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Abstract— When humans control robot arms these robots
often need to infer the human’s desired task. Prior research
on assistive teleoperation and shared autonomy explores how
robots can determine the desired task based on the human’s
joystick inputs. In order to perform this inference the robot
relies on an internal mapping between joystick inputs and
discrete tasks: e.g., pressing the joystick left indicates that the
human wants a plate, while pressing the joystick right indicates
a cup. This approach works well after the human understands
how the robot interprets their inputs — but inexperienced users
still have to learn these mappings through trial and error! Here
we recognize that the robot’s mapping between tasks and inputs
is a convention. There are multiple, equally efficient conventions
that the robot could use: rather than passively waiting for the
human, we introduce a shared autonomy approach where the
robot actively reveals its chosen convention. Across repeated
interactions the robot intervenes and exaggerates the arm’s
motion to demonstrate more efficient inputs while also assisting
for the current task. We compare this approach to a state-of-
the-art baseline — where users must identify the convention by
themselves — as well as written instructions. Our user study
results indicate that modifying the robot’s behavior to reveal its
convention outperforms the baselines and reduces the amount
of time that humans spend controlling the robot. See videos of
our user study here: https://youtu.be/jROTVOp469I

I. INTRODUCTION

Imagine teleoperating an assistive robot arm to reach for a
notepad in a cluttered environment (like the one in Figure 1).
You interact with a joystick, and the robot leverages these
joystick inputs to infer which task you are trying to complete.
Intuitively, you might press the joystick straight towards your
desired object. Although this input makes sense to you, it
could confuse the robot arm: there is a marker right next to
the notepad, and the robot is not sure which of these two
objects you really wanted to reach.

To interpret human inputs and predict their desired task
robots use an inference or intent detection algorithm. At its
heart, this inference algorithm is based on a robot-assigned
convention: i.e., a mapping between high-level tasks and
low-level inputs. For example, the robot could assume that
the human will directly aim their joystick towards their
desired goal. We refer to this model as a convention because
there are multiple, equally optimal mappings from tasks to
inputs. Returning to our example, another convention could
be moving the joystick up to indicate the notepad, and down
to indicate the marker — pressing up (or down) is no more
challenging than aiming straight for the notepad.

Understanding the robot’s convention is key to commu-
nicating with the robot. Once the human knows how the
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Fig. 1. Human interacting with a joystick to convey their desired task. The
human initially presses their joystick straight towards the notepad. But the
robot has in mind a convention for interpreting the human’s inputs — up for
the notepad and down for the marker. To communicate this convention, we
leverage shared autonomy to modify the robot’s trajectory and reveal more
informative motions. Humans that gradually adapt their joystick inputs to
match these motions will more concisely and accurately convey their intent.

robot interprets their inputs, the human can then follow this
convention to seamlessly convey their intent. We specifically
focus on shared autonomy settings — here the standard con-
vention is for the human to move the robot arm directly to-
wards their task [1]–[7]. At first glance, this makes inference
challenging when the potential tasks are close together [8]:
a small mistake could point the joystick towards the marker
instead of the notepad. But this confusion is easily avoidable
once the user understands the robot’s convention: the human
can reliably convey their task by exploiting the convention
and aiming to the right of the notepad, clearly avoiding the
marker. This choice of action that unambiguously indicates
the human’s task is an exaggeration.

In this paper we explore how robots can convey their built-
in conventions to inexperienced human users. We recognize
that — because the robot knows its own conventions — it
also knows how humans should interact with these conven-
tions to seamlessly communicate their task. Specifically in
the context of shared autonomy, our insight is that:

Robots can reveal their conventions by guiding the human’s
behavior towards more communicative inputs.

Robots that apply our insight leverage shared autonomy to
actively demonstrate their conventions to the human. This
process is shown in Figure 1: as the human moves directly
towards the notepad, the robot intervenes to (a) help the
human complete the task while simultaneously (b) guiding
the human along a trajectory that would more clearly indicate
the notepad. Our central hypothesis is that the human will
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learn from this guidance: the next time they encounter this
scenario, the human should update their joystick inputs to
mimic the demonstrated behavior. If successful, our approach
reduces the amount of time users spend interacting with the
joystick to convey their desired task.

Overall we make the following contributions:

Formalizing Conventions in Shared Autonomy. We formu-
late the role of conventions in inferring the human’s desired
task. We then enable robots to exploit these conventions and
identify the exaggerated policy that the human should follow
to indicate their task with fewer joystick inputs.

Communicating Conventions over Repeated Interaction.
We leverage shared autonomy to guide users towards more
communicative policies. Across repeated interactions our
approach attempts to infer the human’s task and then suggests
an improved way to indicate that task. We prove that — if the
human mimics the robot — our approach is more efficient
than letting the human find the convention on their own.

