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Abstract— Safety is critical during human-robot interaction.
But — because people are inherently unpredictable — it is
often difficult for robots to plan safe behaviors. Instead of
relying on our ability to anticipate humans, here we identify
robot policies that are robust to unexpected human decisions.
We achieve this by formulating human-robot interaction as a
zero-sum game, where (in the worst case) the human’s actions
directly conflict with the robot’s objective. Solving for the Nash
Equilibrium of this game provides robot policies that maximize
safety and performance across a wide range of human actions.
Existing approaches attempt to find these optimal policies
by leveraging Hamilton-Jacobi analysis (which is intractable)
or linear-quadratic approximations (which are inexact). By
contrast, in this work we propose a computationally efficient
and theoretically justified method that converges towards the
Nash Equilibrium policy. Our approach (which we call MCLQ)
leverages linear-quadratic games to obtain an initial guess at
safe robot behavior, and then iteratively refines that guess with
a Monte Carlo search. Not only does MCLQ provide real-time
safety adjustments, but it also enables the designer to tune how
conservative the robot is — preventing the system from focusing
on unrealistic human behaviors. Our simulations and user study
suggest that this approach advances safety in terms of both
computation time and expected performance. See videos of our
experiments here: https://youtu.be/KJuHeiWVuWY.

I. INTRODUCTION

Interacting with people is challenging because humans
are inherently unpredictable. Consider Figure 1 where an
autonomous drone is flying near a human worker. This
robot has some high-level task it wants to complete (e.g.,
environment monitoring), as well as a low-level controller
which dictates how the robot should accomplish this task
(e.g., circling the room). If the robot knew precisely what
the human was going to do, it could anticipate the human’s
actions and choose behaviors that maintain a safe distance
between agents. But because people often take unexpected
actions, real human behavior will deviate from the robot’s
model. As a result, the robot’s original plan — which it
thought was safe — may actually be unsafe. Returning to
our example, a drone that turns left (because it predicts the
human will stop) actually puts both agents in danger (because
the human unexpectedly keeps walking forwards).

To address this problem, today’s robots recognize that they
are often uncertain about the human’s actions. Instead of
assuming the human will follow an exact model, these robots
search for plans that are safe across a distribution of human
behaviors. There are two general approaches here. The first
is a precise method: the robot reasons over the distribution
of possible human trajectories, and then chooses the optimal
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Fig. 1: Human and drone moving in a shared workspace.
Under our proposed MCLQ safety filter, the drone reasons
about worst case human actions within designer-specified
bounds, and then selects robust behaviors. For instance, here
the drone moves across the table to better prevent a collision.

control policy that maximizes safety across the distribution
[1], [2]. The second approach is based on approximations:
the robot simplifies the system dynamics and objectives,
and then obtains a closed-form policy that maximizes safety
under the simplified setting [3], [4]. Unfortunately, both types
of approaches have significant limitations. Theoretically ex-
act solutions are often computationally intractable; e.g., our
autonomous vehicle could not apply these methods in real-
time to adjust its behaviors. On the other hand, approximate
solutions are imprecise, and may result in unsafe behaviors
as the system becomes increasingly complex and nonlinear.

In this paper we propose a safety filter that robots can
leverage to tune their real-time behavior and enhance safety
around unpredictable humans. Our proposed filter achieves
precise and tractable performance by combining both types
of prior approaches. Specifically, our insight is that:

We can leverage approximate methods to seed safe robot
behavior, and then apply a stochastic local search to guide

that initial guess towards optimal solutions.
We show an example of our method in Figure 1. The robot
iteratively approximates the interaction as a linear-quadratic
(LQ) system, and finds an action sequence that maximizes
robot performance under the worst case human response. In
parallel, the robot refines this action sequence using sampling
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methods that nosily converge towards the Nash Equilibrium
of a zero-sum game. Robots that execute the resulting actions
are robust to unpredictable humans within designer-specified
bounds: even if the person suddenly changes direction, the
autonomous drone has planned a safe trajectory.

Overall, we make the following contributions:

Identifying Robust Behavior. To maintain safety despite
unpredictable humans, we frame interaction as a zero-sum
game. Here the robot tries to minimize its cost while realizing
an adversarial human might take actions to maximize that
cost. The game’s Nash Equilibrium defines a robot policy
that is robust to unexpected human behavior; we develop a
method (MCLQ) to tractably identify this robust policy.

