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Abstract Robots should learn new tasks from humans.

But how do humans convey what they want the robot to

do? Existing methods largely rely on humans physically

guiding the robot arm throughout their intended task.

Unfortunately — as we scale up the amount of data —

physical guidance becomes prohibitively burdensome.

Not only do humans need to operate robot hardware

but also modify the environment (e.g., moving and re-

setting objects) to provide multiple task examples. In

this work we propose L2D2, a sketching interface and

imitation learning algorithm where humans can provide

demonstrations by drawing the task. L2D2 starts with a

single image of the robot arm and its workspace. Using a

tablet, users draw and label trajectories on this image to

illustrate how the robot should act. To collect new and

diverse demonstrations, we no longer need the human to

physically reset the workspace; instead, L2D2 leverages

vision-language segmentation to autonomously vary ob-

ject locations and generate synthetic images for the hu-

man to draw upon. We recognize that drawing trajecto-

ries is not as information-rich as physically demonstrat-

ing the task. Drawings are 2-dimensional and do not

capture how the robot’s actions affect its environment.

To address these fundamental challenges the next stage

of L2D2 grounds the human’s static, 2D drawings in our
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dynamic, 3D world by leveraging a small set of physical

demonstrations. Our experiments and user study sug-

gest that L2D2 enables humans to provide more demon-

strations with less time and effort than traditional ap-

proaches, and users prefer drawings over physical ma-

nipulation. When compared to other drawing-based ap-

proaches, we find that L2D2 learns more performant

robot policies, requires a smaller dataset, and can gen-

eralize to longer-horizon tasks. See our project website:

https://collab.me.vt.edu/L2D2/

Keywords Learning from Demonstration, Human-

Robot Interaction, User Interfaces

1 Introduction

Robots can learn new tasks by imitating human exam-
ples. In general, as humans provide more examples of

a task, and the more diverse those examples are, the

robot will learn to perform that task more effectively.

Consider the task depicted in Figure 1, where the robot

must scoop cereal from a bowl. One common way for

humans to teach this task is by physically demonstrat-

ing it, i.e., kinesthetically backdriving the robot’s joints

through the process of reaching the bowl and rotating

the spoon. The robot can simply copy this motion if the

bowl always stays in the same place. But for the robot

to learn how to scoop cereal when the bowl is moved,

the human needs to demonstrate the task for various

bowl positions. This process of teaching the robot can

not only be challenging — the human needs to care-

fully orchestrate the motion of the robot — but is also

time-consuming. Each time the human wants to show

another example, they will have to reset the robot, place

the bowl in a new spot, and demonstrate the task again.

So how can we make it easy for humans to provide these

diverse examples?

https://collab.me.vt.edu/L2D2/
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Fig. 1 Human demonstrating a scooping task to the robot
using different teaching paradigms. When using traditional
methods to teach the robot, the user needs to manually reset
the environment by changing the bowl position and provide
demonstrations by physically guiding the robot through the
task. We propose L2D2, an approach that synthetically gen-
erates diverse environment settings and enables the human
to demonstrate the task by drawing a trajectory on the ar-
tificial images of the environment. If the robot makes a mis-
take when executing the learned task, the user provides a few
physical corrections to fine-tune the robot’s learned behavior.
Our proposed approach reduces costly physical interactions
and enables humans to teach robots efficiently.

Recent works have explored methods that simplify

the teaching process by enabling humans to conveniently

provide informative demonstrations. For example, hu-

mans can control the robot via remote teleoperation,

making the process as intuitive as performing the task

with their own hands [44,25,28]. Alternatively, humans

can take a video where they perform the task them-

selves and provide language descriptions that explain

their actions [26,21,1,4]. These works follow a general

trend: 1) making it easier for humans to perform the

task and 2) accurately capturing the task complexities

through real-world demonstrations. However, for these

existing approaches to work, the human still needs to

perform the task either vicariously or with their own

body while physically changing the environment for ev-

ery example they demonstrate. Because each iteration

of providing an example is laborious, this fundamen-

tally limits how much these approaches can accelerate

data collection.

We want to make it easier for humans to teach the

robot. Building on the recent trends, we envision a sys-

tem where the human can teach the robot by drawing

the desired task on an image of the environment. Hu-

mans can generate drawings rapidly, and — because

they are not actually performing the task — the human

teacher is not constrained by the physical speed of the

learner or the burden of resetting the environment be-

tween demonstrations. At the same time, we recognize

that drawings as a form of demonstration are them-

selves limited: when using drawings the human is po-

tentially trying to convey a complex, high-dimensional

task on a 2D image of the environment. To bridge the

gap between the low-cost, easy to provide drawings and

information-rich demonstrations, we hypothesize that:

Robots can rapidly learn new tasks by

combining diverse canonical drawings with a few

high-dimensional demonstrations.

We propose L2D2: Learning from 2D Drawings, a

three-step approach for learning from human teachers.

First, the robot takes an image of the environment, and

the human annotates task-relevant objects or features

that can vary between task iterations. Next, the hu-

man teacher iteratively draws the task on the images

provided by the robot: at each iteration, we leverage

vision and language models to artificially manipulate

the positions of the objects in the image and adjust

the features that the human highlighted. This approach

quickly results in a large dataset of diverse demonstra-

tions. For instance, in our user study, in the time it takes

to provide 10 physical demonstrations, users were able

to provide ∼20 drawings.

In the final step, the robot extracts high-dimensional

demonstrations from the drawings, trains a control pol-

icy, and then attempts to perform the task in the real

world by rolling out the learned policy. If the human

teacher sees that the robot is making a mistake when

performing the task, they can physically correct the

robot to refine its behavior. These corrections help the

robot ground the drawings in reality and fill any gaps

in information. Returning to our motivating example

in Figure 1, after observing the diverse drawings, the

robot may learn to reach the cup but may not learn

to precisely rotate the spoon. The human teacher can

demonstrate this rotation at run-time to correct the

robot’s motion, thus reinforcing the learned policy.

Overall, we make the following contributions:

Sketching Interface. We create an interface that peo-

ple can use to provide information-rich sketches to teach
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the robot a desired task. This interface presents a third-

person image of the environment, and enables users to

draw the robot’s trajectory, annotate where the robot

should rotate, open or close its gripper, and also high-

light environment features that may vary at test time.

Quantifying Information Loss in Sketches.We an-

alyze the process of decoding task sketches into real

robot trajectories using Principal Component Analysis

(PCA). We model the information loss as a function of

the viewpoint from which we capture the images that

users draw on. Leveraging this model, we propose a

strategy for optimally placing the camera to minimize

information loss, and establish an upper bound on this

loss when we use non-linear mappings between 3D robot

trajectories and 2D sketches.

Obtaining Information-Rich Drawings. Given the

importance of varied examples in imitation learning and

the difficulty of collecting them physically, we leverage

vision-language models to synthetically augment the

data collection process. Specifically, we enable users to

identify relevant features (e.g., target objects) through

text prompts and autonomously vary those features

with each drawing. Our approach results in a more di-

verse training set without the need for physically ma-

nipulating the environment. That is, instead of present-

ing the same image repeatedly, we change the locations

of objects across images, enabling the user to show dif-

ferent examples of how to perform the task.

Incorporating Physical Feedback. Recognizing that

sketches themselves are not sufficient to learn dynamic,

high-dimensional tasks due to information gaps in static,

low-dimensional sketches, we utilize a few physical cor-
rections to refine user drawings as well as the behaviors

learned from them. This helps the robot ground its syn-

thetic sketches in the physical environment and learn

the dynamic task interactions more precisely.

