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Abstract— Operating an articulated machine is a complex
and hierarchical task, involving several levels of decision
making. Motivated by the timber-harvesting applications of
these machines, we are interested in developing a collaborative
framework for operating an articulated machine/robot in order
to increase its level of autonomy. In this paper, we consider
two problems in the context of collaborative operation of a
feller-buncher: first, the problem of planning a sequence of
cut/grasp/bunch tasks for the trees in the vicinity of the ma-
chine. Here we propose a human-inspired planning algorithm
based on our observations of the operators in the field. Then, a
Markov Decision Process (MDP) framework is provided, which
enables us to obtain an optimal sequence of tasks. We provide
numerical illustrations of how our MDP framework works.
Second is the problem of inferring the operator’s goal from the
motions of the machine. The goal inference algorithm presented
here enables the robot equipped with the planning intelligence
to perceive the human’s intent in real-time. We evaluate the
performance of our goal inference algorithm through a user-
study with a feller-buncher simulator. The results show the
benefits of our algorithm over a robot that assumes the human
is moving to the closest target.

1. INTRODUCTION

Similar to driving a car, operating an articulated machine
for pick and place tasks is a hierarchical process, which
includes strategical (e.g., route planning) and low-level con-
trols (e.g., cabin rotation) [1]. Accordingly, human-robot
cooperation can occur at different levels within this hierarchy,
including the high-level strategic and planning tasks. In
addition, the behavior of the operator can be described by a
well-structured sequence of repetitive subtasks [2].

We specifically focus on human-robot collaboration in
feller-buncher articulated machines (see Figure 1). These
hydraulic mobile robots are employed in timber harvesting
industry applications—for cutting trees, picking them up, and
then delivering these trees to a storage location. What makes
operating these robots challenging is that the articulated
machine is very dexterous: operators must correctly interact
with 9 different inputs to guide the robot arm. Moreover, the
tasks that the human and robot must perform are repetitive
and hierarchical: the human must make high-level decisions
(e.g., which group of trees to cut next) and fine-grained
motions (e.g., how to cut and grasp a specific tree).

Within the industrial state-of-the-art, the autonomy of
machines for forestry (such as the feller-buncher) is much
lower than in other comparable industries, such as mining
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[3]–[5]. In other words, when humans use these forestry
tools they are completely responsible for both the high-level
decisions and the low-level motions. Inspired by the recent
successes of shared autonomy approaches for assistive robot
arms [6]–[11], we here seek to introduce partial autonomy
for large-scale forestry machines. We separate this partial
autonomy into two main parts: identifying optimal plans for
high-level tasks (i.e., determine the optimal sequence for
cutting and delivering trees) and predicting human goals
for low-level motions (i.e., inferring which tree the human
currently wants to reach). Our overall approach to partial
autonomy is guided by our observations of expert operators:

Experts in the field often cluster nearby trees, and interact
with all the trees in a cluster before moving on.

Although this observation motivates our approach, it is not
required: our user studies show that our method extends to
inexperienced operators who have less efficient strategies.

In collaborative tasks — like the ones considered in this
paper — it is imperative that the human and robot possess
a shared mental model of the task process to achieve an
effective and mutually understandable collaboration [12]–
[14]. Thus, the decision making process should be mutually
understandable to the agents in the system. With this insight
in mind, we first explore how forestry robots should plan an
optimal sequence of high-level subtasks. We formalize this
setting as an instance of a Markov decision process (MDP)
and the robot solves for the optimal sequence of visiting,
cutting, and delivering trees. The key here is our choice of
reward function. If we encourage the robot to optimize for the
same reward as the human operator, then we can ensure that
the human and robot possess a shared mental model of the
task. Alternatively, if we select a new reward function (e.g.,
the amount of fuel used), then we can utilize the resulting
MDP output to train and improve human operators.

