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Robots can use auditory, visual, or haptic interfaces to convey information to human users. The way these
interfaces select signals is typically pre-defined by the designer: for instance, a haptic wristband might vibrate
when the robot is moving and squeeze when the robot stops. But different people interpret the same signals
in different ways, so that what makes sense to one person might be confusing or unintuitive to another. In
this paper we introduce a unified algorithmic formalism for learning co-adaptive interfaces from scratch. Our
method does not need to know the human’s task (i.e., what the human is using these signals for). Instead, our
insight is that interpretable interfaces should select signals that maximize correlation between the human’s
actions and the information the interface is trying to convey. Applying this insight we develop LIMIT: Learning
Interfaces to Maximize Information Transfer. LIMIT optimizes a tractable, real-time proxy of information gain
in continuous spaces. The first time a person works with our system the signals may appear random; but
over repeated interactions the interface learns a one-to-one mapping between displayed signals and human
responses. Our resulting approach is both personalized to the current user and not tied to any specific interface
modality. We compare LIMIT to state-of-the-art baselines across controlled simulations, an online survey, and
an in-person user study with auditory, visual, and haptic interfaces. Overall, our results suggest that LIMIT
learns interfaces that enable users to complete the task more quickly and efficiently, and users subjectively
prefer LIMIT to the alternatives. See videos here: https://youtu.be/IvQ3TM1_2fA.

CCS Concepts: •Computingmethodologies→Online learning settings; •Human-centered computing
→ User interface design.
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1 Introduction
Imagine a person collaborating with a robotic interface to complete some task. The interface
displays signals to convey information to the person, and the person interprets those signals to
determine what actions to take. For instance, in Figure 1 the human is searching for their missing
phone. The interface knows the phone’s location and can signal the human with an array of LEDs.
But how does the interface determine which signals to use? One person might think that the left
LED strip corresponds to the phone’s position in the 𝑥-axis and the right strip indicates position in
the𝑦-axis. But another user might have the opposite mapping — or interpret the interface’s feedback
in an entirely different way. For each user, the interface must identify a method for selecting signals
(e.g., turning on LEDs) that clearly conveys the desired information (e.g., the phone’s location).

In this paper we explore settings where a robotic interface is communicating information to a
human operator. Here interfaces refer to autonomous systems that provide nonverbal feedback in
the form of lights, sounds, augmented reality displays, haptic signals, or robot motion. We assume
that the interface has access to some task-related, hidden information that the human cannot
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Fig. 1. Interface selecting signals to convey information to the human operator. Choosing the right feedback
is challenging because the way people respond to signals varies across tasks, users, and interface types;
e.g., when a person sees this LED pattern should they go left or right? We introduce a unified algorithmic
framework that co-adapts to the current user by learning to pick signals that maximize information transfer.

directly observe. Existing research pre-programs these interfaces with a human-engineered and
fixed mapping from information to signals [4, 15]. Returning to our motivating example, state-
of-the-art methods might tell the robot to always use the left LEDs for 𝑥-position and the right
LEDs for 𝑦-position. But there are two fundamental limitations of this approach. First, using a fixed
convention for choosing signals forces all humans to learn and follow this specific convention; by
contrast, we know that humans have personalized signal preferences and interpretations [3, 13, 37].
Second, these human-engineered mappings must be designed on a case-by-case basis, where the
designers rely on their intuition and experimental data to decide how the interface will provide
feedback for the current task [32, 34, 35].
To overcome these limitations we here introduce a unified algorithmic framework for learning

interfaces from scratch. We do not assume that the interface (a) knows the task the human wants
to complete or (b) has a model of how the human will interpret its signals. Instead, our insight is
that — in tasks where a robotic interface is sharing hidden information with a user:

When interfaces are interpretable the human’s actions are correlated
with the hidden information that the interface is trying to convey.

Effective feedback signals should guide the user’s decisions and inform the human’s behaviors.
Return to our motivating example where the robotic interface is trying to communicate the position
of the human’s missing phone. Applied to this example setting, our insight asserts that — if the
phone’s location changes — the interface should display LED signals that cause the human’s actions
to also change. For instance, if the phone is on the left side of the room the interface should display
different signals (and cause the human to take different actions) as compared to when the phone is
on the right side of the room.
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We use this insight to develop LIMIT: Learning Interfaces toMaximize Information Transfer.
LIMIT is an information-theoretic algorithm that learns a real-time interface policy (i.e., a mapping
from information to signals) to maximize the mutual dependence between the hidden information
and the human actions. LIMIT is not tied to any specific type of interface; as we will show, our
unified approach can be applied to visual displays, auditory cues, and haptic arrays. The first time
a new user interacts with LIMIT the interface signals may appear random or irregular. But over
repeated interactions LIMIT gathers data from the current user, learns online, and personalizes the
signals so that humans take different actions for different values of hidden information. Co-adaptive
humans exploit these interpretable signals to complete the task and maximize their reward over
repeated interactions. Overall, LIMIT is a step towards robots that learn how to convey their own
latent, internal information to nearby humans.

In this paper we make the following contributions:
Formalizing Interfaces with Information Transfer. We formulate robotic interfaces as the
intersection of human and interface policies. In settings where an interface has access to hidden
information that a human does not, we hypothesize that interpretable, task-agnostic interfaces
should maximize conditional information gain between hidden information and human actions.
We then derive information gain in terms of the agent policies.
Learning Interfaces to Maximize Information Gain. Directly optimizing for information gain
is intractable in continuous spaces. We accordingly introduce LIMIT, an online learning approach
that closely mirrors the structure of our derived formulation1. LIMIT learns an interface policy to
correlate the human’s actions and hidden information.
Comparing Interfaces in Controlled Simulations. We compare LIMIT to ablations and a state-
of-the-art baseline across simulated environments. This includes settings where the interface signal
is over-actuated (i.e., the signal has more dimensions than the information) and under-actuated
(i.e., the information has more dimensions than the signal).
Testing Interface Interpretability with Online Users. We perform an online user study where
37 participants attempt to find their missing phone using learned interface feedback. Participants
more accurately completed the task with LIMIT feedback, and also perceived the LIMIT interface
as more helpful, understandable, and intuitive.
Conducting User Studies on Visual, Auditory, and Haptic Interfaces.We put LIMIT to the
test with 11 in-person users across three different types of interfaces. Participants guide a robot arm
or walk around a room while getting sound, light, and haptic feedback. In each task the interface
must co-adapt alongside the human and learn to select meaningful signals. As compared to a
state-of-the-art baseline, LIMIT results in better objective performance and subjective ratings.

2 Related Work
We focus on communicating information from robotic interfaces to human operators. The interface
knows some information and needs to determine what signals it should display to convey that
information to the human. Our goal is to develop a unified algorithmic framework that can be
applied to different tasks and types of interfaces, and learns to output interpretable signals that are
personalized to the current user. Here we discuss related research that leverages fixed, pre-defined
interface mappings, as well as interfaces that learn to interpret the human’s inputs.
Pre-Defined Interfaces. Prior works explore how interfaces can convey information to humans
through nonverbal cues such as lights, projections, augmented reality, haptic signals, and robot
motion [4]. Often the interfaces are designed with a specific task in mind, and programmed with a
1Our code for implementing LIMIT is available here: https://github.com/VT-Collab/LIMIT-learning-interfaces
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pre-defined mapping from information to signals that is held constant throughout human-interface
interaction [1, 5, 7, 12, 23, 30, 36, 40, 41]. The resulting signals can be intuitive for users to interpret
without much experience or explanation [1, 5, 23, 30, 40, 41]. For example, in [5] a mobile robot
drove around a crowded room; when the robot projected a line onto the floor indicating its planned
trajectory, humans quickly recognized the robot’s intent. In other settings the fixed, hand-designed
mappings are high-dimensional or intricate, and users may need practice to correctly interpret the
robot’s meaning [7, 12, 36]. For instance, in [36] humans were trained to convert tactile signals into
500 different words (similar to Morse code). Rather than pre-defining the mapping from information
to signals, alternate research assumes the interface has an accurate model of the human [11, 16, 20].
More specifically, these works assume that the robot knows how the human will interpret its
motions; the robot then inverts this model to select legible behaviors and convey the desired
information. This approach works well when the actual user follows the robot’s convention —
but we know that different humans will interpret and respond to the same feedback in different
ways [3, 13, 37]. Unlike these prior works we do not assume that the interface is given either a
pre-defined mapping from information to signals or a human model. Instead, we seek to learn an
interpretable and personalized mapping from scratch.