Uniting Prior Works. Our approach to find robust robot
policies blends aspects of approximate and precise methods.
Specifically, we leverage LQ games to get an initial action
sequence, and then refine that sequence with Metropolis-
Hastings sampling. Our analysis proves that in the best case
MCLQ converges to the Nash Equilibrium, and in the worst
case our approach is as good as current approximations.

Adjusting Safety Margins. Our MCLQ framework enables
practical advantages that go beyond existing methods. For
example, designers can constrain the safety margin, i.e., the
range of human actions the robot reasons over. Decreasing
this safety margin causes the robot to rely more on its human
predictions, preventing the robot from focusing on unrealistic
human behaviors and becoming overly conservative.

Conducting Experiments. We conduct simulations and a
user study to compare our approach to state-of-the-art meth-
ods. Overall, we show that MCLQ solves for safe control
policies more rapidly than HJB and iLQ methods, while also
achieving higher performance than existing iLQ approxima-
tions. In addition, participants reported feeling “safer” when
interacting with drones that leverage MCLQ.

II. RELATED WORK

Related research has introduced a variety of control algo-
rithms to ensure safety during human-robot interaction [2].
Within this larger field, our approach is most connected to
game-theoretic controllers. These methods frame the human
and robot as two agents with their own objectives, and solve
for robot policies that are robust (i.e., maximize performance)
while accounting for the human’s decisions.

Hamilton-Jacobi Methods. Game-theoretic works treat
human-robot interaction as interconnected system: both
agents have a task they are trying to accomplish, and the
actions of each agent affect one another. We can formal-
ize these interconnected dynamical games with Hamilton-
Jacobi equations [5]. Precisely solving the Hamilton-Jacobi
equations provides the optimal, game-theoretic behavior for
each agent; e.g., a policy for the autonomous car that
avoids collisions with the human. Hamilton-Jacobi analysis
has therefore become a gold standard for safe interaction
[1], [6]–[8]. Unfortunately, most Hamilton-Jacobi equations
have no analytical solution, and numerical methods are

often intractable — requiring both exponential time and
computational memory [4], [9]. As such, within this paper we
develop a real-time approximation that converges towards the
ideal solution provided by the Hamilton-Jacobi framework.

Linear-Quadratic Approximations. We are not the first to
try to approximate the game-theoretic solution. For example,
[10]–[12] propose neural network models, and [4], [13],
[14] outline open-loop methods. One particularly promising
approximation recognizes that we can analytically solve the
Hamilton-Jacobi equations in a special case: if the system
dynamics are linear and the costs are quadratic [5]. For
these linear-quadratic (LQ) games the optimal robot policy is
closely connected to linear-quadratic regulators [15]. Robots
can solve LQ games quickly, providing a tractable method
to obtain safe behaviors that match the gold standard of
Hamilton-Jacobi analysis. Indeed — even if the system is
not linear-quadratic — recent works have tried to apply
sequential linear-quadratic (iLQ) approximations [4], [16].
Under these iLQ approaches the robot iteratively linearizes
the dynamics and quadraticizes the cost before solving the
resulting LQ game to find the human and robot control gains.
On the one hand, iLQ provides an increasingly prevalent
method to tractably identify safe controllers. But on the other
hand, this approximation is fundamentally limited by its
reliance on linear-quadratic systems — as the real interaction
diverges from the simplification, iLQ falls short. Overall,
this gap motivates our work towards methods that combine
theoretical exactness and practical implementation.

III. PROBLEM STATEMENT

Although our approach extends to k agents, we will
describe interactions between one human and one robot. The
robot has a task to perform, and to complete this task the
robot must reason over the human (e.g., avoid colliding with
the human worker). Without loss of generality, we assume
the robot has an initial control policy for the task, as well
as a nominal model for predicting the human’s behavior.
Our approach will introduce a safety filter that modifies
the robot’s policy to enhance safety even when the human
deviates from the nominal model. To achieve this safety, we
consider the worst-case interaction (within designer specified
bounds); i.e., we identify which actions the human can take
that will have the worst impact on the robot’s performance.

Zero-Sum Game. Let the system have state x ∈ X (e.g., the
position of both agents). The robot takes action u ∈ U , and
the human takes action w ∈ W (e.g., the human and robot
velocities). At each timestep t, the system state transitions
according to the deterministic, discrete-time dynamics:

xt+1 = f(xt, ut, wt) (1)

An interaction lasts for a total of T timesteps. The system
begins the interaction in state x0 and during the interaction it
follows a trajectory ξ = {(x, u, w)0, · · · , (x, u, w)T−1, xT }.
Since the dynamics are deterministic, we can abbreviate this
trajectory as a sequence of robot and human actions ξ(x0) =
{(u,w)0, · · · , (u,w)T−1} = (u0:T , w0:T ).