Putting all parts together, our resulting approach,

L2D2, integrates drawings and physical feedback in a

way that amplifies their complementary strengths: us-

ing physical corrections to improve sketch accuracy, re-

sulting in data that is both varied and reliable.

Comparing with Baselines.We conduct experiments

to compare our approach to state-of-the-art approaches

in learning from drawings and standard baselines that

learn from physical demonstrations. These experiments

cover multiple real-world manipulation tasks performed

both by expert users and by novice users as part of a

user study. Our results show that the data collected by

L2D2 enhances the robot’s task performance compared

to alternative sketching methods. It also requires sig-

nificantly less time and effort than traditional data col-

lection approaches, which involve physically modifying

the environment and demonstrating the task.

2 Related Work

Our work focuses on efficiently collecting diverse and

accurate data for training robots to perform new tasks

via imitation learning. In particular, we propose obtain-

ing this information through sketches drawn on synthet-

ically generated images to reduce human effort. In this

section, we review prior techniques and interfaces for

streamlining data collection in imitation learning.

Imitation Learning. Imitation learning enables robots

to learn new tasks by mimicking the behavior of an ex-

pert human. A widely used imitation learning method

in robotics is behavior cloning (BC) [38,31] in which

the robot is provided a dataset of observation-action

pairs for some task. From this dataset, the robot learns

a policy that takes the current task observation as in-

put and predicts an action that leads to the successful

completion of the task [35].

A key factor in the effectiveness of this approach is

the quality and variety of human data [5]. For example,

to learn how to pick up a cup from various locations,

the robot must be shown how an expert performs the

task in at least a few different positions. But obtaining

this data can require significant human effort in setting

up the environment and demonstrating the task [39].

Previous research has attempted to address this prob-

lem from different angles: making it easy for humans

to demonstrate the task [13], synthetically augment-

ing the human’s data [54], and developing data-efficient

learning algorithms [23]. In this work, we utilize existing

learning rules and investigate frameworks for obtaining

the required training examples with novel interfaces and

data augmentation techniques.

Interfaces for Providing Demonstrations.Humans

can demonstrate their desired task by guiding the robot

through the task [44,28,32,49,20] or by performing the

task themselves [45,26]. Each approach has its own ad-

vantages; while performing the task directly is more

natural for humans, controlling the robot results in data

that is easier for the robot to learn from. Below, we dis-

cuss these approaches in more detail.

Traditional approaches for guiding the robot include

kinesthetically moving the robot [2] or teleoperating the

robot using a joystick [44,25] or a space mouse [28].

While these interfaces are easily accessible, they are not

always intuitive to use when controlling high-dimensional

robots. To make this process more intuitive, recent works

have developed intelligent mappings for existing inter-

faces [33] as well as new tools like dexterous robot arm
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copies [15,49,13] and virtual reality systems [53,20,16]

for teleoperating the robot from an egocentric view.

Humans do not need to consider these interfaces

when performing the task themselves. Robots can learn

to perform diverse tasks by observing the human’s be-

havior from a third-person camera [26,21,1,4]. How-

ever, since this data does not include observations and

actions from the robot’s viewpoint, it needs to be pro-

cessed to extract relevant data. For this reason, other

approaches have developed reacher-grabber tools equipped

with onboard cameras that humans can hold to perform

tasks from the robot’s perspective [50,45,42].

A limiting factor of both these teaching modalities

is that they require humans to either directly or vicar-

iously interact with the physical environment. Further,

despite the method employed to obtain demonstrations,

humans still need to manually vary the environment in

order to introduce diversity in the training data.

Data Augmentation. To acquire sufficient data with

only a few physical interventions, robots can leverage

open-source videos of humans performing the task [7] or

large-scale cross-domain robot datasets [12,8,36], and

then transfer their knowledge to the desired task [10,

22,11,23]. Recent advances have also utilized large lan-

guage models to facilitate this transfer through contex-

tual language prompts [29,34,46]. Alternatively, robots

can collect a small amount of data from humans and

augment it synthetically — either by adding noise to

human actions and then taking corrective actions to

return to the demonstrated states [27,19], or by in-

troducing semantic variations in the robot’s observa-

tion [37,30,52], or both [54]. For instance, robots can

employ pre-trained vision-language models to segment

out regions of interest in images of the environment, and

in-paint those regions with different objects and back-

grounds to make the policy robust to scene changes [30].

While these approaches help the robot generalize to

unseen but familiar tasks and adapt to minor changes in

behaviors and visual scenes, they do not generate new

expert data. For example, the robot may learn to pick

the cup from the same position across visually different

environments, but it would not be able to pick the cup

from a new location that requires a distinct motion.

Learning from Sketches. In this paper, we propose

leveraging sketches to quickly generate diverse data for

training robots. Upcoming research in imitation learn-

ing has explored collecting demonstrations in the form

of sketches of the desired behavior [47,17,48,57,43,51].

In these approaches, users see an image of the environ-

ment and provide drawings that demonstrate the task.

These drawings are then mapped to real robot trajecto-

ries [57] or used to condition the robot’s behavior [17].

For instance, [51] collects 2D trajectories drawn on im-

ages taken from two viewpoints and generates the corre-

sponding 3D trajectory using a pre-trained autoencoder

framework, while [17] uses the drawing as input to the

robot’s policy and outputs the actions for rolling out

the trajectory in the real world.

While sketches offer an intuitive way for humans to

demonstrate the desired task without physically inter-

acting with the environment, previous work has limited

users to drawing on only real-world images, requiring

them to reset the environment and collect new images

before providing new sketches for the task. Our work

recognizes the potential of using sketches to rapidly

generate large amounts of diverse training data and ap-

plies insights from data augmentation to synthetically

create varied images of the task. We then obtain expert

drawings on these synthetic images, capturing distinct

task behaviors. Recognizing the limitations of sketches

in conveying precise and dexterous motions, we ground

them with a small number of physical demonstrations

to produce a dataset that is both varied and high qual-

ity. In our experiments, we show that by combining

synthetic data generation and physical feedback, we can

enable the users to teach the robot more efficiently as

compared to the state-of-the-art approaches for learn-

ing from drawings. In the following section, we define

the key components of our problem setting.

3 Problem Statement

We consider settings where a robot learns manipula-

tion tasks from a human teacher. We assume that the

robot is equipped with a static camera that can take

images of the entire task environment. Using our pro-

posed approach, users can convey their desired task to

the robot by drawing on the image of the environment

(using a tablet or a similar device). Below, we iden-

tify key differences between learning from drawings and

learning from real-world demonstrations. First, the hu-

man’s drawings are 2-dimensional, but the robot needs

to learn manipulation tasks in the 3-dimensional world.

Second, in drawings, the robot cannot actually interact

with objects in the environment (e.g., the robot can-

not pick up a block in a drawing). Viewed together,

these differences result in an information gap that our

approach must resolve to successfully learn to perform

tasks in the real world using the human’s 2D drawings.

Setup. Before collecting the human’s demonstrations,

an RGB camera is placed in the environment. The cam-

era is fixed throughout the training and evaluation pro-

cess. The camera should be carefully positioned such

that it can view the robot arm and its work environ-
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ment, and the information loss in representing the robot

states with 2-dimensional images is minimized (see Sec-

tion 4.2 for further details). Accordingly, we limit our

experiments to learning manipulation tasks where the

robot’s movements lie within the camera’s field of view.

These manipulation tasks still cover a wide array of

object-centric motions like reaching, grasping, pushing,

pulling, pick-and-place, pouring, scooping, etc., as well

as combinations of these primitive motions.