Learned Interfaces. Most relevant here is recent research that learns mappings from the human
inputs (i.e., signals) to the human’s intent (i.e., information) [9, 22, 28, 29]. For instance, in [28] the
human is controlling a drone with a keyboard, and the robot learns how to map the human’s key
presses to drone motions. Similarly, in [22] a human is controlling an assistive robot arm with
a joystick, and the robot learns which joystick directions should be associated with each robot
motion. These learned mappings go in the opposite of what we are interested in: instead of learning
how to extract information from human commands, we want to learn how to convey the interface’s
information to human operators. Put another way, in our work the interface is sending signals
to the human. As the interface learns from and adapts to the human operator, the human will
inevitably co-adapt to the interface [17, 24, 26, 39]. Building on this prior work, we recognize that
humans are not static operators: our approach must be able update and refine signals as the human
learns how to interpret the interface.

Maximizing Information Gain. Under our proposed approach the interface learns to display
signals that maximize the correlation between the human’s actions and the interface’s information.
More specifically, we will develop an algorithm where the interface learns to maximize a proxy of
information gain. Recent works have similarly leveraged information gain (i.e., mutual information)
to select robot behaviors during human-robot interaction [14, 18, 19, 21, 28, 31]. For example, in
[31] an autonomous car nudges closer to the human’s car to see how the human will respond (and
actively gather information about the human driver). Likewise, in [19] a social robot communicates
with the human when the expected benefits of the human’s feedback outweigh the cost of probing
the human. Although our proposed approach similarly optimizes for information gain, we do so in
the opposite direction: the related works [14, 18, 19, 21, 31] select robot actions to gain information
from the human, while we will choose interface signals to convey information to the human.

3 Problem Formulation
We consider settings where a feedback interface is sending signals to a human. Our approach is
not tied to any specific type of interface: e.g., the interface could be a haptic wristband, a light
projection, or an augmented reality display. The human is attempting to perform some task. We
assume that the interface knows hidden information 𝜃 that the human cannot directly observe,
and the human’s task depends on this hidden information. More specifically, we assume that the
human should take different actions if the hidden information changes. In our running example
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(see Figure 1) the interface is a wearable array of LED lights. Here the human’s task is to find their
phone: only the interface knows the phone’s location 𝜃 , and the human must interpret the feedback
signals to reach 𝜃 . Our fundamental challenge is finding a signal mapping that is interpretable for
the current user. We do not assume that the human and interface have a pre-defined convention
for signals (e.g., the human and robot do not assume that the left lights indicate horizontal motion
and the right lights indicate vertical motion). Instead, we want to enable interfaces to learn to
communicate with the current user from scratch.
Human. Let 𝑠 ∈ S be the system state and let 𝑎 ∈ A be the human’s action. In our running
example the state is the position of the human and the human’s action is their change in position.
The state transitions based on the human’s action:

𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ) (1)

where 𝑓 is the deterministic dynamics and 𝑡 is the current timestep. An interaction lasts a total
of 𝑇 timesteps. We use trajectory 𝜉 = (𝑠1, 𝑠2, . . . , 𝑠𝑇 ) to capture the sequence of states the human
visits during the current interaction.
Interface. Let 𝜃 ∈ Θ be the hidden information and let 𝑃 (𝜃 ) be a prior over this information. In
our running example 𝜃 is the phone’s location and 𝑃 (𝜃 ) is a uniform distribution across the room.
At the start of the interaction the interface observes 𝜃 ∼ 𝑃 (·), and this parameter remains constant
throughout the rest of the interaction. At each timestep 𝑡 the interface sends signal 𝑥 ∈ X to the
human, where X is the set of all possible signals the interface can output. For our running example
𝑥 is the intensity of the LED light array.
Policies. The interface observes the system state 𝑠 and hidden information 𝜃 and then outputs
signal 𝑥 . Accordingly, the interface’s policy maps (𝑠, 𝜃 ) to 𝑥 :

𝜋R (𝑥 | 𝑠, 𝜃 ) (2)

The human sees states and signals; importantly, the human cannot directly observe the hidden
information 𝜃 . We assume the human gets the current signal 𝑥𝑡 before taking action 𝑎𝑡 , so that the
human’s policy is a mapping from states and signals to actions:

𝜋H (𝑎 | 𝑠, 𝑥) (3)

Objective. During each interaction the human has in mind some task that they want to complete.
This task depends on the hidden information 𝜃 ; for instance, perhaps the human wants to locate
their phone and 𝜃 is the phone’s position. Let the human have reward function 𝑅(𝜉, 𝜃 ) → R, where
higher rewards indicate that the human has better accomplished their task. We do not assume that
the interface has any knowledge of this task or reward function. Instead, the interface only has
access to the data it has directly observed: the states, actions, signals, and hidden information from
previous interactions. Based only on this data, we seek to learn an interface policy 𝜋R that — when
paired with the human policy 𝜋H — will maximize the human’s reward 𝑅(𝜉, 𝜃 ).

4 Learning Interfaces to Maximize Information Transfer (LIMIT)
Given an interface and hidden information 𝜃 , our goal is to find an interface policy 𝜋R that helps
the human complete their task and maximize their reward. This is challenging because (a) the
interface does not know the human’s task and (b) different humans respond to the same signals in
different ways.Within this section we accordingly develop a task-agnostic, personalized approach for
learning interface mappings. This approach is based on our fundamental insight that the human’s
actions should be correlated with the information that the interface is trying to communicate. In
Section 4.1 we capture the mutual dependence between human actions and hidden information
using conditional information gain. We then rewrite this information gain in terms of the human and
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interface policies (Section 4.2). Using these equations we introduce a real-time learning approach
that trains the interface policy to personalize to the human’s current behavior (Section 4.3). Finally,
in Section 4.4 we account for the human’s co-adaptation to the changing interface.

4.1 Optimizing for Information Gain
Information gain (i.e., mutual information) is a general metric for correlation: it quantifies the
amount of information obtained about one variable by observing another variable [8]. Our central
hypothesis is that an effective interface should maximize the correlation between human actions
and hidden information. Accordingly, we assert that the interface should maximize the conditional
information gain between action 𝑎 and hidden information 𝜃 given state 𝑠:

𝐼 (𝑎 ; 𝜃 | 𝑠) = 𝐻 (𝑎 | 𝑠) − 𝐻 (𝑎 | 𝑠, 𝜃 ) (4)

Here 𝐻 (𝑎 | 𝑠) is the conditional Shannon entropy of 𝑎 given 𝑠 , and 𝐻 (𝑎 | 𝑠, 𝜃 ) is the conditional
Shannon entropy of 𝑎 given 𝑠 and 𝜃 . Intuitively, 𝐻 (𝑎 | 𝑠) captures how uncertain we are about the
human’s action at state 𝑠 , while 𝐻 (𝑎 | 𝑠, 𝜃 ) captures our uncertainty given both 𝑠 and 𝜃 .

Equation (4) is maximized when (a) each action is equally likely at state 𝑠 but (b) we know exactly
which action the human will take once hidden information 𝜃 is observed. Consider our running
example where a human is standing in the middle of the room. The human could walk in any
direction; but once the human knows their phone’s location 𝜃 , the human goes directly towards
that goal. More generally, an interface that maximizes Equation (4) will cause the human operator
to take actions 𝑎 that are correlated with the hidden information 𝜃 the interface is trying to convey.

4.2 Writing Information Gain in Terms of Policies
We want to learn an interface policy 𝜋R that optimizes the conditional information gain 𝐼 (𝑎;𝜃 | 𝑠).
Towards this end, we here rewrite Equation (4) in terms of the human policy 𝜋H and the interface
policy 𝜋R . For ease of explanation we treat S,A, X, and Θ as discrete sets: the same result extends
to continuous spaces by replacing the following summations with integrals over continuous
distributions. We will work in continuous spaces during our simulations and user study.