The robot’s goal is to select actions that will cause the
system state to update in a way that completes the robot’s
task. More formally, the robot has a cost function it seeks to
minimize across the interaction:

J
(
xt, ut:T , wt:T

)
=

T∑
τ=t

j(xτ , uτ , wτ ) +D(xT )

s.t. xτ+1 = f (xτ , uτ , wτ )

(2)

Here J is the cumulative cost, j(x, u, w) is the cost at a
single timestep, and D(xT ) is the bequest state cost. We
emphasize that the robot’s cost in Equation (2) depends on
the human’s actions w. For example, the autonomous drone
will incur a significant penalty if the human moves into that
agent. To optimize cost, the robot has an initial policy π̂R
that determines how it will complete the task. The robot may
also have some guess for how the human agent will behave:
π̂H. Both policies are mappings from states x to actions:

π̂R : X 7→ U (3)
π̂H : X 7→ W (4)

In practice, the real human will inevitably deviate from
the robot’s model. A worst-case human selects actions that
maximize the cost in Equation (2). Formally, in this worst-
case the human and robot are participating in a two-player
zero-sum game [5]: the robot is trying to minimize its cost,
whereas the antagonistic human is attempting to maximize
that same cost, directly opposing the robot’s objective.

Nash Equilibria. Similar to prior works [3], [17], [18],
we have formulated human-robot interaction as a zero-sum
game. The advantage of this formulation is — if we can
find robot behavior that is safe in the worst case — then we
can ensure safety across the board, regardless of what the
human does. Let πR(x) be the robot’s filtered policy, and
let πH(x) be the human’s true policy. In a zero-sum game,
the optimal policies for both agents form a Nash Equilibrium
[19], where neither agent can unilaterally deviate from their
policy without negatively impacting performance:

πR = argmin
u0:T∈UT

max
w0:T∈WT

J(xt, u0:T , w0:T ) (5)

πH = argmax
w0:T∈WT

min
u0:T∈UT

J(xt, u0:T , w0:T ) (6)

In a zero-sum game, the Nash Equilibrium is unique [19]:
there is a single set of (mixed) policies that satisfy Equa-
tions (5)–(6). By definition, the robot policy of Equation (5)
is maximally robust to changes in the human policy. This
policy enables us to maintain safe interactions — even when
we do not know what actions the real human will take.

Solving for Nash Equilibria. Accordingly, it is desirable to
shift the robot’s initial policy π̂R towards the Nash Equilib-
rium policy. But how do we solve for this equilibrium? The
standard approach in finite horizon, discrete time settings is

to apply the Bellman Equation:

V (x, t) = min
u

max
w

[
j(x, u, w) + V t+1

]
V t+1 = V (xt+1, t+ 1)

s.t. xt+1 = f(x, u, w)

(7)

Applying Equation (7) in continuous time settings results
in the Hamilton-Jacobi-Isaacs (HJI) partial differential equa-
tion. However, this formula can only be applied tractably in
special cases such as linear-quadratic systems [5]; in general,
the Nash Equilibrium policy must be approximated.

Objective. Given that the robot has some initial policy π̂R,
our goal is to develop a real-time safety filter that adjusts
the robot’s policy so that it converges towards the Nash
Equilibrium solution. Because we cannot tractably identify
this ideal policy, we must develop an approximation that the
robot can leverage efficiently in real-time.

IV. MONTE CARLO LINEAR-QUADRATIC GAMES

In this section we propose our real-time safety filter based
on zero-sum games. We recognize that there are special cases
where we can find analytical solutions to Equation (7): when
the dynamics are linear and the cost is quadratic. Accord-
ingly, we first leverage this linear-quadratic case to obtain an
initial guess of the Nash Equilibrium policies (Section IV-
A). We next refine that guess by stochastically solving
the true optimization problem (Section IV-B). Our overall
approach — Monte Carlo Linear-Quadratic Games (MCLQ)
— combines rapid LQ solutions with a parallel local search.
We theoretically demonstrate that MCLQ improves upon
existing LQ baselines, and converges towards the ideal Nash
Equilibrium policy (Section IV-C). We conclude with the
practical advantages of our MCLQ framework, including a
designer-specified safety margin that prevents the robot from
becoming overly conservative (Section IV-D).