Robot. A robot arm interacts with the environment to

perform the task. At each step of the task, the robot

reads the state of its arm sR ∈ Rd and receives an

image of the environment from our fixed camera. Con-

sistent with the related works, we leverage language

feedback from the users and vision models to extract

task-relevant features from the images of the environ-

ment [58,55]. The extracted features o ∈ Rk form the

state of the environment. The overall state of the sys-

tem comprises of the state of the robot and the observed

features in the environment, represented as s = (sR, o).

Returning to our motivating example, sR may be the

position and orientation of the robot’s end-effector as

well as the configuration of its gripper, and o could spec-

ify the location of the bowl the robot is trying to reach.

When the robot performs a task in the environment, it

takes an action a ∈ Rd, and the state transitions ac-

cording to system dynamics T (s, a). We do not assume

that the robot has access to these transition dynamics.

Drawings. The human is provided with an image of

the environment taken from the fixed camera. Let p ∈
R2 be a 2D point on this image. The human draws on

this image to demonstrate their desired behavior to the

robot. This drawing is provided by the human in the

form of a trajectory in the 2D space, and comprises a

sequence of points ξP = [p1, p2, · · · , pn], overlaid onto

the initial image of the environment (see Figure 2).

When the human provides a drawing, they are not

only thinking about the 2D trajectory (i.e., the path

they draw on the image), but also about the analogous

d-dimensional trajectory that the robot should follow

in the real world (e.g., reaching the bowl and rotating

the spoon). We denote this corresponding trajectory in

the robot’s state-space as ξ = [s1, s2, · · · , sn]. Moving

from drawings ξP to the real-world trajectories ξ suf-

fers from two fundamental challenges: 1) Since there are

an infinite number of mappings from a low-dimensional

to a high-dimensional space, the robot does not know a

priori how to map the trajectories drawn on the image

to their real-world counterparts, and 2) the drawings do

not capture how the state of the environment changes

throughout the task. In other words, while the human’s

drawings provide information about the trajectory the

robot should follow, i.e., ξR = [sR1
, sR2

, · · · , sRn
], they

do not convey how the environment state o should evolve.

Objective. Given these challenges, our objective is to

develop an interface that enables users to efficiently pro-

vide a diverse set of drawings that convey their desired

task, and an associated algorithmic framework that can

leverage these drawings to learn robot policies.

As a first step towards this goal, we need a pro-

cedure for collecting drawings in a variety of task set-

tings while minimizing physical interactions with the

environment. We must then convert the drawings pro-

vided by the user to real-world robot demonstrations.

These demonstrations should be in the form of state-

action pairs (s, a), capturing how the system state s

changes when the robot takes an action a. In other

words, we want to convert the drawings ξP provided

by the human on images of the environment to a cor-

responding dataset of demonstrations in the real world

D = {(s1, a1), (s2, a2), · · · , (sn, an)}.
The robot can then leverage this dataset to learn a

policy πθ(a|s) that imitates the behavior that the hu-

man demonstrated in their drawings. Our proposed ap-

proach is not tied to any specific method for learning

from demonstrations; but in our experiments, we lever-

age Behavior Cloning [38] within our learning frame-

work. Behavior Cloning matches the actions predicted

by the policy in states s to the corresponding actions a

in the dataset D by minimizing the following loss func-

tion to learn the policy parameters θ:

LBC(θ) =
∑

(s,a)∈D

∥πθ(s)− a∥2 (1)

Given a dataset of diverse and accurate demonstrations,

we expect the robot to generalize the learned policy to

new environment configurations. In the next section, we

introduce our interface for obtaining diverse drawings

and present our method for closing the information gap

between these drawings and real-world demonstrations

to ensure accurate learning.

4 L2D2

Our aim is to make it easy for humans to teach robots

by enabling them to convey the desired task through

sketches. In particular, we want to minimize the need

for physical interactions with the real world and ef-

ficiently collect diverse training data by synthetically

generating new task configurations. As detailed in the

previous section, we recognize the challenges that come

with operating on 2D images instead of the 3D world.

In this section, we present our approach for addressing

these issues and learning a robust robot policy. First,
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Fig. 2 Interface for demonstrating tasks by sketching robot
trajectories. We present this interface to users on a touch-
screen device. Users begin by drawing a line starting from the
end-effector of the robot on the environment image shown on
the left. This line represents the trajectory that the robot’s
end-effector will follow during the task. Users then specify
how the end-effector should rotate by first selecting a point on
the line and then selecting the orientation at that point using
the rotx, roty, and rotz sliders. We provide a visualization
of the gripper orientation to help users identify their desired
angles. In the same way, users can specify when the gripper
should open or close by selecting a point on their line and
then choosing the appropriate button.

in Section 4.1, we describe our interface for obtaining

a diverse set of drawings. Next, we explain how these

sketches can be accurately mapped to high-dimensional

demonstrations in the real world (see Section 4.2). Lastly,

in Section 4.3, we propose how policies learned from the

diverse drawings can be grounded with a few real-world

demonstrations to bridge the fundamental gap between

static images and dynamic physical interactions.

4.1 Obtaining Diverse Drawings

We first present our interface design and explain how

users can draw on our interface to teach the robot.

To learn new tasks using imitation learning, the robot

needs a dataset of state-action pairs (s, a) covering a

variety of task configurations. Instead of asking users

to provide these demonstrations in the real world, we

use the interface shown in Figure 2 to obtain as much

of this information as possible from trajectories drawn

on images of the task.

Sketching Interface. Our interface consists of three

parts, each designed to convey a specific aspect of the

robot’s state sR. The first part displays an image of the

robot and the environment. Users draw on this image

to indicate the path the end-effector should follow to

perform the task. Each point p on this line maps to

some 3D end-effector position pR. The second part fea-

tures three sliders for changing the orientation r of the

end-effector about the robot’s axes. Because our images

are static, it can be difficult for users to imagine how

the robot rotates as they move these sliders. To make

the interface more intuitive, we provide a 3D visualiza-

tion of the end-effector that rotates in real-time with

slider input. The final part of the interface includes two

buttons that open and close the robot’s gripper g.

Overall, each sketch specifies a trajectory ξP . We

update our definition of ξP from Section 3 to include

the end-effector rotation r ∈ R3 about the robot’s axes

and a binary gripper state g ∈ {0, 1} with the 2D pixel

points p at each step of the trajectory. Put together,

ξP = [(p1, r1, g1), (p2, r2, g2), · · · , (pn, rn, gn)].
With this interface, users can demonstrate different

manipulation tasks. For example, in our motivating sce-

nario of scooping cereal from a bowl, users will draw a

path from a spoon held in the robot’s end-effector to the

center of the bowl. Then they will select points on this

path where they want to rotate the end-effector and use

the sliders to specify the starting and ending orienta-

tions. Our interface then linearly interpolates between

these angles to capture the scooping motion. Similarly,

for the task of picking a cube and dropping it into a

basket (see Figure 3), users will draw a trajectory from

the robot’s gripper to the cube and then to the basket,

and then select points where they want to close and

open the gripper.

Diverse Images. Our interface allows users to demon-

strate the task without performing it in the real world.

But to learn the task effectively, the robot needs demon-

strations in various task configurations (e.g., different

bowl positions in the scooping task). Rather than hav-

ing users physically change the environment, we lever-

age existing vision-language models to digitally alter

the images and create new scenarios as follows.

When the robot captures an initial image of the en-

vironment, the interface asks users to specify the rel-

evant objects through language prompts. We feed the

object prompts to a vocabulary-based object detector,

Detic [58] that extracts object locations o in the image,

and segments out the object masks. We use these masks

to generate new environment images by changing their

position in the image and inpainting the area where the

objects were moved from (see Figure 3).