By definition Equation (4) is equal to [8]:

𝐼 (𝑎 ; 𝜃 | 𝑠) =
∑︁
S,A,Θ

𝑃 (𝑠, 𝑎, 𝜃 ) log 𝑃 (𝑎 | 𝜃, 𝑠)
𝑃 (𝑎 | 𝑠) (5)

Marginalizing over the interface signal 𝑥 at each term we find that:

𝐼 (𝑎 ; 𝜃 | 𝑠) =
∑︁
S,A,Θ

(∑︁
X

𝑃 (𝑠, 𝑎, 𝑥, 𝜃 )
)
log

∑
X 𝑃 (𝑎, 𝑥 | 𝜃, 𝑠)∑
X 𝑃 (𝑎, 𝑥 | 𝑠)

(6)

Remember that the human and interface policies are probability distributions: 𝜋R is the probability
of signal 𝑥 given 𝑠 and 𝜃 , and 𝜋H is the probability of action 𝑎 given 𝑠 and 𝑥 . Because Equation (3)
only depends on 𝑠 and 𝑥 , we further have that 𝑃 (𝑎 | 𝑠, 𝑥, 𝜃 ) = 𝜋H (𝑎 | 𝑠, 𝑥). Using the chain rule and
plugging in Equation (2) and Equation (3), we get that 𝐼 (𝑎 ; 𝜃 | 𝑠) from Equation (4) is equal to:∑︁

S,A,Θ

𝑃 (𝑠, 𝜃 )
(∑︁
X

𝜋H (𝑎 | 𝑠, 𝑥) · 𝜋R (𝑥 | 𝑠, 𝜃 )
)
· log

∑
X 𝜋H (𝑎 | 𝑠, 𝑥) · 𝜋R (𝑥 | 𝑠, 𝜃 )∑

X 𝜋H (𝑎 | 𝑠, 𝑥)
∑

Θ 𝜋R (𝑥 | 𝑠, 𝜃 ′)𝑃 (𝜃 ′)
(7)

Equation (7) re-expresses conditional mutual information in terms of the human policy 𝜋H and
interface policy 𝜋R .
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We will gain additional insight by separating Equation (7) into two terms: convey and distinguish.
We refer to the first term as convey:

T𝑐𝑜𝑛𝑣 =
∑︁
X

𝜋H (𝑎 | 𝑠, 𝑥) · 𝜋R (𝑥 | 𝑠, 𝜃 ) (8)

Note that T𝑐𝑜𝑛𝑣 appears twice in Equation (7): once outside of the log and again in the numerator
of the log. Next, we refer to our second term as distinguish:

T𝑑𝑖𝑠𝑡 =
∑︁
X

𝜋H (𝑎 | 𝑠, 𝑥)
∑︁
Θ

𝜋R (𝑥 | 𝑠, 𝜃 ′)𝑃 (𝜃 ′) (9)

For clarity, we show how these convey and distinguish terms are derived from Equation (7) below:

𝐼 (𝑎 ; 𝜃 | 𝑠) =
∑︁
S,A,Θ

𝑃 (𝑠, 𝜃 ) · T𝑐𝑜𝑛𝑣 · log
T𝑐𝑜𝑛𝑣
T𝑑𝑖𝑠𝑡

(10)

T𝑐𝑜𝑛𝑣 captures how likely it is that the human takes action 𝑎 given state 𝑠 and hidden information
𝜃 . By contrast, T𝑑𝑖𝑠𝑡 expresses the likelihood of action 𝑎 at the current state across any choice
of 𝜃 . From Equation (10), we see that an interface 𝜋R that optimizes for information gain must
maximize T𝑐𝑜𝑛𝑣 and minimize T𝑑𝑖𝑠𝑡 . Intuitively, we want the human’s action 𝑎 to be likely for a
specific choice of 𝜃 (increasing T𝑐𝑜𝑛𝑣), but not likely for every possible 𝜃 (decreasing T𝑑𝑖𝑠𝑡 ). Return
to our motivating example and imagine that the hidden phone is on the left side of the room. For
this 𝜃 , the interface should select signals 𝑥 that always cause the human to walk left. However, if 𝜃
changes (i.e., the phone is now on the right side) the robot’s signals should not cause the human to
keep walking left (and take the same action 𝑎). Instead, different human actions 𝑎 should be likely
for different choices of interface information 𝜃 .

4.3 Learning to Maximize Information Gain
With Equations (8)-(10) we now have a formula for information gain in terms of the human and
interface policies. Ideally we would optimize over these equations to find the interface policy 𝜋R
that maximizes conditional information gain. Unfortunately, this is not possible for two reasons: (a)
we do not know the human’s current policy 𝜋H and (b) it is intractable to evaluate information
gain in continuous S,A, X, and Θ spaces [2, 27, 33]. Instead of directly computing the information
gain, we here introduce Learning Interfaces to Maximize Information Transfer (LIMIT). LIMIT is
a real-time, personalized learning approach that closely mirrors the structure of Equations (8)-(10).
As LIMIT gathers data alongside the human operator, it continually learns and updates the interface
policy 𝜋R to correlate the human’s actions and the hidden information. We emphasize that LIMIT
does not have access to the human’s task or reward function: this task-agnostic approach learns
policies to optimize a proxy of conditional information gain.
Models. LIMIT consists of three neural networks. We introduce the first two networks here: let
H𝜙 be a model of the human’s policy with weights 𝜙 , and let R𝜓 be the interface’s learned policy
with weights𝜓 . The structure of these models corresponds to Equation (2) and Equation (3):

H𝜙 : S × X → A, R𝜓 : S × Θ→ X (11)

so that H𝜙 maps states and signals to actions and R𝜓 maps states and hidden information to
signals2. It should be noted thatH𝜙 is not the human’s actual policy (which the robotic interface
never knows). However, while the interface does not observe the human’s policy 𝜋H or even
their current task, the interface does have access to data from previous interactions. Let D =

2When using LIMIT, the interface policy 𝜋R is the learned model R𝜓 .
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{(𝑠, 𝑥, 𝑎, 𝜃 0), . . . (𝑠𝑁 , 𝑥𝑁 , 𝑎𝑁 , 𝜃𝑁 )} be the dataset of observed states, signals, actions, and hidden
information across all previous interactions.
Below we introduce the two loss functions used to trainH𝜙 and R𝜓 on dataset D. These loss

functions are analogous to the terms T𝑐𝑜𝑛𝑣 and T𝑑𝑖𝑠𝑡 from Equation (10).
Convey. Remember from Section 4.2 that interfaces which optimize information gain will maximize
the convey term in Equation (8). Intuitively, T𝑐𝑜𝑛𝑣 expresses the probability of the human’s observed
action 𝑎 given 𝑠 and 𝜃 . We here introduce a loss term analogous to Equation (8) that specifically
applies to our deterministic human and robot models:

L𝑐𝑜𝑛𝑣 (𝜙,𝜓 ) =
∑︁

(𝑠,𝑎,𝜃 ) ∈D

𝑎 −H𝜙

(
𝑠,R𝜓 (𝑠, 𝜃 )

)2 (12)

For any (𝑠, 𝑎, 𝜃 ) tuple in our dataset, Equation (12) asserts that the human model and interface
policy should map 𝑠 and 𝜃 to an action that closely matches the human’s actual behavior 𝑎. Put
another way, R𝜓 (𝑠, 𝜃 ) should output a signal 𝑥 that causes our human model to take the observed
action 𝑎. When comparing Equation (12) and Equation (8) we recognize that maximizing T𝑐𝑜𝑛𝑣 and
minimizing L𝑐𝑜𝑛𝑣 accomplish similar things: both assert that hidden information 𝜃 and action 𝑎

should be correlated at state 𝑠 , so that if the system observes (𝑠, 𝜃 ) the human always outputs 𝑎.
Distinguish. We next develop a proxy loss function for the distinguish term in Equation (9). T𝑑𝑖𝑠𝑡
implies that an optimal interface will result in a one-to-one mapping between hidden information
and human actions. Another way to put this is — given the states and actions output by our
models — the system should be able to accurately infer 𝜃 . For instance, during one interaction
our LED interface may display signals that guide the human to the left of the room. Based on this
sequence of states and human actions we should be able to infer the unique 𝜃 that the interface
had in mind (i.e., the phone is on the left of the room). Let 𝑠 and 𝜃 be sampled from D, and let
𝜏 (𝑠, 𝜃 ) =

(
(𝑠, 𝑎), (𝑠′, 𝑎′), . . .

