily basis will have significantly more experience and
expertise, which could bias their skill towards conditions that
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are more familiar. We also recognize that our target population
will likely provide joystick inputs with higher noise levels.

VII. CONCLUSION

We focused on assistive teleoperation scenarios where the
the human needs to control the robot’s high-level goal and fine-
grained motion. By combining shared autonomy with latent
actions, we developed a method that constrains the human
to their goal while embedding the robot’s actions to precise
sub-manifolds. Importantly, the meaning of the human’s inputs
changes as the robot becomes more confident—refining from
coarse movements to careful adjustments. Our simulations and
user studies suggest that this combined approach enables users
to efficiently complete dexterous eating tasks.
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