Comparison to Written Instructions. We test our result-
ing algorithm in scenarios where the human is reaching
for objects on a cluttered table or performing continuous
skills. We compare with other teaching modalities, including
written, crowd-soured descriptions of the conventions. Our
results suggest that using shared autonomy to demonstrate
conventions outperforms the alternatives, particularly when
the conventions are complex or unintuitive.

II. RELATED WORK

Shared Autonomy. Over 13% of all American adults have
some form of physical disability and need assistance during
activities of daily living [9]. Robot arms can help these
adults perform everyday tasks without relying on caregivers
[10]. Rather than forcing the human to constantly teleoperate
the robot arm, it is often beneficial to automate parts of
the task [11]–[13]. Shared autonomy arbitrates between the
human operator and autonomous assistance so that both
agents control the robot’s motion. We specifically focus on
shared autonomy paradigms where the robot is given the
discrete set of candidate tasks a priori: during interaction,
the robot tries to infer the human’s current task and then
takes over to autonomously complete the motion [1]–[4].
Recent work on shared autonomy has focused on how the
robot can gather information and learn new tasks from human
interactions [5]–[7]. By contrast, our work explores how
robots can convey information through shared autonomy in
order to improve the human’s interactions.

Conventions. When there are multiple optimal solutions to a
multi-agent problem, conventions determine which solution
the team follows [14]–[16]. As an example, we follow a
convention to drive on the right (or the left) side of the road.
Within this paper, conventions refer to the mapping between
the human’s desired task and their joystick inputs. Because
the task space is discrete and the input space is continuous,
there are an infinite number of possible conventions: return-
ing to Figure 1, the human could press the joystick up, down,
left, right, or any other angle to indicate the notepad. But

for this convention to function, the human must understand
what the robot expects. Recent works have explored how
robots can learn human conventions [15], how robots can
avoid conventions [17], and how robots should respond to
humans who know the robot’s convention [18]. Rather than
causing the robot to adapt to the human, we study how the
robot can drive human adaptation to the robot’s convention.

Algorithmic Teaching. To determine how the robot should
teach conventions to the human we utilize recent work on
algorithmic teaching (also called machine teaching) [19].
Within contexts where the robot is learning from demon-
strations, prior work improves human teaching by providing
verbal or written teaching guidance — i.e., heuristic instruc-
tions on how to teach [20]–[22]. However, within our shared
autonomy context we propose to leverage the robot’s motion
to teach conventions. Our approach draws from related
research on legible motions for human-robot collaboration:
here the robot purposely follows an exaggerated trajectory
to make its intent clear to onlooking humans [23], [24]. We
take inspiration from legible motions and machine teaching
to establish a method by which the robot communicates its
convention in shared autonomy settings.

Most related to our research are [25] and [26]. Both papers
focus on shared autonomy, and use robot interventions to
change or improve the human’s behavior. Like these papers,
we will leverage shared autonomy to convey information
from the robot to the human — but unlike these works, our
goal is to teach the human how to teleoperate the robot.

III. PROBLEM STATEMENT

Let us return to our motivating example where a human
is trying to teleoperate the robot arm to pick up a notepad.
When the human starts interacting with the robot they know
their task (i.e., the human knows that they want the notepad),
but they do not know the robot’s convention, and therefore
they do not know the most efficient way to communicate to
the robot that they want the notepad. Conversely, the robot
knows its convention — and the most efficient way for the
human to indicate either task. However, the robot does not
know whether the human wants the notepad or the marker.

Formalism. Accordingly, we are faced with an asymmetry of
information. The human has a task (that the robot has to fig-
ure out) and the robot selects the convention (which the hu-
man cannot observe). We formulate this scenario as a cooper-
ative inverse reinforcement learning (CIRL) game [16], i.e.,
a two-player Markov game where both human and robot re-
ceive the same reward: M = hS; fAH;ARg; T; f�; Rg; 
i.
Here s 2 S � Rn is the robot’s joint position, aH 2
AH � Rn is the human’s commanded velocity1, and aR 2
AR � Rn is the robot’s assistance. Within shared autonomy
settings the overall action is a combination of the human’s
commanded action aH and the robot’s assistance aR, so that

1The human pushes the joystick, and this input is mapped to a joint
velocity. Our approach is not tied to any specific mapping: e.g., pressing
the joystick right to move the robot’s end-effector along the x-axis [27].