In our experiments, we found that moving objects

to random image locations introduces sufficient variety

for learning the task. For each generated image, users

provide a drawing as described earlier. These drawings

are related because they show the same task, but each

drawing is unique since the way that task is performed

changes. This way, the robot can efficiently obtain a di-

verse dataset ofm trajectoriesDP = {ξP1 , ξP2 , . . . , ξPm}
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without requiring users to physically interact with the

robot or environment.

4.2 Converting Drawings to Robot Trajectories

Now that we have a dataset of drawings DP , we need

to translate these drawings into state-action pairs that

the robot can use to learn a control policy. We know

that each drawing ξP corresponds to a real-world robot

trajectory ξ that the user has in mind. However, when

the user projects the trajectory from a high-dimensional

robot state space into a low-dimensional image space,

we inevitably lose some information. In this section, we

theoretically quantify this information loss, and propose

a solution for mapping the 2D pixel points back to the

3D world with minimal reconstruction error.

Information Loss. We start by formalizing the fun-

damental gap between drawings and real robot states.

In our motivating example, the robot state sR includes

the end-effector position pR, orientation r, and gripper

state g. Our drawings provide direct rotation r and grip-

per g information, but when we take an image of the

environment, the 3D robot positions pR = [xR, yR, zR]

are reduced to 2D pixel points p = [xp, yp] on the image

plane. To model this projection, we first map the states

to the camera frame C:

[pC 1]T = TCR · [pR 1]T (2)

Here TCR is a homogeneous transformation from the

robot’s reference frame R to the camera frame C. Then,

we project the states pC = [xC , yC , zC ] onto the image

by dropping the z coordinate, and scaling the x−y coor-

dinates based on the dropped zC (which is their depth)

and the camera’s focal lengths (fx, fy) to account for

perspective [18].

p =

[
xC

fx
zC

, yC
fy
zC

]
(3)

The transformation and scaling steps preserve all in-

formation — we can retrieve the robot states sR given

their distance zC along the camera’s z-axis. Therefore,

we only lose information when we discard zC to project

the states onto the image. Note that a depth camera

would not be helpful in this case, since users still pro-

vide a drawing in 2D. For example, the user can show

how the robot moves left or right in the image plane,

but not how far into the frame the robot should go.

We quantify this loss as the proportion of the to-

tal variance explained by the z-coordinate of all robot

states pC ∈ PC expressed in the camera frame [24]:

Iloss(C) =
V ar(zC)

V ar(xC) + V ar(yC) + V ar(zC)
(4)

The more the robot states vary along the direction that

the camera faces, the higher the information loss when

representing these states with a 2D sketch.

Camera Placement. We want to minimize this infor-

mation loss so that the robot can accurately reconstruct

the states from the points drawn by users on the camera

image. Prior approaches address this gap by obtaining

additional information with each drawing in the form of

distance inputs [17] (i.e., users need to manually specify

the depth or height) or complementary sketches on im-

ages taken from orthogonal viewpoints [51] (i.e., users

draw the same task from multiple perspectives), both

of which increase the user’s burden. Instead of seek-

ing extra inputs, we propose leveraging our analysis in

Equation (4) to find a new camera placement that min-

imizes the variance along the z-axis of the image plane:

C∗ = argmin
C

Iloss(C) (5)

We can derive the optimal solution for the above ob-

jective using Principal Component Analysis (PCA) [24].

In PCA, we compute the directions of maximum vari-

ance (i.e., the principal components) as the eigenvectors

of the covariance matrix ΣC of robot states.

ΣC =
PCP

T
C

n− 1
(6)

Here PC is a matrix of uniformly sampled robot states

represented in the camera frame. Let Λ = [λ1, λ2, λ3]

be the eigenvalues of the covariance matrix arranged in

decreasing order of magnitude and V = [v1, v2, v3] be

an orthonormal matrix of corresponding eigenvectors.

The first principal component v1 represents the direc-

tion of maximum variance in robot states, while the last

component v3 captures the least variance. To minimize

the reconstruction error, we want the z-axis of the cam-

era to be aligned with the last eigenvector and the x−y
image plane to be parallel to the plane formed by the

first two principal components. This arrangement will

result in the least information loss I∗loss given by:

Iloss(C
∗) =

λ3∑3
i=1 λi

(7)

Our analysis thus far quantifies the data loss for pro-

jecting 3D robot states to 2D pixel points and proposes

mitigating this loss through an improved camera setup.

We do not assume any prior knowledge of the tasks that

the human wants to teach, and consider the entire robot

state space in our calculations. However, when perform-

ing tasks in the real world, the robot may operate in a

more restricted subset of states W ⊂ PC . For instance,

the robot’s workspace may be confined by an adjacent
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Fig. 3 Proposed approach for Learning from 2D Drawings (L2D2). The top row outlines our procedure for collecting diverse
sketching data. Our approach takes an initial image of the environment as input and creates multiple synthetic images covering
a variety of task configurations. We achieve this by detecting relevant objects mentioned by the user using vision-language
models (VLMs) and then randomly repositioning those objects in the scene. Users draw on these images to convey the desired
task using our interface in Figure 2. We then use a task-agnostic mapping to convert the 2D points in each sketch to 3D
positions in the real world. This ultimately results in a dataset D̃R of state-action pairs (s̃, ã) reconstructed from the drawings
ξP ∈ DP . The bottom row outlines our training process. We first train a policy on the reconstructed data using behavior
cloning and roll out this policy in the environment. If this policy makes any errors, users physically correct the robot’s motion.
These corrections result in a small dataset DR of accurate physical demonstrations. We first use this physical data to refine
our 2D-to-3D mapping and improve the quality of demonstrations reconstructed from the sketches. Then we leverage both
these datasets to fine-tune the robot’s policy and ground the robot’s actions in the real world. Together, the diverse set of
sketches and a few precise physical demonstrations result in an accurate and generalizable robot policy.

wall or be limited to a table that it is mounted on. In

practice, we leverage knowledge of this working region

W to compute a more domain-specific covariance ma-

trix using W instead of PC in Equation (6) and further

improve the camera position.

With the camera held fixed, we now shift our focus

to how the robot can accurately map the points p drawn

on the image to the corresponding robot positions pR.

2D to 3D Mapping. According to our camera model,

the 3D robot positions are linearly projected on the

2D image plane, followed by a nonlinear scaling. When

retrieving the positions from the pixel points, we can

combine all inverse transformations into a single map-

ping f : p→ pR. Prior work has shown that non-linear

mappings can encode and extract information more ef-

fectively than PCA projections [3,40,14,9]. Building on

this insight, we model f as a non-linear function rep-

resented by a neural network fϕ(p) with parameters

ϕ. We train this network on a new calibration dataset

Dmap = {(p1, pR1
), (p2, pR2

), . . .}, where each robot po-

sition pRi
is uniformly sampled from the space W and

projected onto the image using Equation (2) and Equa-

tion (3) to get the matching pixel point pi. Note that

this data is task-agnostic and is automatically gener-

ated before collecting the task-specific user drawings.

We minimize the following reconstruction loss func-

tion to learn the mapping from 2D points to 3D robot

states using Dmap:

Lmap(ϕ) =
∑

(p,pR)∈Dmap

|| fϕ(p)− pR ||2 (8)

We expect the mapping fϕ trained on the Lmap to

find non-linear manifolds that better fit the state dis-

tribution than linear principal components, leading to

more accurate reconstructions. In practice, this can help

us further reduce the information loss [14], such that:

Inonlinearloss (C) ≤ Iloss(C) (9)

Algorithm 1 summarizes our proposed approach for

bridging the gap between 2D paths drawn on images

and corresponding robot trajectories in the 3D world.