A. Obtaining an Initial Action Trajectory

Our method attempts to find the sequence of actions u0:T

that optimize Equation (5). To get an initial estimate of these
actions, we iteratively simplify the actual system into an LQ
approximation. Starting with f , we linearize the dynamics:

f(xt, ut, wt) ≈ Axt +But +Dwt (8)

and quadraticize the state-action cost function j:

j(xt, ut, wt) ≈ xt′Qxt + ut′Ruu
t + wt′Rww

t (9)

where ◦′ represents transposition. Under this LQ approxi-
mation the Nash Equilibrium policies exhibit linear state-
feedback behavior [5]. These optimal feedback policies are
captured by the gain matrices:

ut = −Ktxt

wt = −Ltxt (10)

To find the gain matrices, we employ the discrete-time
algebraic Riccati Equation (DARE, a version of the Bellman
Equation) as detailed in [15]. For a particular robot gain



matrix K, the optimal human gain matrix L can be found in
closed form by solving the DARE:

PK,L(K) = Q+K ′RuK+

(A−BK)′P̃K,L(K)(A−BK)

s.t. ℜ
(
∥PK,L(K)∥

)
≥ 0

ℜ
(
∥Rw −D′PK,L(K)D∥

)
> 0

(11)

where P̃K,L(K) is condensed for brevity:

P̃K,L(K) ≡ PK,L(K) + PK,L(K)D

·(Rw−D′PK,L(K)D)−1D′PK,L(K)

(12)

and the terminal condition is PK,L(K) = Q. The bolded
matrices shown in Equation (11) are augmented forms of
the LQ matrices from Equations (8) and (9):

A ≡
[

0 0
diag(At:(T−1)) 0

]
B ≡

[
0 0

diag(Bt:(T−1)) 0

]
D ≡

[
0 0

diag(Dt:(T−1)) 0

]
Q ≡ diag(Qt:T )

Ru ≡ diag(Rt:T
u ),Rw ≡ diag(Rt:T

w )

(13)

Once the DARE has converged, the unique human gain
matrix L(K) that maximizes the cumulative cost is:

L(K) = (−Rw +D′PK,L(K)D)−1D′

· PK,L(K)(A−BK)
(14)

Note that L(K) is the worst-case gain matrix given the
robot’s policy and objective; we have found the human
actions that maximize the robot’s cost. To develop the
correct response to this worst-case, we use another DARE
to compute the robust robot gain matrix K(L):

K(L) = (Ru +B′PK(L),LB)−1B′

· PK(L),L (A−DL)
(15)

By iteratively recomputing the DARE for both Equation (14)
and Equation (15), we converge to feedback policies that
form the Nash Equilibrium for zero-sum LQ games. Expand-
ing these matrices provides our initial guess of the optimal
action trajectory ξ(x0) = (u0:T , w0:T ).

B. Refining the Action Trajectory

The action trajectory ξ(x0) = (u0:T , w0:T ) we have ob-
tained is optimal if the system is linear-quadratic. But often
this is not the case; solutions that assume linear dynamics
and quadratic costs may fall apart when faced with nonlin-
ear, realistic interactions, or when the necessary Eigenvalue
conditions are not met [15]. We therefore propose to use the
solution from Section IV-A as a first pass approximation that
we will refine with stochastic gradient descent.

As a reminder, our ultimate goal is to reach the robot’s
Nash Equilibrium policy. This policy is defined by Equa-
tion (5), which can be treated as a nested optimization

problem. In the outer loop the robot proposes a sequence
of actions u0:T to minimize its cost, and in the inner loop
the antagonistic human responds with actions w0:T that
maximize cost. We therefore apply a nested gradient descent
algorithm to iteratively improve the initial action trajectory
ξ(x0) = (u0:T , w0:T ) and optimize Equation (5). More
specifically, we perform nested Metropolis-Hastings sam-
pling (i.e., stochastic gradient descent). Other Monte Carlo
methods can be leveraged within our general framework;
we here selected the Metropolis-Hastings sampler due to its
ergodic properties and avoidance of local optima [20].

Given the seed ξ(x0) = (u0:T , w0:T ) provided by Sec-
tion IV-A, this sampler has two parts [21]: an inner loop
that updates the antagonistic human actions ξw = w0:T , and
an outer loop that improves the robot’s actions ξu = u0:T .
An outline of our resulting Monte Carlo Linear-Quadratic
Games approach is included in Algorithm 1.