Our MDP formulation enables the robot to suggest high-
level plans to the human operator. To help the human execute
those plans (and predict what the human is reaching for), we
next introduce a low-level intent inference framework for
articulated forestry machines. Here we start with existing
cognitive models from robotics and cognitive science [9],
and then modify those models to capture and anticipate the
human’s behavior within articulated machines. To test our
low-level inference algorithm, we perform a user study on
a simulated feller-buncher machine. The results suggest that
our approach accurately predicts which cluster of trees the
human is trying to reach.
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Fig. 1: (a) Feller-buncher machine; (b) Operator’s view of the end-effector.

Fig. 2: Closed-loop system for human-robot collaboration.

Taking our high-level planning and low-level prediction
algorithms together, we propose a partial autonomy approach
that (a) assists the operator’s decision making process and
(b) anticipates the operator’s motions. This paper is orga-
nized as follows: Section 2 formalizes planning problem,
defines a Markov decision process, and introduces the goal
inference algorithm. Section 3 contains numerical results to
demonstrate the MDP framework, while Section 4 presents
the results from our goal inference user study.

2. PROBLEM FORMULATION

As shown in Figure 2, the proposed holistic framework
for human-robot collaboration is comprised of a number
of blocks: key points generator processes the environment
data, clusters the nearby objects (i.e., trees) and provides the
key points as goal locations. Next, the MDP block provides
the optimal sequence of actions to operate in between the
key points. This block is a human-inspired autonomous
decision-maker, the output of which can directly feed a
standard path/trajectory generator block and that offers a full
autonomous operation. However, there might be occasions
when the operator intervenes and changes the thread of
actions. The goal inference block is designed to infer the
human-operated robot’s goal, acting like a sensor so that the
robot can take over, while simultaneously, the MDP re-plans
the optimal sequence of actions from this moment onwards.
In case the human wants to retain the control authority, the
intelligent robot continues to suggest the optimal next action
and senses how the human is proceeding using the inference
block. In this paper, we focus on the high-level blocks and
provide formulation for the MDP and goal inference.

A. Human-Inspired Path Planning

Here, we introduce a new concept to analyze the human’s
high-level pattern of behavior while operating the crane of
the feller-buncher machine, called the Envelope of Manipula-
tion (EM). Figure 3a shows a schematic of how an operator
carries out path planning between clusters of objects and,
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Fig. 3: (a) Illustration of Envelope of Manipulation (EM) for a set of key-
points, E1-E4. The latter is the storage point. The arcs indicate the end-
effector paths between key points and the straight line segments indicate the
motion of the end-effector to the tree cluster; (b) Sample of human-adaptive
cell decomposition. The proposed motion planning method is based on cell
decomposition and is adaptive to human’s preferred path planning.

hence, the top view of the envelope. In addition, a set of
key points, namely, En at the storage point, and E1, E2
up to En−1 are introduced. The curve connecting these key
points is referred to as the envelope in this work, and its
simplest realization is a circle with radius rE . Hence, the
motion of the arm along EM is in fact a one-DoF motion
which is affected by rotating the cabin about the vertical axis
with the arm in a fixed configuration. The proposed motion
planning method is based on cell decomposition [15] and
is adaptive to human’s preferred path planning; we call it
human-adaptive cell decomposition with the key points as
via points, as illustrated in Figure 3b.

A typical tree-cutting operation sequence proceeds as
follows and is illustrated in Figure 3a. Starting at key point
E1, the operator follows path no. 1 to reach out to a cluster
in that direction. This path is followed back to E1, and then
following path no. 2 to E4. Since the location of E4 is known
in advance, during the time spent traversing path no. 2, the
operator is able to select the next target location and the path
to reach there through the envelope. This process repeats
itself at successive key points, with the operator planning at
least one step ahead. The idea of action primitives can also be
leveraged here. In particular, in the context of the envelope
of manipulation, the process of divergence from and con-
vergence to the set of key points E = {E1,E2,E3, ...,En} can
be considered as an action primitive, called P1. Additionally,
motion along the path on the envelope between the key points
is another action primitive, P2. Therefore, for the scenario
of Figure 3a, the sequence or thread of action primitives can
be expressed as an ordered set:

P = {PE1
1 , P Ê1E4

2 ,P Ê4E2
2 ,PE2

1 , P Ê2E3
2 , PE3

1 , P Ê3E4
2 }, (1)

where PEi
1 is the action primitive P1 at key point Ei, and

P ÊiE j
2 is the action primitive P2 between the key points Ei

and E j. From the hierarchical point of view, the set P can
be considered as human’s low-level operational controls. The
operator’s high-level decision-making process also involves
constructing the set E . As already noted, the next key point
selection is carried out during the execution of the previous
action primitive. The efficiency and skill level of an operator
are directly related to the ability to perform these actions
simultaneously, and therefore, to minimize some measure of
energy expended during these actions.



In our MDP formulation, we will employ the capacity for
Maneuverability, denoted as C f M, which is the remaining
actuation capacity for a human intervention before actuator
saturation occurs [16]. In particular, one of the constraints
in the tree-cutting operation involves the capacity for ma-
neuverability of the arm, C f Marm, which ensures that the
operation happens within the reachable space of the robot
end-effector. Moreover, the capacity for maneuverability of
the end-effector, C f Mee, measures the remaining capacity of
the end-effector claws to contain objects and/or the remaining
actuation capacity in the end-effector.

B. MDP Formulation

Suppose that the set of key points is defined as E =
{E0,E1, ...,En}, with E0 and En denoting the starting and
the storage points, respectively. An example topology of
a set of key points and the Envelope of Manipulation are
shown in Figure 4a. An agent, which can be a driver or
a driver-in-the-loop AI, is expected to cut/grasp a set of
objects at each of these key points and unload them at the
storage point. Multiple unloadings in a thread of actions are
also possible. The constraints are the maximum Capacity
for Maneuverability of the robot arm, C f Marm, and of the
end-effector, C f Mee. The first constraint is enforced a priori
by limiting the objects under consideration to lie within the
reachable space of the arm. We now define the elements of
the MDP representation of the problem as follows:
State, s. A state s , (s1, s2, s3) is defined as a tuple with
three elements, as follows:
• s1: Key point number, Ei, or node number.
• s2: C f Mee. This is a value between 0 and 1, which changes

in finite increments as objects are grabbed by the end-
effector. We discretize it by dividing the range [0,1] into
N segments and assign an integer value to each segment.

• s3: State of the environment defined as a tuple with binary
entries associated with the key points. For example, if the
agent has only visited E1, the associated state element
value is s3 = (1,0, ...,0). We assume that all objects within
the cluster associated with that key point are collected once
a particular key point has been visited. This assumption can
be relaxed in future work but it is in line with our current
field observations.

Action, a. An action is defined as the direction of the
cabin rotation, i.e., dir = CW or CCW , and the destination
key point number. Therefore, an action j at key point i is
represented by a j

i = (dir,E j) for j = 1, ...,n and j 6= i.
Reward function, R(s,a,s′). We define the following reward
function that breaks the task into five parts:

R(s,a,s′) = R1 +R2 +R3 +R4 +R5

=−rE(φ
s1→s′1)(a1 +a2C1s2)+C21(isEnd)−C31(s′1 = En)

−C41( f ailure)+C5(s′2)1(! f ailure & s′1 6= En), (2)

where rewards R1 to R5 are defined, term-wise, as follows:
cost of consumed energy to move the robot with the end-
effector and payload (R1), a successful operation of a thread
(R2), consumed energy for an unloading process (R3), any