In the next part of our approach, we describe how we

apply the learned mapping fϕ to convert the sketch data

DP collected by our interface into real-world demon-

strations that can be used to train the robot.
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Algorithm 1 2D to 3D Mapping

1: Given: Workspace W, Camera positions C
2: Find camera placement C∗ = minC∈C Iloss(C)

3: Initialize Dmap = {}
4: for position pR ∼ W do

5: Get pixel point p with Eq. 2 and Eq. 3

6: Dmap ∪ (p, pR)

7: end for

8: Initialize fϕ with random ϕ

9: for (p, pR) in Dmap do

10: Compute loss Lmap(ϕ) using Eq. 8

11: Update weights ϕ to minimize Lmap

12: end for

13: return Reconstruction function fϕ

4.3 Learning from Drawings

Following our outline in Figure 3, we have obtained a

diverse dataset of sketches DP with our interface and

learned a task-agnostic function fϕ(p) that maps 2D

image points p to 3D robot positions pR with minimal

information loss. To train the robot policy, we now need

to convert the drawings into a dataset of state-action

pairs (s, a) that capture the desired behavior. In what

follows, we describe our procedure for extracting this

data using the learned mapping fϕ, and then present

our core idea of grounding the drawing data with a few

real-world demonstrations to fill in any remaining gaps

in information and learn robust robot policies.

Data Aggregation. We begin by aggregating the data

collected by our interface. Here we apply the mapping

learned in Section 4.2 to convert each drawing ξP ∈ DP

to a sequence of robot states ξ̃R = [(p̃R1 , r1, g1), (p̃R2 , r2,

g2), . . . , (p̃Rn
, rn, gn)] by reconstructing the positions.

fϕ(p) = p̃R

The accent ˜ denotes the approximate reconstruction

we get when moving from a 2D to a 3D space. The tuple

(p̃R, r, g) defines the robot’s state s̃R, but it does not

include the environment state oR. In general, the user’s

drawings do not provide any information about other

objects in the environment; the robot only observes the

initial environment image and does not see how it will

evolve when rolling out the drawn trajectory. For exam-

ple, in Figure 3, users do not sketch the cube’s motion.

Without this feedback, the robot will go to the basket

even if it fails to grasp the cube, since it does not know

that the cube should move with its gripper.

One way we can address this problem is by simulat-

ing how the object state evolves throughout the task. In

our implementation, we approximate object dynamics

based on the object locations o detected in the initial

image of the environment (from Section 4.1) and the re-

constructed trajectory ξ̃R using the following rule: First

we leverage our learned mapping fϕ to convert the pixel

locations o to 3D object positions õR = fϕ(o). Then, to

model how the objects move during the task, we change

their positions along with the end-effector positions p̃R
whenever the gripper g is closed within a pre-specified

distance from the objects. While we apply this prac-

tical simplification, it is not central to our approach;

practitioners may instead employ physics-induced im-

age manipulation [56] or video generation from task de-

scriptions [6] to simulate object dynamics.

Once we have the simulated object positions õR, we

combine them with the reconstructed robot state s̃R to

get the complete task state s̃ = (s̃R, õR). To create the

training dataset, we now need to know what actions the

robot should take in these states to achieve the sketched

task in the real world. We do that by setting the robot’s

actions to be the difference between consecutive robot

states in the reconstructed trajectory:

ãt = s̃Rt+1 − s̃Rt

With this final piece of information, we can construct

the training dataset D̃R = {(s̃1, ã1), (s̃2, ã2), . . .}. De-

spite our efforts in accurately reconstructing the robot

state and simulating object dynamics, this data can be

imperfect due to the inherent lack of information in

low-dimensional sketches and static images. That said,

while this data lacks in accuracy, it compensates for it

with a rich variety of task configurations.

In the final part of our approach, we present our idea

for improving the accuracy of this diverse dataset and

training a robot policy that can account for dynamic

interactions that are absent in our drawings.

Grounding with Physical Demonstrations.We use

the reconstructed data to train a preliminary robot pol-

icy πθ(s) → a that maps task states to robot actions.

Let πθ̃ be the policy trained on D̃R using the behavior

cloning objective in Equation 1. In tasks involving sim-

ple physical interactions, this initial policy alone may

be sufficient for successfully completing the task.

However, when learning contact-rich tasks, we en-

able humans to refine the robot’s behavior with a small

dataset of accurate real-world demonstrations DR =

{(s1, a1), (s2, a2), · · ·}. This data can be collected by

executing the task according to πθ̃ and asking users

to correct the robot’s trajectory, or by obtaining new

demonstrations through user teleoperation. While DR

may not cover as many scenarios as in D̃R, it precisely

grounds the synthetic observations in the real world.

Our insight is that these data sources are complemen-

tary. Below, we describe how we can best utilize both

datasets to train an accurate and generalizable policy.
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Our approach does not simply merge the two sets

like DAgger [41]. Rather, we utilize the real-world demo-

nstrations to ground the robot policy in two steps: (i)

recalibrating the data derived from user drawings, and

then (ii) refining the robot policy using both the real-

world and drawing datasets. In the first step, we recall

that our 2D to 3D mapping fϕ was trained on posi-

tions uniformly sampled from a task-agnostic space W
(see Section 4.2). By contrast, DR only includes states

that are specific to the desired task, which may or may

not be represented in W. To address this mismatch,

we adapt our mapping to the user’s task by creating

new training pairs (p, pR) with real robot positions in

DR. With these task-specific pairs, we fine-tune our pre-

trained mapping fϕ. Specifically, we update its weights

ϕ with gradients from the loss in Equation (8) com-

puted over the new states:

ϕ′ ← ϕ− α∇ϕLmap using (p, pR) ∼ DR (10)

The updated mapping fϕ′ captures task-specific infor-

mation and should thus provide a more precise 2D to

3D mapping for the task at hand. Now that we have

this improved mapping, we reapply it to the original

user drawings DP to construct a more accurate dataset

of reconstructed trajectories D′
R.

In the second step, we leverage this new dataset of

demonstrations D′
R extracted from drawings and the

physical demonstration data DR to retrain the robot

policy. Here we highlight that besides task-specific state

information, DR also contains rich object interactions.

For instance, users may demonstrate grasping the cube

multiple times if they fail during initial tries. These

interactions offer valuable feedback that can help the

robot adapt to real-world outcomes, e.g., learning not

to lift the cube until it is successfully grasped.

To incorporate this knowledge in training the robot’s

policy, one may simply try to combine the two datasets.