Inner Loop. The inner loop seeks to identify worst-case hu-
man actions that increase the robot’s cost. Given the robot’s
current action trajectory ξu, this inner loop modifies ξw by
proposing random perturbations ∆ξw. These perturbations
are accepted if they increase the total cost, or if they satisfy
the acceptance rate:

expβ
(
J
(
x0, ξu, ξw +∆ξw

)
− J

(
x0, ξu, ξw

))
(16)

where β is a design parameter that regulates the level of
noise in the stochastic gradient ascent (as β → 0, the sampler
explores Ξ more and is less likely to remain in local minima).
The inner loop repeats N times before the terminating with
a new human action sequence ξ′w.

Outer Loop. The outer loop takes the updated choice of
human actions ξ′w, and seeks to find robot actions that are
robust to the human. Similar to the inner loop, the outer loop
modifies ξu by proposing random perturbations ∆ξu. These
perturbations are accepted if they decrease total cost, or if
they satisfy the acceptance rate:

expβ
(
J
(
x0, ξu, ξ

′
w

)
− J

(
x0, ξu +∆ξu, ξ

′
w

))
(17)

Importantly, the inner loop (i.e., the human) is maximizing
the cost, while here the outer loop (i.e., the robot) is
minimizing that same cost. This outer loop terminates after
M iterations, and outputs a final robot action trajectory ξ′u.

Summary. Taken together, the LQ game in Section IV-
A provides a first guess at the robot’s action trajectory ξ.
This action trajectory is then refined by nested Metropolis-
Hastings samplers that update ξ to solve for the true Nash
Equilibrium policy in Equation (5). The resulting trajectory
ξ′ contains the sequence of actions a robust robot should ex-
ecute over the next T timesteps; this robust action sequence
can be recomputed online (i.e., at each timestep t).

C. Theoretical Analysis

Here we theoretically compare MCLQ to both the ideal
solution (i.e., the Nash Equilibrium) and relevant approxima-
tions (i.e., LQ games). We consider two cases. First, when



Algorithm 1 Monte Carlo Linear-Quadratic Games (MCLQ)

Require: f, J, β,M,N ▷ Dynamics and Cost Functions
1: procedure LQ APPROXIMATION(x, f , J)
2: A,B,D ← Linearize(f)
3: Q,Ru,Rw ← Quadraticize(J)
4: K,L← DARE Solution
5: ξu ← −Kx
6: ξw ← −Lx
7: return ξu, ξw
8: end procedure ▷ Provides initial guess of ξu, ξw
9: procedure MONTE CARLO SEARCH(x, ξu, ξw, f , J)

10: ∆u ← 0, ∆w ← 0
11: J0 ← J(ξu, ξw)
12: for m = 1 . . .M do
13: for n = 1 . . . N do
14: ∆n ← Perturb(ξw,∆w)
15: Jw ← J(ξu +∆u, ξw +∆n)
16: if exp(β(Jw − J0)) > η, η ∼ U [0, 1] then
17: J0 ← Jw
18: ∆w ← ∆n

19: end if
20: end for ▷ Updates worst-case human actions
21: ∆m ← Perturb(ξu,∆u)
22: Ju ← J(ξu +∆m, ξw +∆w)
23: if exp(β(J0 − Ju)) > η, η ∼ U [0, 1] then
24: J0 ← Ju
25: ∆u ← ∆m

26: end if ▷ Updates robot response to human
27: end for
28: return ξ′u = ξu +∆u, ξ′w = ξw +∆w

29: end procedure

the actual system has linear dynamics f and a quadratic cost
J , and second, when the system is not linear-quadratic.

LQ Systems. For a linear-quadratic system the Bellman
Equation is equivalent to the DARE presented in Equa-
tion (11) [22]. Hence, the trajectory produced by the DARE
is the Nash Equilibrium of the zero-sum game. This means
that — for our MCLQ method — the initial trajectory is the
global optimum of Equation (5), and Monte Carlo sampling
is unable to improve upon this initial guess. Each method
therefore converges to the same sequence of robot actions.

Non-LQ Systems. If the system is not linear-quadratic,
then MCLQ improves upon the LQ approximation. Consider
the case where β → ∞; here our sampler only accepts
perturbations ∆u and ∆w if they move towards the Nash
Equilibrium in Equation (5). In the worst case, the initial
trajectory provided by the DARE is a local optima, and
MCLQ performs on par with LQ games. In any other case,
the robot is not seeded in a local optima, and nested gradient
descent moves towards the Nash Equilibrium. Hence, MCLQ
matches or outperforms standard LQ approximations.