failure (R4), and any successful step within a thread (R5).
Also, φ s1→s′1 is the angle of rotation between the designated
key points, and a1 and a2 are the coefficients related to the
energy consumed to move the robot with or without the end-
effector payload (grasped objects). Moreover, C1 is a measure
of accumulated mass in the end-effector, which depends on
the density of the objects; C2 is the reward of finishing a
thread, which happens when all of the objects are collected. If
an unloading process happens, C3 is a measure of consumed
energy for the unloading process. C4 is a negative reward
incurred if an unsatisfactory state is visited such as any state
violating the physical constraints of the model, for example,
C f Mee < 0, which is considered to be a failure. C5 is the
reward of collecting any new object(s) in case of non-failure.
The function 1(.) is defined such that if the condition inside
the parentheses is true, it returns 1, otherwise it returns 0.
Transition probability, T (s,a,s′). The probability of tran-
sitioning to state s′ from state s by taking action a. At each
key point Ei, i = 1, ...,n, considering both CW and CCW are
possible directions of motion there are L = 2(n−1) options.
Policy. The purpose of solving the MDP problem is to find
a mapping from states to actions, π = S→ A. The following
intuitive policy structure is suggested for the agent as the
baseline policy:

• We define P|n as the probability of transitioning to the
storage point En by taking any action a = (−,En). The
probability P|n depends on s2 (i.e, C f Mee) and is assumed
to be uniformly distributed over all possible transitions to
the storage point, thus taking the form:

P|n =
{

1, isEnd
max(2/L,1− (s2|s)/(C f Mee), otherwise

(3)

• For the remaining L− 2 decisions, we assume a uniform
probability distribution as follows:

P = (1−P|n)/(L−2). (4)

It is straightforward to demonstrate that ∑a P(a|s) = 1. This
baseline policy is not likely to be optimal; however, it is
a meaningful policy given the semantics of our problem. In
order to find the optimal policy πopt , we improve the baseline
policy via recursive policy evaluation and value iteration (5)
until the state values induced by the policy remain unchanged
within a threshold ε:

V (t)
π (s) = max

a∈A(s)
∑

s′∈S
T (s,a,s′)[R(s,a,s′)+ γV (t−1)

π ], (5)

where γ is a discount factor, A is the set of all actions, and
S is the set of states.

C. Goal Inference of Human-Operated Robot

Effective human-robot collaboration also requires the
robot to understand the human’s goal through the lens of the
operator’s actions as they are reflected in the robot outputs,
in other words, through the information leaks [17] from
the human operator. Thus, we are now concerned with the
problem from the perspective of the intelligent robot.



TABLE I: Envelope of manipulation and parameter values used for MDP
simulation results

input data/parameters value
set of key points E {0, 1, 3, 2, 4, 5, 6}

number of objects at each key point {0, 4, 1, 5, 2, 1, 0}
ang. loc. of key points wrt x-axis [deg] {90, 30, 100, 170, 220, 270, 0}

discretization factor N 5
discount factor γ 0.9

a1, a2, C1-C5 1, 100, 2000, 10000, 500, 10000, 10

Suppose that the human intends to move the robot to a goal
location g ∈ G, where g is one of the key points and G⊂ E
is the set of discrete goals that an operator might intend
to visit. The objective here is to infer the human operated
robot’s goal, where we assume a first-order mental model
[18]. In this regard, we follow Luce’s axiom of choice [19]
to distribute the probability of choosing a particular goal g∗

among G and use the Boltzmann model of noisily-rational
behavior [11], [12], [20], where pd(g∗) ∝ exp(βVg∗). This
assumes the human operator is trying to reach their intended
goal by noisily optimizing a reward function such as [9]:

Vg = γ
||xg−xh||U− c(γ− γ

||xg−xh||)/(1− γ), (6)

where xg contains the goal locations (i.e., key points loca-
tion), xh is the location of the robot’s end-effector, U,c∈R+

are constants, γ is the discount factor, and the parameter
β characterizes how likely the operator’s behavior deviates
from the rational path as an element of noise. One caveat
here is that in the context of following the envelope of
manipulation, the operator might move the robot close to
a key point (potential goal), while only intending to move
across it in order to reach another goal key point. Intuitively,
the operator shows an intention of slowing down the arm
angular speed (θ̇h) below some threshold value ˙̄