Fig. 2. Our proposed approach for communicating conventions through shared autonomy. (Left) At the start of each interaction the human uses their
current understanding of the convention to try and indicate their desired task. (Middle) The robot infers which task is most likely and then intervenes to
reveal its convention for that task. Here the robot moves up because pressing up on the joystick would increase its confidence in the notepad. We constrain
the robot’s motion so that it still assists the human to complete the task. (Right) Our hypothesis is that the human will respond to the robot’s intervention
by mimicking the robot’s behavior. Within this example, the human learns to press their joystick up to indicate that they want to reach the notepad.

the dynamics T (s; aH; aR) become:

st+1 = st + �t � f(atH; a
t
R) (1)

One common instance of Equation (1) is linearly blending
the human and robot actions [1], [2], [27]:

f(atH; a
t
R) = � � atH + (1� �) � atR (2)

where 0 � � � 1 arbitrates between the human and robot.
Continuing our CIRL formalism, � is the discrete set of

candidate tasks that the human might want to complete (i.e.,
reaching for the notepad, picking up the marker, or opening
a drawer), and � 2 � is the human’s current task (which the
robot is trying to infer). The reward function R = S��! R
depends on the human’s current task. To give an example
from Figure 1, we could specify that R(s; �) = 0 when the
robot reaches the notepad and R(s; �) = �1 at all other
states. The scalar 
 2 [0; 1) in M is a discount factor.

Conventions. Solving the CIRL game produces a pair of
human and robot policies (�H; �R) that communicate the
human’s task and maximize long-term reward [16]. However,
choosing this policy pair becomes challenging when there are
multiple, equally efficient ways to communicate the human’s
goal [14]. Let �H(aHjs; �) be the human’s policy: given the
robot state s and the human’s task �, this policy determines
which joystick input (i.e., which commanded action aH) the
human will provide. We focus on scenarios where there
are a set of equally optimal human policies �H 2 �H.
More formally, we consider settings where there are multiple
solutions to the CIRL game. The choice of which policy (i.e.,
which solution) to use determines the team’s convention.

Consistent with prior work on shared autonomy, here the
robot picks the convention [1]–[4]. In practice, this means
that the robot selects some �H 2 �H that it expects the
human to follow, and the robot infers the task � based on this
model. Returning to our motivating example from Figure 1,
the convention could be �H(aH = up j s; � = notepad) =
1. We reiterate that there are multiple optimal conventions,
i.e., there are multiple policies that convey the human’s
goal while minimizing the human’s effort. For instance,
flipping the convention so that down indicates the notepad2:
�H(aH = down j s; � = notepad) = 1.

2Although our examples involve only a single joystick input, conventions
in complex environments may require a sequence of human commands.

Inference. The purpose of establishing a convention is to
enable the robot to infer the human’s task �. Recall that the
human has a specific task that they want to accomplish, and
the robot needs to infer that task. We denote the robot’s belief
over the discrete set of candidate tasks as:

bt+1(�) = P
�
� j (s0; a0

H); (s1; a1
H); : : : ; (st; atH)

�
(3)

This belief captures the likelihood of task � 2 � given the
history of robot states and human actions. Following [28],
[29], we assume that the human’s inputs aH are conditionally
independent given s and �. Applying Bayes’ rule:

bt+1(�) / �H(aH j s; �) � bt(�) (4)

Hence, the robot’s convention �H (i.e., the robot’s chosen
model of the human’s policy) determines how the robot in-
terprets human inputs and infers �. Within shared autonomy
two common instantiations of �H are the Boltzmann rational
model [29] and the cosine similarity between the human’s
commanded action and the optimal action for a given task.
Both of these conventions expect the human to point their
joystick directly towards their target [1]–[4], [6], [7], [12].

Robot. We want to develop an approach that works across
arbitrary conventions. Hence, we leave the robot’s convention
�H as a general human model that maps between high-level
tasks and low-level joystick inputs. Recalling that there are
multiple solutions (�H; �R) to our CIRL game, the robot
now executes the policy �R that pairs with convention �H.
Returning to our running example, let �H(aH = up j s; � =
notepad) = 1. Accordingly, if the human presses their
joystick up, the robot’s correct response is to autonomously
guide its arm to the notepad. But for the robot to provide
the right assistance, it must first understand what the human
wants — and to do this, the robot must teach the human to
follow its chosen convention.

IV. REVEALING ROBOT CONVENTIONS

Our proposed approach for revealing the robot’s conven-
tion is based on shifting the human’s behavior across repeated
interactions (see Figure 2). The first time that they interact
with the robot, the human leverages their own convention to
communicate their task (e.g., pressing the joystick directly
towards the notepad). We want to shift this input over time
so that the human gradually understands and effectively



leverages the robot’s convention. In this section we introduce
a constrained optimization approach to generate actions that
reveal the robot’s convention. We then explore the conditions
the human must satisfy to adopt this convention, and prove
that demonstrating the convention is more efficient than
waiting for the human to learn by themselves.