)
be a sequence of 𝑘 counterfactual states and actions starting at 𝑠:

𝑎 = H𝜙

(
𝑠,R𝜓 (𝑠, 𝜃 )

)
, 𝑠′ = 𝑓 (𝑠, 𝑎) (13)

Here we use our learned human and interface models and the system dynamics from Equation (1)
to rollout a hypothetical interaction: given that the human starts at 𝑠 with hidden information 𝜃 ,
sequence 𝜏 (𝑠, 𝜃 ) predicts how the system will behave. We then decode this sequence to try and
infer 𝜃 from the states and actions:

L𝑑𝑖𝑠𝑡 (𝜙,𝜓, 𝜎) =
∑︁
(𝑠,𝜃 ) ∈D

𝜃 − Δ𝜎

(
𝜏 (𝑠, 𝜃 )

)2 (14)

where Δ𝜎 : S𝑘 × A𝑘 → Θ is a decoder model with weights 𝜎 . This decoder is the third and final
network within LIMIT. Equation (14) is minimized when the interface policy R𝜓 (𝑠, 𝜃 ) outputs
signals 𝑥 that cause the human model H𝜙 to take different actions for different 𝜃 , enabling the
decoder Δ𝜎 to successfully identify the hidden information 𝜃 behind these actions. Our loss function
L𝑑𝑖𝑠𝑡 is therefore analogous to T𝑑𝑖𝑠𝑡 : minimizing both terms encourages a one-to-one mapping
between hidden information and human actions.
Loss Function.We finally combine Equation (12) and Equation (14) to generate the loss function
for training LIMIT:

L(𝜙,𝜓, 𝜎) = L𝑐𝑜𝑛𝑣 (𝜙,𝜓 ) + L𝑑𝑖𝑠𝑡 (𝜙,𝜓, 𝜎) (15)
This loss function is used to update the human modelH𝜙 , the interface policy R𝜓 , and the decoder
Δ𝜎 . Note that this loss function is over continuous space, not over discrete space like the relation
presented in Equation (10). The human model and decoder are purely for training purposes. During
interaction the LIMIT interface selects signals 𝑥 according to the learned model R𝜓 , and then
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Algorithm 1 LIMIT: Learning Interfaces to Maximize Information Transfer
1: Initialize model weights 𝜙 ,𝜓 , and 𝜎
2: Initialize dataset D ← {}
3: for each interaction do
4: 𝜃 ∼ 𝑃 (𝜃 ) ⊲ Interface observes hidden information
5: for timestep 𝑡 = 0 . . .𝑇 do
6: if 𝑙𝑒𝑛𝑔𝑡ℎ(D) ≥ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 then
7: Sample batch of recent (𝑠, 𝑎, 𝜃 ) ∈ D
8: TrainH𝜙 , R𝜓 , and Δ𝜎 to minimize L
9: end if
10: 𝑠𝑡 ← measured system state
11: 𝑥𝑡 ← R𝜓 (𝑠𝑡 , 𝜃 ) ⊲ Display signal 𝑥𝑡 to human
12: 𝑎𝑡 ← human action
13: D ← (𝑠𝑡 , 𝑥𝑡 , 𝑎𝑡 , 𝜃 𝑡 ) ⊲ Append data to dataset
14: 𝑠𝑡+1 ← 𝑓 (𝑠𝑡 , 𝑎𝑡 ) ⊲ Transition to next state
15: end for
16: end for

displays these signals to the actual human operator. Because the model structure and loss function
of LIMIT closely mirror Equation (10), our proposed LIMIT approach learns to maximize a real-
time, tractable proxy of conditional information gain. See Algorithm 1 for an outline of LIMIT. To
download an implementation of LIMIT, see our repository: https://github.com/VT-Collab/LIMIT-
learning-interfaces. The code in this respository corresponds to the 2D simulations from Section 5.

As an aside, we recognize that recent works also attempt to estimate information gain [2, 27, 33].
However, these learning approaches are not applicable to our problem setting because (a) they
require offline training data and (b) they maintain a static estimate of information gain. LIMIT
learns online, from the current user, and co-adapts alongside the human to maximize a proxy of
conditional information gain.

4.4 Accounting for Human Co-Adaptation
So far we have focused on the interface’s perspective, and learned an interface policy that maximizes
information gain. Importantly, this interface does not know the human’s task or reward function:
the interface is learning to correlate humans actions with hidden information, and not necessarily
to perform the task correctly. Consider our running example where the human is looking for
their missing phone. The interface could learn to turn on the blue light when the phone is on
the right side of the room and the red light when the phone is on the left side. But the human
initially interprets this feedback with the opposite mapping: perhaps the human goes left for the
blue light and right for the red light. From the interface’s perspective this is interpretable behavior
that maximizes information gain (i.e., human actions are correlated with 𝜃 ). But from the human’s
perspective this is the exact opposite of what we wanted: instead of maximizing reward, the human
is guided away from their phone!
We recognize that humans are not static agents; over time, the human will inevitably adapt to

the interface. At the end of each interaction the human observes their reward 𝑅(𝜉, 𝜃 ). By reasoning
over this reward and the previous signals and actions, the human may shift their policy 𝜋H to
improve performance [17, 24, 26, 39]. Returning to our example, once the human realizes that
they are going away from the phone using the initial 𝜋H , they may switch their interpretation so
that they correctly go right for the blue light and left for the red light. Of course, this adaptation
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is not a one-way street; as the human adapts to the interface, LIMIT should also adapt to the
human’s changing policy. We explicitly encourage personalization by biasing the system’s learning
towards recent human data. When sampling (𝑠, 𝑎, 𝜃 ) tuples in Algorithm 1, we set the probability
of sampling the most recent data (𝑠𝑁 , 𝑎𝑁 , 𝜃𝑁 ) as exponentially more likely than sampling the first
datapoint (𝑠0, 𝑎0, 𝜃 0). Overall, LIMIT learns an interface policy that transfers hidden information to
the human; the human is then responsible for taking advantage of this information and maximize
task reward. We will test how LIMIT adapts to the human — and how the human co-adapts to the
learning interface — through our simulations and user studies.

5 Simulations
We first compare our LIMIT algorithm to naive alternatives and a state-of-the-art baseline across
controlled simulations. Within these simulations the interface knows the hidden information 𝜃 (e.g.,
the location of the human’s phone), and the human is trying to maximize their task reward 𝑅(𝜉, 𝜃 )
(e.g., reach their phone by the end of each interaction). The interface’s signal is a vector 𝑥 , and the
simulated human interprets this signal to select their own action 𝑎. Importantly, our simulated
humans are adaptive agents; they change how they interpret the signals between interactions based
on their past experiences and observed rewards. The interface must learn to personalize alongside
these shifting humans and accurately convey the hidden information.
Interface Algorithms. We compare five different methods for selecting the feedback signals:
• Naive. The interface multiplies the vector (𝑠, 𝜃 ) by a randomized matrix to get signal 𝑥 . The
matrix elements are uniformly randomly sampled between [−1, +1].
• Bayes [28]. The interface uses a matrix to map (𝑠, 𝜃 ) to 𝑥 . At the end of each interaction
the interface observes the task reward 𝑅(𝜉, 𝜃 ). The elements of the matrix are updated to
maximize this reward using Bayesian optimization [25].
• Convey. An ablation of our approach where the interface policy is only trained with loss
L𝑐𝑜𝑛𝑣 in Equation (12).
• Distinguish. An ablation of our approach where the interface policy is only trained with
loss L𝑑𝑖𝑠𝑡 in Equation (14).
• LIMIT. Our proposed approach from Algorithm 1. For the implementation of LIMIT used in
these simulations see https://github.com/VT-Collab/LIMIT-learning-interfaces

We note that the Bayes method adopted from [28] has access to the human’s reward function, and
uses this reward function when designing the feedback signals. By contrast, within our problem
setting we do not assume any knowledge of 𝑅(𝜉, 𝜃 ). So while we believe that Bayes is the closest
existing alternative to LIMIT, it is important to remember that Bayes knows the human’s reward
function while LIMIT is task-agnostic.
Simulated Humans. In Sections 5.1–5.3 we pair the interface with two types of simulated humans:
rotate and align. Both types of simulated humans take actions based on signal 𝑥 , where 𝑥 is a vector
with elements bounded between [−1, +1].
• Rotate. This simulated human rotates 𝑥 to get action 𝑎. In our 1D environment the human
multiplies 𝑥 by +1 or −1 (to change the sign). In the 2D environment the human multiplies 𝑥
by an 𝑆𝑂 (2) rotation matrix.
• Align. This simulated human rotates and scales 𝑥 to get action 𝑎. The rotation is the same as
Rotate. For scaling, the human multiplies 𝑥 by a value between [−1, +1].