D. Balancing Performance and Safety

One key advantage of our approach is that — as we will
show — it can be implemented in real-time. But another
core aspect is that the designer can tune the safety margin,
i.e., how conservative the robot’s behavior is. Recall that π̂H
is a predictive model of the human’s actions. We recognize
that the real human will inevitably deviate from π̂H; but
how different should we expect the human’s actions to be?
Within a zero-sum game formulation, if the human can take
any action at any time, then the robot is forced to overly
conservative behaviors (e.g., the autonomous drone always
moving away from the human). Unlike LQ approximations,
our approach is structured to resolve this conflict between
performance and safety. Specifically, during Monte Carlo
sampling we can impose hard constraints on the perturbations
∆w so that they are close to the predictions of our human
model. Let ξ̂w ∼ π̂H be a predicted human trajectory; we
can limit the range of considered human actions such that:

∥ξ̂w − (ξw +∆w)∥2 ≤ λ (18)

where λ is a design parameter that determines conservatism.
As λ → ∞, the search space approaches the original
trajectory space ΞH, and as λ→ 0, the robot is increasingly
confident in its human model. Importantly, Equation (18)
does not determine if the human’s behavior aligns with
our nominal model: it simply restricts the search space to
trajectories that are similar to our nominal model.

V. SIMULATIONS

In theory, our proposed MCLQ method converges towards
robust, game-theoretic behaviors while offering real-time
performance. Here we test both of these theoretical claims by
comparing our approach to exact Hamilton-Jacobi methods
and tractable LQ approximations. More specifically, we per-
form controlled experiments where simulated agents interact
in three environments: point-mass, driving, and manipulator
(see Figure 2). Each environment contains two agents. The
simulated robot is attempting to complete its task (e.g., reach-
ing a goal) while simulated humans move in its proximity.
The robot must avoid collisions with these simulated humans
— even when the humans take unexpected or noisy actions.
A repository of our code is available here.

Independent Variables. We vary the robot’s controller
across four levels. To test LQ approximations, we include
NPG [15] and ILQ [4] approaches. These methods itera-
tively approximate the dynamics and cost as a LQ system
and solve for the resulting Nash Equilibrium. To test exact
solutions, we next solve for the true Nash Equilibrium (NE)
using the Bellman Equation in Equation (7). Finally, we
evaluate our MCLQ approach from Algorithm 1.

Environments. Below we describe the three simulated en-
vironments. All simulations were performed on an AMD
Ryzen 7000 Series 5 CPU.

Point-Mass. Here the simulated human and robot move in a
2D plane. The initial positions and velocities of both agents

https://github.com/safe-interactions-mclq/mclq
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Fig. 2: Simulation results across point-mass, driving, and ma-
nipulator environments. (Left) We plot the cost and (Right)
computation time averaged over 100 simulations. Compu-
tation time is the number of milliseconds per robot action
(normalized by the number of timesteps per trajectory). In
non-LQ settings the computation time for NE is prohibitively
high; e.g., in driving the NE computation time exceeded
one hour. We could not calculate NE in the 26-dimensional
manipulator environment. Error bars show standard deviation
and an ∗ denotes statistical significance.

are randomized; across an interaction of T = 30 timesteps,
the robot attempts to reach a fixed goal location. Both agents
have linear dynamics such that xt+1 = xt + ut + wt, and
the robot’s cost is quadratic (considering both distance to
goal and distance to human). Because this environment is a
linear-quadratic game, we anticipate that LQ approximations
should find the Nash Equilibrium.

Driving. Our driving environment is taken from the iLQ
baseline [4]. As before, one simulated human and robot move
in a 2D plane with randomized initial configurations. The
dynamics of each agent follow the nonlinear bicycle model
from [23]. Here the robot’s cost function is not quadratic:

j(x, u, w) = ∥xt
R − g∥2 + η exp

(
∥xt

R − xt
H∥2

−η

)
+ u′Ruu

where g is the goal position the robot is trying to reach, xR
is the robot’s position, xH is the human’s location, and η
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Fig. 3: Simulation results for a modified point-mass envi-
ronment where we adjust the safety margin λ in MCLQ. In-
creasing λ causes the MCLQ robot to consider a wider range
of worst case human actions, resulting in more conservative
behavior. Conversely, decreasing λ causes the MCLQ robot
to increasingly rely on its nominal human model. Unlike
LQ approximations, our proposed method gives designers
the flexibility to tune λ and adjust the safety margin.

scales the cost of approaching the human. Each interaction
lasts a total of T = 30 timesteps.