A. Generating Revealing and Assistive Actions

To reveal the robot’s convention we modify the motion
of the robot arm so that — if the human provides joystick
inputs that match the demonstrated motion — the human will
follow the robot’s convention. Recall that b is the robot’s
belief over the discrete set of candidate tasks �, and let
�� = max�2� b

t(�) be the human’s most likely task at the
current timestep t. Here we optimize for actions that reveal
��. Put another way, we seek the commanded human action
that will most effectively increase the robot’s confidence in
��. Within our formalism this action maximizes bt+1(��),
the robot’s belief in task �� at the next timestep.

So far we are describing a straightforward optimization.
However, this is made more challenging by our shared auton-
omy setting. On the one hand, the robot should demonstrate
informative actions to the human; on the other hand, the
robot needs to assist the human and help them to correctly
complete their task. We therefore constrain the robot’s ac-
tion to ensure that it still assists the human. Our resulting
approach for generating revealing and assistive actions is:

aR = arg max
a2AR

bt+1(��)

s.t. V�∗(s)�Q�∗(s; a) � �
(5)

Once we substitute in Equation (4) and simplify, we reach:

aR = arg max
a2AR

�H(a j s; ��)P
�2� �H(a j s; �)

s.t. V�∗(s)�Q�∗(s; a) � �
(6)

Here �H is the convention that the robot wants to reveal to
the human: the robot leverages this convention to identify
actions that maximize the belief in ��. We define Q�∗(s; a)
as the cumulative reward the robot will receive by taking
action a in state s, and then optimally completing task ��

afterwards (with no human assistance) [3]. Finally, V�∗(s) =
maxaQ�∗(s; a) is the maximum expected reward the robot
can achieve if it completes task �� autonomously.

When selecting the hyperparameter � � 0 in Equation (6)
the designer chooses how much deviation from the optimal
policy is allowable. If � = 0, the robot always takes assistive
actions (and never reveals information to the human). By
contrast, as � ! 1 the robot only shows revealing actions,
and does not consider whether these actions help the human
complete the task. We note that our constrained optimization
approach here is similar to [30]: but unlike [30], we explicitly
encode task performance as a constraint.

Algorithm. Our overall approach is displayed in Figure 2 and
Algorithm 1. At each timestep the robot infers the human’s
most likely task (based only on the human’s inputs) and
then solves for an assistive action aR that reveals the robot’s

Algorithm 1 Communicating Robot Conventions
1: Input: Robot’s chosen human convention �H, discrete

set of tasks �, and designer-specified hyperparameter �
2: Precompute: The Q-function for each task � 2 �

3: while task not completed do
4: Observe human command atH and state st

5: ��  max�2� b
t(�)

6: atR  solution to Equation (6)
7: st+1  st + �t � f(atH; a

t
R)

8: end while

convention for that task. Finally, the robot blends the human
and assistive actions and transitions to a new state. If the
designer wants to make the robot more or less revealing,
�(t) can be changed based on human performance.

B. Driving Adaptation to Robot Conventions

Our approach reveals the robot’s conventions to the human
— but is this any more efficient than letting the human find
these conventions for themselves? To answer this question
we take the human’s perspective, and write the setting as a
multi-arm bandit. The human is interacting with a joystick,
and can press this joystick in N different directions: these N
discrete inputs become the arms of our bandit. If the human
matches the robot’s convention and pulls the correct arm (i.e.,
pushing up to indicate the notepad), the human is rewarded
by the robot performing the task autonomously. Otherwise,
the human has to continually intervene and correct the robot’s
motion, resulting in more human effort. Define REG(k) as
the number of incorrect joystick inputs up to interaction k.
Without Revealing Actions. If the robot does not actively
reveal its convention then the human must explore the space
of joystick inputs to find the most effective actions. No matter
which policy the human uses to explore these inputs, prior
work on multi-arm bandits [31], [32] has shown that — in
expectation — the number of incorrect joystick inputs is at
least logarithmic in time: E[REG(k)] � 
(log k).
With Revealing Actions. Our approach to revealing con-
ventions has the potential to lower this bound. But to be
effective, the human must actively explore different joystick
inputs and learn from the robot’s response. Specifically, we
assume that (a) the initial probability of each joystick input
is nonzero and (b) the human update their inputs to match
the robot’s motion. Given these assumptions, the number of
incorrect joystick inputs is constant in time: E[REG(k)] =
C. This result follows from Proposition 1 in [33] where the
roles of the human and robot are reversed: the robot reveals
the informative actions for a given task � after a finite number
of interactions, and thereafter the human mimics the robot’s
demonstrated convention for that task.

V. USER STUDY

Our analysis suggests that demonstrating the robot’s con-
vention will help users find and follow that convention more
rapidly. But now we need to show that our approach works
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