Both types of simulated humans update their rotation (and scaling) at the end of each interaction
to co-adapt to the interface. In Sections 5.1–5.3 the human is attempting to reach their missing
phone: the reward function is the negative distance between the human’s final position and the
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Fig. 2. Simulation results in 1D environment. (Left) Error is the distance between the human’s final position
and the phone location 𝜃 . (Middle) Interfaces paired with the Rotate human. A repeated measures ANOVA
reveals that the interface type had a significant effect on error (𝐹 (4, 396) = 9.2, 𝑝 < .001), with LIMIT resulting
less error than the alternatives (𝑝 < .05). (Right) Interfaces paired with the Align human. The interface
algorithm affects error (𝐹 (4, 396) = 16.8, 𝑝 < .001); pairwise comparisons show that LIMIT leads to less error
than all alternatives besides Distinguish (𝑝 < .05).

phone position: 𝑅(𝜉, 𝜃 ) = −∥𝑠𝑡 − 𝜃 ∥2. In order to co-adapt to the interface the human randomly
samples 𝑁 recent interactions and finds the rotation matrix (and scalar) that would have maximized
reward over those 𝑁 interactions. Put another way, the human co-adapts so that their mapping
from signals to actions would have increased their task reward over recent interactions.

Environments. Our simulated environments are shown in Figure 2 and Figure 3. The 1D environ-
ment is a number line and the 2D environment is an 𝑥-𝑦 plane. At the start of each interaction the
human begins at the origin and the interface samples a random phone position 𝜃 . The human and
interface interact for 10 timesteps: during each timestep the interface displays signal 𝑥 , the human
takes action 𝑎, and the state transitions according to 𝑠𝑡+1 = 𝑠𝑡 + 𝑎𝑡 . At the end of the interaction we
measure the distance ∥𝑠𝑡 − 𝜃 ∥ between the human and their missing phone. We emphasize that S,
A, X, and Θ are continuous spaces, and the hidden information 𝜃 is known only by the interface.

5.1 Single-DoF Environment
We start with the 1D environment. Here the state, signal, action, and hidden information are all
scalars. The simulated human and interface collaborate across 40 interactions: at the start of each
interaction 𝜃 is sampled uniformly at random from [−10, +10], and we measure the error between
the final state and 𝜃 . The averaged results across 100 simulations are reported in Figure 2. For
humans that co-adapt using Rotate or Align we find that LIMIT leads to the lowest average error
(i.e., LIMIT users most accurately reach their phone).

5.2 Two-DoF Environment
We next perform the same experiment in a 2D environment where the state, signal, action, and 𝜃
are all two-dimensional and continuous vectors. The simulated human and interface work together
across 100 interactions, and the human’s position is reset to the origin (0, 0) at the start of each
interaction.We display the averaged results for 50 simulations in Figure 3. Decreasing error indicates
that — for each interface algorithm — the distance between the human’s final state and the hidden
𝜃 decreases over interactions. However, we again find that LIMIT has the lowest mean error with
our Rotate and Align humans.
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Fig. 3. Simulation results in 2D environment. (Left) The human observes vector 𝑥 and tries to reach hidden
location 𝜃 . (Middle) Results with Rotate human: differences here are not statistically significant. (Right)
Interface paired with an Align human. Here interface type has a significant effect on error (𝐹 (4, 196) = 9.0,
𝑝 < .001), and humans using LIMIT have less error by the final interaction than humans using Naive, Bayes,
or Convey (𝑝 < .001).

Fig. 4. Simulation results in the 2D environment when the signal 𝑥 and hidden information 𝜃 have different
dimensions. (Left) The interface signal is 4-dimensional, but only two dimensions are necessary to convey
position 𝜃 . Interface type has a significant effect on error (𝐹 (4, 196) = 10.2, 𝑝 < .001) and LIMIT results in
lower final error than eitherNaive or Convey (𝑝 < .05). (Right) Now the hidden information is 4 dimensional,
and the interface must embed this 𝜃 to a lower-dimensional signal 𝑥 (e.g., the interface is trying to convey
two phone locations). Humans reach different errors with different methods (𝐹 (4, 196) = 4.6, 𝑝 < .001), but
LIMIT yields less error than all baselines (𝑝 < .05).

5.3 Mismatch between Signals and Information
In our next simulation we focus on the 2D environment and the Align human. We vary the
dimensions of 𝑥 and 𝜃 to test scenarios where the interface has additional feedback channels,
𝑑𝑖𝑚(𝑥) > 𝑑𝑖𝑚(𝜃 ), or where the hidden information is more complex than the interface, 𝑑𝑖𝑚(𝑥) <
𝑑𝑖𝑚(𝜃 ). On the left of Figure 4 the signal 𝑥 is a 4-dimensional vector: because 𝜃 here is only an (𝑥,𝑦)
position, the robot must learn how to harness two additional feedback dimensions. The second
scenario is shown on the right side of Figure 4. Here 𝜃 is a 4D vector specifying the position of two
hidden phones: the interface must learn to embed this higher-dimension hidden information into
a 2-dimensional signal 𝑥 . Within these controlled environments with simulated users, we again
observe that LIMIT outperforms the baselines.
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Fig. 5. (Left) Simulation results from the autonomous driving task. The autonomous car has four different
driving policies, and must signal its current policy to the human in order to help the human driver avoid a
collision. Interfaces generated by LIMIT result in a lower collision rate than eitherNaive or Bayes (𝑝 < 0.001).
(Right) Results from a 10-dimensional environment. This simulation extends Section 5.2 to a high-dimensional
setting where the states, actions, signals, and hidden information are all 10-dimensional vectors in a continuous
space. Despite this increase in dimension, the interfaces generated by LIMIT still result in a lower error at
the end of an interaction than those generated by Naive or Bayes (𝑝 < 0.001).

5.4 LIMIT in more Complex Tasks
To test the effectiveness of LIMIT in more complex tasks, we present two additional simulations.
These simulations vary in complexity along two axes: the type of information the interface needs to
convey to the human, and the dimensionality of the problem setting. We start with an autonomous
driving scenario, where the interface attempts to convey the policy of an autonomous car to a
nearby human driver. We then end this section by returning to the phone example, but now in a
10-dimensional state-action space. Note that — in these more complex settings — we model the
human as a multi-layer perceptrons with one hidden layer. At the end of each interaction, this
simulated human co-adapts to the interface by updating the weights of its model to maximize the
measured reward. We also conduct supplementary simulations to explore the adaptation rate and
human variability in the Appendix (Section C).
Autonomous Driving Task. In this simulation the human agent is driving along a two-lane
one-way highway (see Figure 5). Ahead of the human is an autonomous vehicle that the human
would like to avoid; the autonomous vehicle may be in either lane of the highway. The autonomous
vehicle attempting to signal its policy (i.e., how it will change lanes). There are four discrete policies
that the autonomous vehicle could be using to drive along the highway:
(1) The robot will always stay in the right lane (𝜃1)
(2) The robot will always stay in the left lane (𝜃2)
(3) The robot will merge into the human’s lane (𝜃3)
(4) The robot will merge into the opposite lane of the human (𝜃4)

Each interaction lasts five timesteps, after which the human car and autonomous car are reset.
The autonomous car’s policy is randomly sampled at the start of the interaction: this policy is the
autonomous car’s hidden information 𝜃 . The human agent is penalized when it collides with the
autonomous car, so it should learn to infer 𝜃 from the signals produced by the interface. To test
the effectiveness of LIMIT, we compared the performance of LIMIT to our Naive baseline and the
state-of-the-art Bayes baseline. Figure 5 (Left) shows the average collision rate per interaction over
time; LIMIT outperforms the baselines, approaching a collision rate of 0. This result suggests that
LIMIT can be successfully applied in scenarios where the interface needs to convey more complex
information to the human (i.e., the policy of another agent).
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10-DoF Environment. In this simulation, we replicate the experiments from Sections 5.1 and 5.2,
but now increase the dimension of the state, action, and hidden information so that each component
is a 10-dimensional continuous space. The interface knows the goal position 𝜃 , and attempts to
convey this hidden information through 10-dimensional signals. The simulated human attempts
to reach the hidden goal position over 10 timesteps based on the signals from the interface. Like
before, we compare the performance of LIMIT against the Naive and Bayes algorithms. Figure
5 (Right) shows that LIMIT outperforms the baselines — despite the high-dimensionality of the
problem setting — while the performance of Bayes and Naive follow random error. This result
indicates that LIMIT can be extended to higher-dimensional problem settings.