θh when the
operator approaches a particular goal location with intention
of carrying out the cutting operation. This statement can
be mapped to a value (Vvel) using a membership function
employed in fuzzy logic [21]. We have used a bell-shaped
function of the form:

Vvel(θ̇h; ˙̄
θh) = 1/(1+ |θ̇h/

˙̄
θh|2

˙̄
θh/3). (7)

Thus, the probability of slowing down around any goal is
proportional to the obtained value Vvel , i.e., pvel ∝ Vvel . The
joint probability of a goal is therefore defined by p(g∗) =
pd(g∗)pvel . Throughout a thread of actions, we employ the
above-mentioned algorithm to infer the intended goal.

3. MDP SIMULATION RESULTS

We consider the envelope of manipulation with the con-
figuration depicted in Figure 4a, defined precisely with
parameters in Table I and reward function parameters listed
in the same table. It is assumed that each object takes up 20%
of the end-effector capacity and thus, for the configuration
chosen, more than one unloading is necessary. Using (5), we
iteratively obtain the optimal value function Vπ induced by
the optimal policy, and the algorithm terminates when the
value function remains unchanged, i.e., ‖∆V‖ ≤ ε , depicted
in Figure 4b. The optimal policy, πopt , for our scenario is pre-
sented in Table II. The optimal thread of actions, therefore,

Fig. 4: (a) Envelope of manipulation: scenario for MDP analysis (solid black
curve) and illustration of optimal thread of actions from MDP solution.
Proximity of arcs to the envelope of manipulation corresponds to the
ordering of actions. Blue arcs represent action primitive P1. End arrows
indicate a stop to execute action primitive P2 (either to cut/grasp or to
unload). Dashed arcs indicate return to the storage point.; (b) MDP value
iteration error, max(‖∆V‖), for each iteration, using (5) and considering
ε = 10−6 as the convergence threshold.

TABLE II: Optimal policy results

state, s = (s1,s2,s3) action, a = (dir,Ei)
(0, 5, (0, 0, 0, 0, 0, 0)) (‘ccw’, 2)
(2, 0, (0, 0, 1, 0, 0, 0)) (‘cw’, 6): unload
(6, 5, (0, 0, 1, 0, 0, 1)) (‘ccw’, 1)
(1, 1, (1, 0, 1, 0, 0, 1)) (‘ccw’, 3)
(3, 0, (1, 1, 1, 0, 0, 1)) (‘cw’, 6): unload
(6, 5, (1, 1, 1, 0, 0, 1)) (‘cw’, 5)
(5, 4, (1, 1, 1, 0, 1, 1)) (‘cw’, 4)
(4, 2, (1, 1, 1, 1, 1, 1)) (‘ccw’, 6): unload
(6, 5, (1, 1, 1, 1, 1, 1)) none

is "E0E2E6E1E3E6E5E4E6", as can be deduced from the first
column of Table II. Based on these results, for the specified
form of the reward function and the baseline policy, the MDP
we designed identifies the optimal policy, i.e., the optimal
thread of actions for our application. We recognize that the
MDP formulation presented here is not unique and further
improvements can be made [22], [23]. However, the novelty
of this part of our work lies in providing a methodology to
study path planning and, subsequently, goal inference for
Feller-Bunchers and other articulated machines. It is also
important that these optimal results are aligned with the
expert behaviors we observed in the field.

4. GOAL INFERENCE RESULTS FROM HUMAN
PARTICIPANT STUDY

Fig. 5: Virtual world with visual pointers representing the key points

(a) (b)

Fig. 6: (a) Virtual world with visual pointers representing key points:
perspective view of the scene; (b) Configuration of key points.



Our setup is a virtual world with a robot (a model of
Feller-Buncher machine) with several objects (trees) in the
vicinity, as shown in Figure 5, with visual pointers indicating
the key points. This simulator platform was developed in
Vortex Studio [24], in combination with Python scripts and
it provides high-fidelity dynamics simulation and realistic
visualization. Using this platform, we are able to record
human operator’s input data (joystick signals) as well as
robot motion as output data, through an interface to python
scripts for real-time data processing.