But in practice, due to the imbalance between the sizes

of the real-world and drawing data, the learned policy

becomes biased towards the trajectories in D′
R and ig-

nores the contact-rich information in DR. In our imple-

mentation, we mitigate this bias by sequentially train-

ing the robot’s policy on each dataset using the stan-

dard behavior cloning loss from Equation (1):

θ′ ← θ − β∇θLBC using (s′, a′) ∈ D′
R

θ′′ ← θ′ − β∇θ′LBC using (s, a) ∈ DR

(11)

Here θ′ denotes the intermediate policy parameters af-

ter training on D′
R. These parameters capture behav-

iors across various task settings. We then fine-tune θ′

on DR to obtain the final grounded policy πθ′′ . This fi-

nal training phase helps the robot extrapolate the real-

Algorithm 2 L2D2

1: Given: Drawings DP , Mapping fϕ

2: Initialize D̃R = {}
3: function LearnFromDraw(DP , fϕ)

4: for ξP in DP do

5: // Data Aggregation from Drawings

6: for (pt, rt, gt) and pt+1 in ξP do

7: Convert p̃Rt
← fϕ(pt)

8: Convert p̃Rt+1 ← fϕ(pt+1)

9: Robot state s̃R = (p̃R, r, g)

10: Compute action ãt = s̃Rt+1
− s̃Rt

11: Get object state õR from image

12: D̃R ∪ (s̃R, õR, ãt)

13: end for

14: end for

15: Initialize πθ with random θ

16: for (s, a) in D̃R do

17: Compute loss LBC(θ) using Eq. 1

18: Update weights θ to minimize LBC

19: end for

20: return Robot policy πθ

21: end function

22: // Learning initial robot policy from drawings

23: πθ̃ ← LearnFromDraw(DP , fϕ)

24: Collect real-world demonstrations DR

25: // Fine-tuning the reconstruction function

26: for (p, pR) in DR do

27: Compute loss Lmap(ϕ) using Eq. 8

28: Update weights ϕ to minimize Lmap

29: end for

30: Task-specific mapping fϕ′

31: // Learning intermediate policy parameters

32: πθ′ ← LearnFromDraw(DP , fϕ′)

33: // Fine-tuning robot policy

34: for (s, a) in DR do

35: Compute loss LBC(θ
′) using Eq. 1

36: Update weights θ′ to minimize LBC

37: end for

38: return Grounded robot policy πθ′′

world knowledge to the diverse settings illustrated in

our drawings.

Overall, our training procedure enables the robot

to not only adapt to different task configurations —

because of the diverse drawings collected by our inter-

face — but also realize the physical consequences of

its actions and compensate for any inaccuracies in 3D

reconstruction and simulation of object dynamics.
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4.4 Algorithm Summary

Our proposed approach for Learning from 2D Drawings:

L2D2, is summarized in Algorithms 1 and 2. Our code is

available here: https://github.com/VT-Collab/L2D2

We first apply PCA to find an optimal camera place-

ment C∗ for taking images of the environment, and

learn a 2D to 3D mapping fϕ following the lines 8−12 in
Algorithm 1. This mapping reconstructs the real-world

positions corresponding to the points in images taken

from C∗. We then leverage vision-language models [58]

to synthetically generate images of varying task config-

urations and ask users to convey their desired task by

drawing on these images using our interface in Figure 2.

This creates a diverse dataset of drawings DP .

To learn from these drawings, we use our mapping

fϕ to create a dataset of reconstructed state-action pairs

(s̃, ã) ∈ D̃R as outlined in Algorithm 2. With this data,

we train an initial robot policy πθ̃. Since this policy

is learned from static drawings, it may fail to capture

dynamic real-world interactions. We bridge this gap by

grounding the policy with a few real-world demonstra-

tions DR. This process involves two steps: First, we im-

prove our mapping fϕ′ using task-specific states from

the real-world data (lines 26−30) and reconstruct the

drawing demonstrations D′
R. Second, we leverage both

D′
R and DR to sequentially train a grounded robot pol-

icy πθ′′ (lines 32−38). The diverse drawings enable the

robot to generalize across various task configurations,

while the real-world data teaches it to account for en-

vironment dynamics.

Although ours is not the first approach for learning

from sketches, it introduces two key advances: synthet-

ically generating diverse drawings and grounding them

with real-world demonstrations. In the following sec-

tion, we evaluate how these advances enable humans to

teach robots more efficiently and accurately than prior

sketch-based learning approaches.

5 Real-World Experiments

In Section 4, we presented L2D2, an interface-based ap-

proach for teaching robots with task sketches. We now

evaluate our proposed approach through real-world ex-

periments. Specifically, we compare L2D2 to state-of-

the-art methods for learning from drawings, as well as

standard approaches for learning from physical demon-

strations. We break down our experiments into three

parts. First in Section 5.1, we evaluate the performance

of L2D2 on short manipulation tasks with data pro-

vided by expert users. Next, in Section 5.2, we conduct

an in-person study to assess whether novice users can

leverage our approach to teach robots efficiently. Fi-

nally, in Section 5.3, we test if expert users can apply

our approach for teaching robots to perform longer ma-

nipulation tasks.

Independent Variables. We compare L2D2 to three

state-of-the-art baselines that leverage different feed-

back mechanisms for teaching manipulation tasks to a

robot arm: using teleoperated demonstrations (Teleop),

using sketches to condition the robot policy (RT-Traj)

[17], and using sketches in two camera images to recon-

struct the 3D demonstrations (S2S) [51]. We also com-

pare against two ablations of our proposed approach.

In the first ablation, we evaluate the performance of

L2D2 when it only has access to drawings collected us-

ing our interface (L2D2-D). In the second ablation,

we evaluate the performance of our approach when it

is trained with just the small set of physical corrections

that we collect to ground the drawings (Teleop-min).

Below, we describe these approaches and their training

and operating procedures in detail:

– Teleop: In Teleop, users directly control the posi-

tion and orientation of the robot’s end-effector, and

actuate the robot’s gripper using a joystick. With

this approach, users can provide physical demon-

strations that accurately capture their desired be-

havior in the real-world environment.

– RT-Traj: In this approach, users draw the robot’s

trajectory on a camera image. Unlike L2D2, RT-

Traj does not get rotational inputs, instead, it asks

users to specify the real-world heights for key points

along the sketched trajectory. This sketch is used

to condition a pre-trained transformer that outputs

robot actions. So for each sketch, we roll out these

actions to record the corresponding physical demon-

stration (that we use to train the robot policy).

The transformer model used to map the 2D sketches

to the 3D world is trained on large multi-task data.

To reduce this data requirement, we simplify its im-

plementation by directly giving it the sketched tra-

jectories rather than images of the sketch as in the

original paper [17]. In our experiments, we collect

160 task-specific demonstrations to train this map-

ping. These demonstrations are different from those

used to train the robot policy.

– S2S: This is another sketching approach that takes

images of the environment, but from two orthog-

onally placed cameras instead of one. Users draw

on both camera images to convey a single corre-

sponding real-world demonstration. So users need

to imagine how the same robot trajectory would ap-

pear from two different viewpoints. Similar to RT-

Traj, S2S does not obtain rotational inputs from

https://github.com/VT-Collab/L2D2
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users and requires a pre-trained autoencoder net-

work to convert the paired 2D sketches into one

real-world trajectory. We use the same 160 task-

specific demonstrations that we collected for RT-

Traj to train the mapping for S2S following the

procedure in [17]. However, unlike RT-Traj, S2S di-

rectly maps the sketches to real-world demonstra-

tions without the need for rolling out the sketches

in the real world.

For all baseline methods, users need to physically

interact with the environment to vary the task scenar-

ios, which they do not need to do with L2D2. We also

do not require large task-specific datasets to learn a 2D

to 3D mapping. Instead, we use a task-agnostic map-

ping fϕ and a few real-world demonstrations to ground

the diverse drawings collected by our interface.

Experimental Setup. In all our experiments, we use

a 6-DoF Universal Robots UR-10 robot arm equipped

with a two-finger Robotiq gripper. All the tasks are per-

formed on the table on which the robot arm is mounted.

We leverage the procedure in Section 4.1 to position the

camera as best as we can to minimize the information

loss when learning from 2D drawings. The same camera

position is used to collect drawings for all sketch-based

methods and all the tasks in the experiments. In addi-

tion to this camera, we place a second camera almost

orthogonal to the first one for the S2S baseline.