6 Can Users Understand Learned Interfaces?
Our simulations from Section 5 suggest LIMIT learns interface policies that better convey hidden in-
formation than the alternatives. However, these tests were run with simulated humans in controlled
environments. How does LIMIT fare with actual users? To evaluate the real-world performance,
we first conducted an online user study via Google Forms where participants observed colored
signals and attempted to guess the 2D position of their missing phone. Here the interfaces were
trained offline — using synthetic human data — and we measured whether participants (a) found
the learned mappings intuitive and (b) adapted to the interface policy. Our results across 37 online
participants indicate that LIMIT interfaces are more interpretable than a randomized baseline.
Independent Variables.We compared LIMIT to a Naive baseline. During each interaction the
human started at state 𝑠 = (0, 0), observed a signal 𝑥 , and then clicked once to indicate where they
thought the phone was hidden. The interface had access to the phone’s hidden location 𝜃 . Naive
multiplied the vector 𝜃 by a randomized 2 × 2 matrix to get signal 𝑥 . LIMIT was pre-trained offline
using the procedure from Section 4.2. After training, we recorded the signals produced by Naive
and LIMIT for nine different 𝜃 positions.
Experimental Setup. At the start of each interaction the online participants were shown a picture
of their current position 𝑠 and two colored bars for signal 𝑥 (see Figure 6). After observing the
state and signal, the participants selected the 𝑥-𝑦 coordinates that they thought the interface was
trying to convey. We then displayed the phone’s actual location 𝜃 . Because we revealed the hidden
information 𝜃 after each interaction, users could adapt to the interface over time.
Each participant completed nine interactions with the Naive approach and nine interactions

with LIMIT. The order of the methods was counterbalanced: half of the participants started with
Naive and the other half started with LIMIT.
Dependent Variables. To determine how participants objectively performed with each interface,
we measured the distance between their guess 𝑠1 and the phone’s actual position 𝜃 . Specifically, we
defined Error as ∥𝑠1 − 𝜃 ∥. To understand how participants subjectively perceived each interface,
we administered a 7-point Likert scale survey each time the users completed a method. Questions
were organized along three scales: how confident users were that their performance improved over
time, if they understood what the interface was trying to convey, and whether the interface was
intuitive. The exact items on the survey are listed in Section A.
Participants. A total of 38 adults took part in this online survey. At the start of the survey we
asked participants to read the instructions, follow an example interaction, and then answer three
qualifying questions to test their understanding. Below we report the results for 37 participants
who correctly answered these questions and finished the survey.
Results. Our results are summarized in Figure 7. We first measured the error between the human’s
predictions with Naive and LIMIT across nine rounds of interaction. Paired 𝑡-tests revealed that
users were significantly more accurate with LIMIT than with Naive (𝑡 (295) = 2.17, 𝑝 < .05).
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Fig. 6. Example of a state and signal displayed to online study participants in Section 6. At first the phone’s
location 𝜃 (in blue) was not shown: participants just saw the human and the signal, and tried to guess
the phone’s location based on the color of the two bars. For instance, perhaps the color of the first bar
corresponded to the 𝑥-axis and the color of the second bar corresponded to the 𝑦-axis. We then revealed 𝜃
and moved on to a new state and signal.

Fig. 7. Results from the online user study in Section 6. (Left) Our 37 participants interpreted the signals in
Figure 6 to predict the phone’s hidden position. The error between their guess and the actual position was
lower with LIMIT than with Naive. (Right) With LIMIT participants thought they better improved over
time, better understood what the interface was trying to convey, and overall perceived the interface as more
intuitive. Error bars show standard error and ∗ denote statistical significance (𝑝 < .05).

Put another way, when working with LIMIT the online participants were better able to infer
the hidden information and select high-reward states. The subjective responses suggested that
participants perceived a difference between the methods. To analyze the Likert results we first
confirmed that our three multi-item scales (improve, understand, and intuitive) were reliable with
a Cronbach’s 𝛼 > 0.7. We then grouped each scale into combined scores and performed paired
𝑡-tests. Overall, our 37 users thought that they improved more with LIMIT (𝑡 (36) = −2.41, 𝑝 < .05),
better understood what the LIMIT interface was trying to communicate (𝑡 (36) = −4.31, 𝑝 < .001),
and found the LIMIT interface to be more intuitive (𝑡 (36) = −4.16, 𝑝 < .001).
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We emphasize that — within this online user study — each interaction only lasted a single
timestep, and the pre-trained interface policy did not learn or adapt alongside actual user data.
However, our results across 37 participants are a first step towards confirming that the interfaces
learned using LIMIT are interpretable for everyday human users.

7 User Study
Our online study was a first step towards evaluating LIMIT. To understand how LIMIT performs
across repeated human-robot interaction with different types of interfaces, we next performed an
in-person user study. In this study participants completed three separate tasks that each had different
interface modalities: sounds, lights, and haptics. The interface knew some hidden information 𝜃 (e.g.,
the correct joint position for a robot arm), and selected feedback signals to convey 𝜃 to the human.
There were no immediately obvious conventions for interpreting this feedback. For instance, the
interface played musical notes of varying pitches to indicate where to guide a robot arm: one
person might assume higher notes indicate moving the arm to the right, while others might think
lower notes denote the same motion. Over multiple timesteps and interactions the interface and
participant co-adapted. The interface had to learn how to map 𝜃 to signals, and users had to learn
to interpret these signals and complete the task.
Independent Variables. We compared two algorithms for selecting feedback: Bayes and LIMIT.
Bayes is a state-of-the-art approach adapted from [28] that treats the mapping from signals to
rewards as a black box. The interface explores this black box by using Bayesian optimization [25]
to search for signals that maximize task reward. We note that Bayes knows what task that the
human is trying to complete (i.e., in this baseline the interface has access to the human’s reward
function). As such, Bayes actually has more information than LIMIT, where the interface never
knows the human’s objective. For LIMIT we used our proposed approach from Algorithm 1. Both
methods were pre-trained offline with simulated partners using the procedure from Section 4.2.
Interfaces. To demonstrate that our work is not tied to any specific type of interface, we performed
tests with interfaces that employed sounds, lights, or haptics (see Figure 8).
• Sounds.At each timestep the system played a musical note (G) through speakers and headphones.
The signal 𝑥 was the 1-DoF pitch of this musical note: the interface could continuously vary the
pitch along two octaves.
• Lights. This interface was similar to the online user study in Section 6. Users carried a interface
with two strips of LED lights. The 2-DoF signal 𝑥 was the brightness of the lights on each strip:
at each timestep the interface could change the number and intensity of illuminated LEDs.
• Haptics. Here we wrapped three pneumatic bags around a robot arm [38]. Users kinesthetically
interacted with these bags as they moved the robot. The 3-DoF signal 𝑥 was the pressure of each
bag: at every timestep the system could increase or decrease the pressures between 0 and 3 PSI.

We emphasize that the interfaces were used separately. Users completed tasks with only sounds,
lights, or haptics, and did not interact with more than one interface at a time.
Experimental Setup.We divided the study into three tasks, one for each of the interfaces (see
Figure 8). Note that the interface used in the task corresponds to the task name.
In Sounds participants physically interacted with a 7-DoF Franka Emika robot arm. The robot

started each interaction in its home position, and users kinesthetically guided the robot to move its
end-effector. The system state 𝑠 was the position of the end-effector. Users were free to select their
final 𝑥 and 𝑧 coordinates; here 𝜃 corresponded to the correct position along the 𝑦-axis. The robot
used auditory feedback (the pitch of a musical note) to indicate 𝜃 .

Lights matches our motivating example of a person walking around a room to find their missing
phone. Participants moved in an empty 10ft by 10ft space while wearing an HTC Vive position
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Fig. 8. Interfaces and tasks for our in-person study. (Left) In Sounds the human moved a robot arm back and
forth along a single axis. The interface played a musical note of varying pitches to convey the correct arm
position. (Middle) In Lights participants walked around an empty space. The interface illuminated two LED
strips to indicate the location of their missing phone. (Right) in Haptics we wrapped pneumatic bags around
a robot arm [38]. Participants needed to guide the robot to the correct height, orientation, and distance from
their body: the interface inflated and deflated the haptic bags to convey these features.

tracker for real-time measurements: the state 𝑠 was the user’s position. Hidden information 𝜃

corresponded to the correct 𝑥-𝑦 position of their missing phone. As users walked they carried
our lights interface with two LED strips. Once the user was confident that they had reached the
correct position (i.e., they thought they had found their phone), they informed the proctor and the
interaction ended.

For Haptics participants again interacted with the 7-DoF Franka Emika robot arm. In this task the
robot followed a parameterized trajectory: the robot had a fixed start, but it was up to the user to
correct the robot’s goal. Here state 𝑠 was the position and orientation of the end-effector. The robot
knew where the endpoint the trajectory should be: hidden information 𝜃 contained the correct
height, yaw, and distance from the person. As users physically corrected the robot’s trajectory they
got haptic feedback from the wrapped display. Note that in Sounds 𝜃 and 𝑥 are 1-dimensional, in
Lights they are 2-dimensional, and in Haptics they are 3-dimensional.