As a proof-of-concept and to showcase the capabilities
of our simulation setup, we conducted a study involving
11 participants from McGill community, with little or no
previous exposure to the type of material and the applications
discussed in this paper. Each participant was asked to carry
out a tree harvesting operation in the world scene shown
in Figure 6a using a Logitech Gamepad F310 as an input
device. A schematic of the key points for the virtual world
in Figure 6a is shown in Figure 6b; we note that there are two
objects for cutting near key point 1 unlike the others. The
user’s task was to move the robot arm and/or base so as to
align the end-effector with a desired object for the automatic
cut/grasp emulation to occur and repeat this process until all
objects have been cut and bunched at the storage location.
The user was allowed to unload the object(s) grasped at any
time at the designated storage location (E4). The users were
not aware of the inference algorithm during the operation, nor
of any optimal thread of actions. They were only introduced
to the key points, as indicated by the visual pointers.

Our inference algorithm attempts to obtain the intended
goal by observing the position of a point on the robot’s end-
effector (the saw at the bottom), the arm (cabin) angular rate,
and the knowledge of key points’ locations. Intuitively, we
would expect the values of parameters γ , β , U , c, and ˙̄

θh,
employed in (6)-(7) of the goal inference algorithm to be
user dependent and, in practice, learned from the behaviour
of the user. However, for the present study, in the absence
of a learning algorithm, we converged by trial and error to
the values γ = 0.5, β = 0.9, U = 10, c = 1, and ˙̄

θh = 30
deg/sec; these parameters are used for all participants. We
compare the performance of our inference algorithm to two
other schemes: the first is the myopic belief over human
intention, which assumes that the closest goal is the intended
goal [7]. The second baseline is a gold standard where we
measure the human’s true goals. Here we record the human’s
thread of actions across the entire interaction, and then mark
the key points where they stopped to pick-up, or unload the
trees. Note that this approach — although accurate — can
only be used to predict the human’s goals after they have
completed the task, and as such is not suitable for online
assistance. We refer to this idealized approach as belief based
on cutting. Moving forward, we expect our approach to lie
between the myopic baseline (i.e., predicting the closest key
point) and the gold standard (i.e., looking back at their actual
goals after the task is complete). We note that belief based on
cutting misses out on times where the human changes their

mind along the way, and assumes that the human always
wanted to reach their recorded key points.

We observed vastly different trajectories and sequencing
among the users for this relatively simple setting. We at-
tribute this disparity to two causes: 1) Edge cases — these
occur when a user changes their mind after moving close
to a goal, or when a user takes extra time to think and
plan when they are near a goal; 2) Driving habits — At
the early stages of inferring a goal and also at the very
last stages of leaving that goal, participants stopped make
decisions, this hesitation caused our inference output to
slightly oscillate. Some participants drove very slowly: in
this case, our inference scheme reduced to a myopic result
(since the human’s speed was always below the inference
threshold). In reporting our results, we consider the entire
thread of actions for each user, since the individual user’s
data set reflects that user’s driving habits and allows us to
demonstrate how our algorithm with fixed parameter values
works for different users and their specific driving habits.
From the observations of 11 participants who completed a
thread of multiple loadings and unloadings, we categorize
our results into two groups:

Group I: Our algorithm performs accurately for the entire
thread of actions for this group comprised of seven out of
11 users. For some users, we observed short intervals of
uncertainty at the beginning and at the end of the inference
zones. A sample robot trajectory is shown in Figure 7a for
one user from Group I. In this figure, the blue curve shows
the path of the end-effector in the x−y plane, while the red
segments are overlayed over parts of the path where the
inference algorithm assigns a goal to that particular segment.
The inference results for this user for their entire thread of
actions are included in Figure 7b. In this Figure, the gray
lines depict the myopic belief over human intent, the green
circles show where and when cutting took place and the
red lines show the output of our inference algorithm. If the
probability of a goal is greater than 0.5, we assume that
goal is the human’s intended target. An important episode
occurs after the 4th cutting, between t = 117 and t = 130
seconds, when the operator is heading for key point #4, as
they pass through key points #1 and #3. The beliefs for the
four goal locations over this episode are plotted in Figure
8, from which we observe that our inference algorithm does
not assign a high probability to any of the key points until
#4, in contrast to the myopic result.