Manipulator. Our final environment contains two 7-DoF
robot arms in PyBullet. We treat one of these arms as the
simulated human, and the other as the robot. Both agents
are trying to pick up and place objects within a shared
workspace. The dynamics of the arms and the task are
nonlinear, and the system state x ∈ X is 26-dimensional
(including manipulators and objects). We leverage a cost
function similar to driving. The robot moves to reach, grasp,
and place items while avoiding collisions with the other arm.

Simulated Human. We simulate humans as bounded-
rational agents that noisily optimize their cost function JH :

πR
(
wt | xt

)
∝ exp

(
−α · JH(xt, wt

i)
)

s.t. xt+1 = f(xt, ut0 , wt)

Increasing α → ∞ causes the human to always take the
optimal action, while decreasing α → 0 causes the human
to act randomly [7]. In our simulations we set α = 7.5. When
computing the cost for future timesteps the simulated human
assumes the robot will repeat its most recent action ut0 (e.g.,
the robot will keep moving with the same velocity). In each
environment the human had a task that was independent of
the robot’s objective — for instance, in driving the human
tried to reach their own goal position.

Results. The results from our first simulation are summarized
in Figure 2. Across all three environments, MCLQ achieved
costs that were closest to the Nash Equilibrium (NE) while
also requiring the least amount of computation time. In point-
mass we highlight that all methods reached similar cost;
this matches our expectations, because point-mass was an
LQ system. By contrast, in non-LQ systems (driving and
manipulator) the LQ approximations made by NPG and ILQ
fell short, leading to suboptimal performance. Computing the
exact solution with NE was time-consuming and not always
feasible: indeed, in the 26-dimension manipulator task, we
were unable to compute the true NE because of the high-
dimensional and continuous state-action space.



Adjusting Safety Margins. As discussed in Section IV-D,
one feature of our approach is the designer-selected safety
margin. MCLQ robots reason over the worst-case human
action within bounds λ. By increasing λ in Equation (18)
the designer makes the robot more risk-averse (i.e., the robot
considers larger deviations from the nominal human model).
Conversely, decreasing λ makes the robot more risk-seeking
(i.e., the robot increasingly relies on its human model).
Within our simulations from Figure 2 we left this value
of λ fixed at risk-neutral behavior. Now we explore how
increasing and decreasing λ changes the robot’s performance
in a modified point-mass environment.

Our extended point-mass environment includes one to ten
humans that are navigating to goal positions. The robot seeks
to reach to its own goal while avoiding these randomly
generated agents. To find an initial plan, the robot is equipped
with a nominal human model — it assumes each human
will move in a straight line towards their goal. In practice,
however, our simulated humans deviate from this model
when nosily optimizing their cost function. Figure 3 plots the
robot’s performance as a function of λ. When λ increases the
robot becomes more risk-averse: the MH sampler accounts
for a wider range of adversarial human actions. This causes
the robot agent to stay farther from humans (reducing col-
lisions), but also leads to longer paths (increasing distance).
Conversely, lower values of λ cause to risk-seeking behavior
where the robot relies on its human model. If humans stick
to this model, the robot avoids collisions while minimizing
distance. But when humans deviate, the number of collisions
increase. Overall, this simulation supports our theoretical de-
scription of λ and demonstrates how designers can leverage
MCLQ to tune the safety margin.

VI. USER STUDY

Our simulations from Section V support our theoreti-
cal analysis, and suggest that MCLQ converges towards
maximally-robust behaviors while minimizing computation
time. We next evaluate our method in a real-world setting
with N = 24 in-person human participants. Here users
walk around a room to complete an assembly task while
an autonomous drone circles that room to inspect the parts
(see Figure 1). The robot modifies its high-level trajectory
to avoid getting to close to the human workers. We compare
two real-time safety filters for adjusting the drone’s behavior:
ILQ [4] and MCLQ. We selected ILQ here because it was
the best performing real-time baseline from our simulations.
Videos of our user study are available here.

Experimental Setup. Participants interacted with a Crazyflie
2.1+ (Bitcraze) during the assembly task. The participant’s
objective was to construct a Lego tower at the central station.
The blocks needed for building that tower were scattered
in three other stations located along the perimeter of the
workspace. Accordingly, users needed to move back and
forth through the workspace to acquire blocks and build their
tower. The drone’s objective was to monitor the workspace
during the task by completing as many revolutions around

the central station as possible. As the drone moved around
the central station it repeatedly intersected with the human
worker: at these intersections the drone should to take actions
to help avoid the moving participant.