Each task contained multiple interactions. At the start of the interaction we reset the environment
(i.e., the robot returned to its home position or the human walked to the center of the room). The
interface then sampled a random 𝜃 ∼ 𝑃 (·) from a uniform prior: this 𝜃 was held constant during
the interaction but changed between interactions. The interaction lasted multiple timesteps as the
human physically guided the robot or walked around the room. At the end of the interaction the
system revealed the actual 𝜃 back to human: in Sounds and Haptics the robot arm moved to the
correct pose, and in Lights the proctor showed the person the correct place to stand. The Sounds
and Lights tasks included 10 interactions, and the Haptics task had 5 interactions. Note that the
input and output dimensions of each algorithm were changed to accommodate the change in DoF
between tasks; all other architectural changes are addressed in Appendix B.

Participants and Procedure.We recruited 11 participants (3 female, ages 25.5 ± 5.15) from the
Virginia Tech community. Prior to the experiment all participants provided informed written
consent consistent with university guidelines (IRB #20-755). Two of the eleven participants had
never interacted with robots before. None of these in-person users took part in the online study.
Each participant completed all three tasks twice: once with Bayes and once with LIMIT. The

order of the tasks was counterbalanced: e.g., some users started with Sounds while others started
with Haptics. The order of the algorithms was also counterbalanced: for each task, half of the users
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Fig. 9. Objective results from our in-person user study. These results are broken down by task; Sounds and
Haptics are performed with a robot arm. (Left) Error between 𝜃 and human’s final state 𝑠𝑇 . (Middle) Distance
the human travels during an interaction. For error and distance the units vary between tasks: in Sounds the
units are meters, in Lights the units are feet, and in Haptics the units are meters (end-effector position) plus
radians (end-effector orientation). (Right) Time taken to complete an interaction. Error bars show standard
error and an ∗ denotes statistical significance (𝑝 < .05).

started with LIMIT. Participants were never told which algorithm they were working with during
the experiment, and did not know which algorithm was our approach.
Dependent Measures – Objective. We measured the states, signals, and actions during each
timestep. Recall that in every task the human was trying to reach 𝜃 (e.g., the correct robot position).
We therefore recorded the Error between the system’s final state 𝑠𝑇 and the desired position 𝜃 ,
so that 𝐸𝑟𝑟𝑜𝑟 = ∥𝑠𝑇 − 𝜃 ∥. To assess how the human behaved within the task, we also measured
the total Distance they traveled during an interaction: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =

∑𝑇
𝑡=1 ∥𝑠𝑡 − 𝑠𝑡−1∥. Here lower

distances indicate that the human understood the interface and went directly to the goal, while
higher distances suggest the human often backtracked or changed directions. Finally, we measured
the Time it took to complete the task.
Dependent Measures – Subjective. After each task and algorithm participants completed a
7-point Likert scale survey. This survey was designed to measure the user’s subjective perception
of the interface along four multi-item scales. We asked users if they felt like their performance
improved over time, if they could understand what the interface was trying to communicate, if the
signals seemed consistent, and whether they thought they would continue to improve if they kept
working with this interface (intuitive).
Hypotheses. We had two hypothesis for the user study:
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Fig. 10. Subjective results from our 7-point Likert scale survey. Participants thought that they improved more
with LIMIT, and that LIMIT signals were more understandable and consistent. Users also scored LIMIT as
more intuitive than Bayes, but this was not statistically significant. An ∗ denotes significance (𝑝 < .05).

H1. Users will have less error and complete the task more efficiently with LIMIT.

H2. Users will subjectively prefer interfaces that use LIMIT to learn feedback signals.

Results. The objective results are summarized in Figure 9, and the subjective results are displayed
in Figure 10. Please also see videos of the user study here: https://youtu.be/IvQ3TM1_2fA
To explore hypothesis H1 we analyzed the error, distance travelled, and time taken when

getting feedback from Bayes or LIMIT. For each of these metrics lower was better: an effective
interface should help the human complete the task correctly and efficiently. Paired 𝑡-tests revealed
that participants reached significantly lower error when working with LIMIT in the Lights task
(𝑡 (109) = 3.02, 𝑝 < .05). Interestingly, the difference in error was not significant for either Sounds
or Haptics. Instead, our proposed interface enabled users to complete these tasks more efficiently.
LIMIT resulted in significantly less distance traveled for Sounds (𝑡 (109) = 2.24, 𝑝 < .05) and
Haptics (𝑡 (54) = 3.67, 𝑝 < .001). Along the same lines, LIMIT led to shorter interactions for Sounds
(𝑡 (109) = 3.1, 𝑝 < .05) and Haptics (𝑡 (54) = 3.98, 𝑝 < .001). We conclude that interfaces which
co-adapted to participants using LIMIT selected more helpful signals than Bayes. But we also
recognize that the way in which LIMIT helped users differed from one interface to another. For
the Lights interface LIMIT improved the human’s task reward without significantly changing
the distance traveled or time taken. By contrast, for the Sounds and Haptics interfaces LIMIT and
Bayes both obtained similar task reward, but LIMIT enabled users to reach this reward more
quickly and efficiently.
To illustrate how Bayes and LIMIT affected the human’s performance we highlight a Lights

example in Figure 11. Across 10 repeated interactions the human walked to reach hidden goals
𝜃 . When the interface used Bayes to select signals 𝑥 , the human’s error was roughly constant
from one interaction to another. But under LIMIT this interface and human co-adapted so that the
human could more accurately interpret the interface’s signal after four interactions.
We now turn to hypothesis H2 and our Likert-scale survey in Figure 10. Our survey items

are listed in Appendix A. To process the subjective results we first confirmed that each of the
four scales were reliable (Cronbach’s 𝛼 > 0.7). We then grouped each multi-item scale into a
combined score and performed paired 𝑡-tests to determine whether LIMIT received significantly
higher scores than Bayes. Users reported that their performance improved more with LIMIT
(𝑡 (32) = 2.75, 𝑝 < .05), and they better understood what the LIMIT interface was trying to convey
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Fig. 11. Example data from Lights. (Middle) For one user we plot the error between their final position and
the goal position as a function of interaction number for both Bayes and LIMIT. (Right) Ideally the final
state should match the goal 𝜃 . We visualize this same data by displaying the user’s final 𝑥-𝑦 position and the
actual 𝑥-𝑦 location of the goal. The user completed a total of 10 interactions: lighter lines signify their first
interactions and darker lines their final interactions. Error generally decreases over time with LIMIT.

(𝑡 (32) = 3.08, 𝑝 < .05). The participants also rated LIMIT as having more consistent feedback
than Bayes (𝑡 (32) = 2.58, 𝑝 < .05). When asked to explain their preferences, users commented
that LIMIT “was a lot more intuitive to adjust to,” in part because it “seemed more consistent” and
maintained a distinct, one-to-one mapping from information 𝜃 to signals 𝑥 .
Discussion. The experimental results from our in-person user study suggests that LIMIT out-
performs Bayes in an ensemble of interfaces, both preferentially and numerically. However, we
note that the difference between performance (albeit significant) is not as large as one may expect.
We emphasize that the Bayes algorithm has access to the human’s intent (i.e., their goal or reward
function), giving it a significant advantage to LIMIT. However, as is evidenced empirically, users
were able to adapt to signals produced by LIMIT more easily and achieved better results in higher-
dimensional settings. In more complex tasks, the performance gap between LIMIT and Bayes is
more clear, even when Bayes has access to the human’s intent (see Section 5.4).
Summary. Our in-person user study evaluated LIMIT across three types of interfaces: audio
feedback, visual feedback, and haptic feedback. The experimental results suggest that LIMIT
learns to select meaningful and interpretable signals that help users complete their tasks. Across
all objective and subjective metrics, we found that LIMIT scored as well as or better than a
state-of-the-art baseline that has access to the task reward.

8 Conclusion
In this paper we introduced LIMIT, a co-adaptive approach to learn interface mappings from scratch.
Learning interfaces is challenging because the way people respond to signals varies across tasks,
users, and interface types. To address these challenges we hypothesized that interfaces should learn
policies that maximize correlation between the human’s actions and the interface’s information.
We derived a learning algorithm that updates the interface’s signals in real-time to optimize for a
tractable proxy of information gain. We then put LIMIT to the test across controlled simulations, an
online survey, and in-person user studies. When compared to naive baselines and a state-of-the-art
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alternative with auditory, visual, and haptic interfaces, we found that LIMIT results in better task
performance and higher subjective ratings.