Group II: For this group of four out of 11 users, our
algorithm sometimes predicts that the human is going to
the closest goal (i.e., our approach reverts to the myopic
baseline) even when the human really wants a more distant
target. This occurs for the reasons discussed earlier (edge
cases and driving habits); however, our approach never
predicts the wrong goal when the human is getting ready
to pick-up or put-down a tree (i.e., inference matches belief
based on cutting). The paths and the inference data over the
entire thread for one user in Group II are shown in Figure 9.
Again, a noteworthy episode occurs between t = 6 and t = 57
seconds, the beliefs for which are plotted in Figure 10. The



user on the way to key point #2 slows down around key point
#4, but no operation happens there. Our algorithm incorrectly
infers #4 to be a goal (i.e., a myopic prediction) but corrects
itself much faster than the myopic scheme. Since a cutting
ultimately happens near key point #2 at t = 57 seconds, we
can assume that it was the intended goal. However, prior
to that, the operator moves the robot to key point #1 (still
without an operation) and even approaches key point #3, as
indicated with the myopic belief, finally returning to #2 and
cutting an object. In this thread of actions, our algorithm
performs well overall.

(a) (b)

Fig. 7: Sample user results from Group I: (a) end-effector and base paths:
blue indicates end-effector path in x−y plane, red is overlayed on segments
where goal is inferred; (b) inference and belief over a thread: myopic belief
(gray), occurrence of cutting (green circles), our inference algorithm (red).

Fig. 8: Goal inference results for sample user from Group I: time history
of goal inference (red) vs belief over goal (gray) for time period between
t = 116.5 and t = 129.5 seconds.

(a) (b)

Fig. 9: Sample user results from Group II: (a) end-effector and base paths:
blue indicates end-effector path in x−y plane, red is overlayed on segments
where goal is inferred; (b) inference and belief over a thread: myopic belief
(gray), occurrence of cutting (green circles), our inference algorithm (red).

Fig. 10: Goal inference results for sample user from Group I: time history
of goal inference (red) vs belief over goal (gray) for time period between
t = 5.967 and t = 56.85 seconds.

In all, given the diversity of users’ driving habits, the fact
that the algorithm employed robot data only, and that the
same set of parameter values was used for all users, the
proposed inference algorithm works well.

5. CONCLUSION AND FUTURE WORK

In this work, we introduced a framework for assisting hu-
mans operating dexterous, high-dimensional, and articulated
machines. Specifically, in the context of tree harvesting tasks,
we introduced an MDP formulation that enables the robot
to autonomously plan a sequence of high-level actions (e.g.,
determining which trees to cut and when to deliver them). We
encouraged the robot to optimize a reward function that con-
siders the energy consumption: the resulting plan provides
high-level guidance and suggestions to human operators. In
order to help the human execute this plan, we next proposed
an intent inference algorithm that identifies the human’s low-
level goal (i.e., which tree they want to reach next). Our
approach was based on existing cognitive models, and we
adapted these models for timber-harvesting applications. Our
user study results with a simulated Feller-Buncher machine
demonstrated that our approach is more accurate than simply
assuming that the human wants to reach the closest object.

Our next step is to extend this formulation into a shared
control framework. We envision combining both the high-
level planning and low-level inference to assist human op-
erators as they work with articulated machines in forestry
tasks. The application of this framework and the ideas pre-
sented within, however, are not limited to timber harvesting
applications and can be applied to articulated machinery in
other domains, such as mining and construction.
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