Participants and Procedure. We recruited 24 participants
(6 female, average age 24.5±4.5) for this user study. Of the
24 participants, 8 had not previously used drones and 5 did
not have prior experience with robotics. Participants received
monetary compensation for their time and provided written
consent according to university guidelines (IRB #23-1237).

We leveraged a between-subjects design where every par-
ticipant interacted with ILQ for five minutes and MCLQ for
five minutes. To prevent the participants from always going
back and forth between the same stations, we instructed users
to move according to three movement patterns: clockwise,
counter-clockwise, and random. Both the order of the meth-
ods and movement patterns were counterbalanced (i.e., half
of the participants started with MCLQ). Participants were
never told which algorithm the drone was using.

Dependent Measures — Objective. We using tracking
devices (VIVE) to measure the states and actions of the drone
and human at each timestep of the interaction. To assess
objective performance, we considered two metrics. For our
first metric (collisions) we counted the number of times the
drone was within a radius of 0.5m from the human. Our
second metric (revolutions) is the number of revolutions the
drone completed within the five minute trial. Lower values
for collisions indicate that the drone is maintaining safety,
while higher values for revolutions show that the drone is
performing the task more efficiently.

Dependent Measures — Subjective. After interacting with
each control algorithm, participants completed a 7-point
Likert scale survey. This survey assessed the user’s subjective
preferences along three multi-item scales. We asked users:

1) If they felt safe during the interaction,
2) If they thought the drone was attentive to their position,
3) If they thought the drone’s movements were predictable.

Hypotheses. We had two hypotheses for this user study:
H1. MCLQ will modify the drone’s actions to
reduce the number of collisions and improve sub-
jective feelings of safety.
H2. MCLQ will complete a similar number of
revolutions as the iLQ baseline.

Results. The results from our in-person user study are
summarized in Figure 4. To assess H2, we measured the
number of revolutions that each method completed per inter-
action: a higher number indicates more efficient performance.
One-way ANOVA tests show that the performance differ-
ence between the methods is trending towards significance
(F (2, 86) = 1.50, p = 0.14), where MCLQ completes more
revolutions than ILQ. This suggests that the safety improve-
ments made by MCLQ are not coming at the expense of
overly conservative behavior — the MCLQ drone is still
performing its high-level task of monitoring the workspace.

https://youtu.be/KJuHeiWVuWY
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Fig. 4: Results from our user study in Section VI. Participants walked around a room to assemble a tower; a drone completed
revolutions around the same workspace to monitor the human’s progress (also see Figure 1). (Left) The average number of
revolutions the drone completed and the average number of collisions. Here “collisions” occurred when the drone was within
0.5 meters of the human. The proposed MCLQ algorithm adjusts the robot’s behavior to increase safety (fewer collisions)
while also enhancing performance (more revolutions). (Right) After interacting with each algorithm participants answered
survey questions about how safe, predictable, and attentive the robot was. Ratings suggest that participants perceived MCLQ
to be a safer system. Error bars show standard deviation and an ∗ denotes statistical significance (p < .05).

Given that the drone is completing a similar number of
revolutions with each method, the key question becomes
the safety of the robot’s behavior. We analyzed H1 along
two levels: objective safety (maintaining a minimum distance
between agents) and subjective safety (the user’s perception
of the system). For objective safety, ANOVA tests revealed
that MCLQ leads to significantly fewer collisions than ILQ
(F (2, 86) = 4.16, p < 0.001). The participants’ responses
to our Likert scale survey align with these objective results:
users perceived the MCLQ robot to be safer (F (2, 24) =
2.33, p < 0.05) and more attentive (F (2, 24) = 2.37,
p < 0.05). In addition, users thought that drones following
the MCLQ algorithm had more predictable actions, with
differences trending towards significance (F (2, 24) = 1.84,
p = 0.073). In their free response comments, participants
stated that with the MCLQ drone they “felt safer” and that
the drone was “more reactive and predictable.”

VII. CONCLUSION

In this paper we presented a real-time safety filter for
human-robot interaction. Our approach ensures that the robot
is robust to noisy and unexpected human behaviors within
designer-specified bounds. To achieve this game-theoretic
safety with tractable computation, we combined linear-
quadratic approximations with stochastic local searches. Our
theoretical analysis showed the resulting MCLQ algorithm
converges towards the ideal Nash Equilibrium policy while
providing flexible and efficient implementation. Across mul-
tiple simulations and a user study, we observed that MCLQ
advances both objective and subjective safety measures when
compared to state-of-the-art control alternatives.
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