Limitations. LIMIT is a step towards robots that autonomously personalize their feedback for
the current user. One advantage of LIMIT is that it does not need to know what task the human
is trying to complete (i.e., what the human is using the signals for). Our key assumption here
is that — no matter what task the human has in mind — the human should respond in different
ways to different hidden information 𝜃 . While maximizing information gain makes sense for the
experiments presented in this paper, there are also settings where the human should maintain the
same actions even when the hidden information changes. For example, imagine a driving scenario
where the interface is communicating the location of nearby cars and pedestrians. The human is
driving straight ahead, and should not change their actions if another car passes by or if a pedestrian
is walking on the opposite sidewalk. When applied to this context, LIMIT may learn to cause the
human driver to slow down or speed up, even though these changes are not necessary. Our future
work will explore how LIMIT can be combined with task-specific objectives to ensure that the
signals are always necessary and meaningful. Our initial hypothesis here is that the task-specific
reward function 𝑅(𝜉, 𝜃 ) could be incorporated within Equation (15) so that LIMIT trains interfaces
to simultaneously maximize interpretability and performance.

Future Works. A key application of LIMIT could be in sensory substitution, a scenario where
neither the engineer nor the user has an informed prior over interface design. For example, brain-
computer interfaces (BCI) have been connected with proprioceptive feedback [10]. Here the propri-
oceptive feedback (e.g., haptic stimulation) could be tuned using an approach like LIMIT to improve
the accuracy of the BCI interface. Along similar lines, vibrotactile biofeedback interfaces [6] could
be made more effective using LIMIT to adjust the mapping between vibrotactile stimuli and user
inputs. Moving forward, we see LIMIT as a step towards robots and interfaces that autonomously
change their feedback to make the system more intuitive, understandable, and user-friendly.
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Appendix
A Likert Survey Tables
A.1 Online User Study (Section 6)
This section lists the questions on the Likert scale survey from our online user study in Section
6. We organised questions into three scales (Intuitive, Understand, and Improve) and tested their
reliability using Cronbach’s 𝛼 > 0.7. We then grouped each multi-item scale into a combined score
and performed paired t-tests to determine whether LIMIT received significantly higher scores
than Naive. The results of the t-tests are reported in Section 6. Here we list the exact items and
their corresponding scale.

Table 1. Questions from our online user study in Section 6

Questionnaire Item Scale

– I thought the signals had a consistent pattern. Intuitive– The signals seemed inconsistent or random.

– By the end I could accurately predict the phone location. Understand– At the end I was still unsure what the interface was trying to convey.

– I felt like my performance improved over time. Improve– It seemed like my performance stayed about the same.

A.2 In-Person User Study (Section 7)
This appendix lists the questions on the Likert scale survey from Section 7. We organized the items
into four scales (Intuitive, Understand, Consistent, and Improve) and tested their reliability using
Cronbach’s 𝛼 > 0.7. We then grouped each multi-item scale into a combined score and performed
pair t-tests to determine whether LIMIT received significantly higher scores than Bayes. The
results of t-tests are reported in Section 7. Here we list the exact items and their scale.

B Network Architecture
In this section, we detail the specifics of the neural network architectures used throughout this
paper. Nearly all networks in all experiments were multilayer-perceptrons (MLPs), but Table 3 lists
the architecture in detail.
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Table 2. Questions from our in-person user study in Section 7

Questionnaire Item Scale

– If I used the interface more, I think I would understand what it was trying to say. Intuitive– Even if I kept practicing with this interface, I still don’t think I would get it.

– By the end I could understand what the interface was saying. Understand– At the end I was still unsure what the interface was trying to convey.

– I thought the signals had a consistent pattern. Consistent– The signals seemed inconsistent or random.

– I felt like my performance improved over time. Improve– It seemed like my performance stayed about the same.

Table 3. Neural Network Architecture in Simulations (Section 5) and User Studies (Section 7)

Sim / User Study Hidden Layers Hidden Layer Size1 Activation Functions2 LR

1-DoF Sim 2 8, 8 Tanh 0.01
2-DoF Sim 2 16, 64 ReLU, Tanh 0.001
3-DoF Sim 3 36, 96 ReLU, Tanh 0.001

1-DoF User Study 2 8, 16 Tanh 0.01
2-DoF User Study 2 16, 32 Tanh 0.01
3-DoF User Study 3 36, 64 Tanh 0.01

Highway Sim 3 36, 64 ReLU, Tanh, Sigmoid 0.001
10-DoF Sim 2 64, 128 ReLU, Tanh 0.00025

Note that although the decoder networks used in this study were MLPs, other architectures could
be used (such as gated recurrent units (GRUs)). Further, it is possible to use more exotic structures
for LIMIT (such as Bayesian networks), but feed-forward networks were easier for us to use and
demonstrate. For implementation specifics, see our Github repository.

C Additional Simulations
C.1 Scenarios Requiring Near-Immediate Signal Adaptation
LIMIT is intended for settings where the human repeatedly interacts with an interface, and the
interface can tune its signal over time. This may result in the system being less efficient within
situations where the user requires near-immediate understanding of the interface’s signals (e.g.,
understanding the interface at the first interaction). To better understand how quickly LIMIT
personalizes its signals, we have conducted additional simulations using the same environment as
Section 5.2. We first pretrained an instance of LIMIT while interacting with a simulated human. We
then sampled a random state-hidden information pair (𝑠, 𝜃 ) and plotted the signal 𝑥 LIMIT learned
with the baseline human. Figure 12 (Top) shows the initial signal.

We next paired two copies of the pretrained LIMIT with two different simulated humans. Each
of these simulated humans had a different policy than the baseline; the new human policies were
1The first number listed refers to the human and interface networks, the second number listed refers to the size of the
decoder’s hidden layers; these are much larger than the human and interface models.
2Tanh was always used on the interface neural network to restrict the signal output. Whenever another activation function
is listed, it was used for the decoder and human model networks. For more detail, see our Github repository.
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Fig. 12. The change in LIMIT’s signals over repeated interaction for different human policies in a 2-DoF
environment. (Top) The initial signal for the first human modelH0 for (𝑠, 𝜃 ), pretrained for one interaction.
(Bottom Left) The signals plotted for each interaction for the same instance of LIMIT, trained with new human
modelsH1 andH2 for 10 interactions. Note that the signals are different than the first figure, and that the
signals change slightly over repeated interaction as LIMIT adjusts to the new users’ behavior. (Bottom Right)
Signals produced by LIMIT forH1,H2 at (𝑠, 𝜃 ) after 100 interactions. Note that after pretraining, R1 and R2
are separate instances of LIMIT trained with different replay memory buffers and different optimizers.

randomly sampled. We then plotted the adapted signals that LIMIT learned after 10 interactions
and 100 interactions with both of the new simulated humans. See Figure 12 (Bottom). Comparing
the plots, we conclude that the interface’s learned signals have converged within 10 interactions:
the signals the interface sends at 10 interactions are the same signals the interface uses after 100
interactions. Overall, Figure 12 suggests that LIMIT can personalize to new users in less than 10
interactions.

C.2 Variance in LIMIT’s Signals Between Users
To investigate whether LIMIT produced different signals for different users, we conducted an
additional simulation, similar to that of Appendix C.1. Here, we pretrained an instance of LIMIT
R0 on a human modelH0 in our standard 2-DoF environment described in Section 5.2 (matching
the "Lights" task from our in-person user studies). After pretraining LIMIT for several interactions
withH0, we duplicated the instance of LIMIT and paired each with two new human agents with
distinct policiesH1 andH2. Then, after each interaction, we plotted the signals observed for each
instance of LIMIT (R1 and R2) for a particular (𝑠, 𝜃 ). Figure 13 shows this clearly: LIMIT adjusts its
signals for new users over repeated interaction, accommodating their distinct behaviors.

ACM Trans. Hum.-Robot Interact., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:26 Benjamin A. Christie and Dylan P. Losey

Fig. 13. The change in signals over time for new humansH1 andH2 is clearly shown for an arbitrary yet
particular (𝑠, 𝜃 ). Here, the signals are shown as vectors pointing away from the "state" point. Note that the
signals’ 𝑥- and 𝑦-axis correspond with the axis of the plot, i.e. a vector pointing along the 𝑥-axis with one
unit of length would correspond to a signal of

[
1 0

]𝑇 .
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