During each interaction, the user first resets the

environment by physically changing the positions of

task-relevant objects. This happens automatically be-

fore each drawing for L2D2 and L2D2-D. Then they

provide a sketch or a teleoperated demonstration in the

current scenario to convey their task to the robot.

5.1 Short Horizon Tasks

We start by evaluating the performance of all methods

in short-horizon manipulation tasks like lifting or push-

ing objects placed on a table. Here we provide the same

amount of expert demonstrations (sketched or physical)

to each approach and test how well the resulting policy

performs the demonstrated task.

Task Descriptions. In this experiment, expert users

taught two tasks to the robot arm: Lift and Push (shown

in Figure 4). In the Lift task, the expert’s goal was to

teach the robot to reach a red cube placed on the table,

close its gripper, and lift the object above a specified

height threshold. In the Push task, the expert had to

teach the robot to reach for a bowl and move it to the

center of the table. For the Lift task, the experts were

instructed to randomly vary the cube’s position to uni-

formly cover the entire table, and for the Push task,

they were asked to ensure that the random bowl place-

ment was away from the table’s center.

Data Collection and Training.We fix the total num-

ber of demonstrations that the experts provide for each

method. Specifically, they provided a total of 60 demon-

strations to the robot per task. When using Teleop, the

experts gave 60 physical demonstrations. For RT-Traj,

they drew 60 sketches, while for S2S, they made 120

drawings (one in each camera frame per demonstra-

tion). Finally, for L2D2, the experts provided 50 draw-

ings and 10 physical demonstrations.

Once we have the data for all methods, we use the

same network architecture to train their respective poli-

cies. Specifically, we use a multi-layer perceptron (MLP)

that takes the end-effector state and object features as

input and outputs the end-effector velocities.

Dependent Variables. We evaluate the performance

of each approach in terms of success rate for complet-

ing 10 different instances (i.e., initial object positions)

of each task. In each instance, we compute success by

breaking down the task into smaller segments and mea-

suring the fraction of segments that were completed

successfully. For the Lift task, we divide the task into

reaching and lifting segments to measure success. For

example, if the robot reaches the block but fails to grasp

and lift it, we have 50% success. Whereas if the robot

successfully grasps and lifts the block, the success is

100%. Similarly, we divide the Push task into two seg-

ments: reaching the bowl and pushing it to the center,

each accounting for 50% of the task success.

Results. Figure 4 summarizes our results averaged over

the 10 testing scenarios.

We first analyze the success rates for the Push task.

A One-way ANOVA revealed that the teaching method

had a significant effect on task success (F (5, 54) = 6.02

and p < 0.05). Post-hoc comparisons indicated that

L2D2 significantly outperformed S2S (p < 0.05) while

being as successful as Teleop (p = 0.67) and RT-Traj

(p = 0.67). We found similar results for the Lift task.

A One-Way ANOVA revealed that the choice of the

teaching method had a significant effect on the robot’s

performance (F (5, 54) = 11.55 and p < 0.05). Post-hoc

analysis indicated that L2D2 significantly outperformed

both S2S and RT-Traj baselines (p < 0.05), while per-

forming similarly to Teleop (p = 0.37).

This result shows that despite using only 10 real-

world demonstrations, L2D2 was as performant as Teleop,

which has access to 60 physical demonstrations. In con-

trast, S2S failed to reach the block accurately in many

instances. We hypothesize that this is due to the dif-

ficulty of visualizing how the robot’s trajectory would

appear in two different camera frames. Our results for
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Fig. 4 Results for short-horizon tasks with expert data.
(Top) The user is trying to teach the robot to push the bowl
to the center of the table (blue region) by drawing the trajec-
tory for the task on the image of the environment. (Bottom)
The robot is learning to pick up a block from the drawings
provided by the user. We report the success rate for both tasks
averaged over 10 independent rollouts with varying object lo-
cations. The error bars show the standard error around the
mean (SEM), and ∗ denotes statistical significance (p < 0.05).
For the push task, L2D2 achieves a higher success rate than
L2D2-D and S2S, while for the Lift task L2D2 performs sim-
ilar to Teleop and outperforms all other baselines.

S2S match those reported in [51] for the tasks involving

gripper actuation.

When comparing to ablations of our approach, we

found that L2D2 achieves a significantly higher success

rate than L2D2-D in both tasks (p < 0.05). It also out-

performs Teleop-min in the Lift task (p < 0.05) where

there is a greater variation in object positions. This

highlights the benefit of grounding the drawings with

a few physical demonstrations, while also showing how

the diverse drawings can help the robot perform better

under varying task configurations.

5.2 User Study

In the previous section, we demonstrated that our pro-

posed approach can learn short manipulation tasks ef-

fectively with drawings from expert users. These users

were experienced in using the sketching interfaces and

were thus able to provide high-quality drawings to the

robot. However, can novice users learn to use our in-

terface effectively, and will they prefer our proposed

approach for teaching robots? Along with improving

performance, it is equally important for a teaching in-

terface to be intuitive for human teachers. Hence, in

this section, we conduct a user study with 12 partici-

pants who had never used the drawing interfaces and

assess whether it is easy for these end-users to teach

the robot by drawing on our interface. We evaluate the

time they need to provide drawings and the resulting

performance of robot policies learned from their data.

Task Descriptions. In this study, the users were tasked

with teaching two tasks: Pick and Place and Scoop-

ing. In the Pick and Place task, the users’ goal was to

teach the robot to pick up a block from different loca-

tions in the environment and drop it inside a bin kept

at a fixed location. For the Scooping task, the robot

started with a spoon in its gripper. The users’ goal was

to teach the robot to reach inside the bowl and rotate

the robot’s gripper such that the spoon scoops the con-

tents of the bowl. For both tasks, users were asked to

randomly place the objects in the environment at the

start of each interaction, except when using L2D2.

Participants and Procedure. We recruited 12 par-

ticipants (3 female, average age 24.7±5.1) from the Vir-

ginia Tech community. Participants received monetary

compensation for their time and gave written consent

prior to the start of the experiment under Virginia Tech

IRB #23-1237.

The participants provided demonstrations with each

method for both tasks. We counterbalanced the order in

which the methods were presented to the participants

using a Latin Square design (e.g., three participants

started with L2D2, three started with Teleop, etc.). Be-

fore providing demonstrations with each method, the

participants were given 5 minutes to practice using the

joystick or the sketching interface to teach the robot.

Once the participants were familiar with the interface,

they provided a total of 5 demonstrations per task. For

Teleop, the participants gave 5 teleoperated demon-

strations. For RT-Traj and S2S, they made 5 and 10

drawings, respectively, while with L2D2, they provided

4 drawings and 1 physical demonstration. After using

each method, participants answered a survey to report

their subjective experience of demonstrating both tasks

with that interface.

We combine the demonstrations provided by all users

to create the training datasets for each method.

Dependent Variables. Similar to Section 5.2, we mea-

sure the success rate across 10 task configurations with

varying object positions to evaluate the performance

of the learned policies. For the Scooping task, we com-

pute success by breaking the task into two segments:
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Fig. 5 Objective results for the user study in Section 5.2. Participants teach the robot to perform two tasks in the environment:
Scooping and Pick and Place. In each task, they provide physical demonstrations through teleoperation (Teleop) and drawings
using our proposed approach (L2D2) and two sketching baselines, RT-Traj and S2S. We record the total time spent by the
users in providing demonstrations to the robot and the average success rate of the learned policy evaluated over 10 rollouts.
The error bars in the plots show the SEM and ∗ signifies that L2D2 had a significantly better performance than the baseline.
Across both tasks, users spend significantly less time providing demonstrations using L2D2, and achieved a significantly higher
success rate as compared to RT-Traj and S2S.

reaching into the bowl and performing a scooping mo-

tion. Each segment accounts for 50% of the task success.

Likewise, for the Pick and Place task, we create three

segments: reaching for the block, grasping and lifting it,

and carrying it to the bin, each contributing to a third

of the task success. For example, if the robot managed

to pick the block but failed to take it to the bin, the

policy rollout would be 66.6% successful.

In addition to the success rate, we also measure the

total time taken by each participant to demonstrate

both tasks with each method, and their subjective re-

sponses to a 7-point Likert Scale survey. The survey

questions were arranged into six multi-item scales: how

easy it was to provide the demonstrations, how intu-

itive the demonstration interface was, and how much

effort was required to teach the robot. At the end of

the study, participants were asked two forced-choice

questions: whether they preferred teaching the robot

through drawings or teleoperation, and which of the

three sketching approaches they preferred to use.

Hypotheses. We had the following hypotheses:

H1. L2D2 will perform similarly to Teleop, but will out-

perform other baselines across both tasks.

H2. The users will require less time to demonstrate the

tasks using L2D2 as compared to the baselines.

H3. Users will perceive that drawings require less effort

as compared to physical demonstrations, and will prefer

using L2D2 over other drawing approaches.

Results. The results for this user study are summa-

rized in Figure 5 and Figure 6.

We first evaluate the performance of each method

using the data from inexperienced users. A One-way

ANOVA revealed that the teaching method had a sig-

nificant effect on the success rate for the Scooping (F (5,

54) = 9.54, p < 0.05) and Pick and Place (F (5, 54) =

14.22, p < 0.05) tasks. Post-hoc comparisons for Scoop-

ing showed that L2D2 outperforms RT-Traj and S2S

baselines (p < 0.05), but performs similarly to Teleop

(p = 0.69). Likewise, for the Pick and Place task, L2D2

achieves a similar success rate to Teleop (p = 0.14) and

outperforms all other baselines (p < 0.05), providing

support for our hypothesis H1. This also indicates that

the end-users were able to leverage our approach to ef-

fectively teach the robot with just 5 minutes of practice.

While L2D2 performs on par with Teleop, its bene-

fits become apparent when we compare the total time

taken by users to provide the same amount of data

with each approach. A repeated measures ANOVA with

Greenhouse-Geisser correction revealed that the meth-

ods had a significant effect on the overall time spent in

demonstrating the task (F (1.421, 15.63) = 119.99, p <

0.05). Post hoc analysis also indicated that users spent

significantly less time demonstrating the tasks using

L2D2 than all baselines (p < 0.05). This result supports

hypothesis H2 and demonstrates that L2D2 achieves

both learning efficiency and task performance by inte-

grating synthetic drawings with physical feedback.

We next analyze the subjective results from the Lik-

ert scale survey summarized in Figure 6. After verify-

ing that our scales were reliable (Cronbach’s α > 0.7),

we grouped the responses for each scale. We performed

repeated measures ANOVA for each scale with the nec-

essary corrections for violation of sphericity. The tests

indicated that the teaching method had a significant

effect on the ease (F (3, 36) = 11.14, p < 0.05) and intu-

itiveness (F (2.01, 24.1), p < 0.05) of providing demon-



L2D2: Robot Learning from 2D Drawings 15

L2D2Teleop RT-Traj S2S

S
co
re
s

Easy Intuitive Effort
0

1

2

3

4

5

6

7

Fig. 6 Subjective results from our user study. Higher ratings
for Easy and Intuitive scales represent better subjective expe-
rience. On the other hand, for the Effort scale, a lower rating
indicates that the user had to spend less effort in demon-
strating the tasks to the robot. The participants perceived
our approach (L2D2) to be as easy and intuitive as teleop-
eration, and indicated that it requires significantly less effort
than all baselines. The error bars show the SEM, and ∗ de-
notes statistical significance (p < 0.05).

strations. Post-hoc comparisons revealed that users fou-

nd L2D2 to be as easy and intuitive to use as Teleop, de-

spite not being able to see the robot and objects move in

our interface. Lastly, the test also showed a significant

effect of method on the perceived effort (F (2.2, 26.41) =

13.61, p < 0.05), with post hoc comparisons indicating

that users put significantly less effort for L2D2 than

the baselines (p < 0.05). We believe that this is be-

cause participants had to manually change the positions

of task-relevant objects for all baselines, while our ap-

proach leveraged vision-language models to automati-

cally vary the object positions in the camera images.

Overall, 66.6% of users reported that they preferred

using drawings to teach the robot as compared to using

direct teleoperation, and 91.67% of users stated that

they would prefer using L2D2 over other sketching ap-

proaches. These subjective results support our hypoth-

esis H3. Users particularly disliked RT-Traj, stating

that “specifying the height of keypoints is not clear”

in their open-ended responses. Due to this ambiguity,

users were unable to select the correct heights, result-

ing in rollouts where the robot failed to grasp the block

or rotate the spoon. While users did not face the same

problem with S2S, the interface did not allow them to

specify end-effector rotation for the Scooping task, and

their drawings for the two camera frames were often

misaligned in Pick and Place, leading to poor recon-

struction and task performance. Instead of obtaining

heights or drawings from two viewpoints, our approach

used a few teleoperated demonstrations to better re-
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Fig. 7 Experimental results for the long-horizon task in Sec-
tion 5.3. The expert’s goal is to teach the robot to push a bowl
to the center of the table, followed by picking up a can and
placing it next to the bowl. (Left) Environment setup and
an example of the drawing provided by the expert. (Right)
The success rate of the policies learned from demonstrations
collected using Teleop and L2D2. We observe a similar per-
formance for both approaches. Error bars show the SEM.

construct the robot’s trajectory from sketches, which

made our interface much more intuitive for end-users

and resulted in more accurate learning.

5.3 Long Horizon Task

So far, we have demonstrated that our approach works

with both expert and novice users. However, our evalu-

ations have only included short manipulation tasks with

a single object in the environment. This makes it easy

to draw paths that go from the robot’s end-effector to

the object of interest. But can our approach work for

long-horizon tasks where the robot must sequentially

interact with multiple objects? In this section, we ex-

plore whether our sketch-based approach (L2D2) can

be leveraged to teach these long-horizon tasks. Specifi-

cally, we compare the performance of L2D2 to the best-

performing baseline from the previous sections (Teleop).

Task Description. The experts were tasked with teach-

ing a Long Horizon task of setting up a dining table.

This task involved sequential interactions with two ob-

jects in the environment — an empty bowl and a can of

food — which can be broken down into two subtasks.

In the first subtask, the robot had to move a bowl to

the center of the table, similar to the Push task from

Section 5.1. Then, in the second subtask, the robot had

to pick up the can and place it next to the bowl. The

bowl was randomly initialized on the table while the

can started in a fixed location.

Data Collection. Similar to Section 5.1, we conduct

this experiment with data collected from expert users.
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For this task, the experts provided a total of 125 demon-

strations to the robot. For Teleop, the experts provided

a total of 125 physical demonstrations by controlling

the robot’s end-effector velocity using a joystick. On the

other hand, for L2D2, the experts provided 100 draw-

ings and 25 physical demonstrations to the robot.

Dependent Variables. Consistent with the previous

sections, we evaluate the performance of the robot in

terms of success rate across 10 independent task set-

tings. We compute the success rate by breaking each

subtask into smaller segments. We divide the first sub-

task of moving the bowl into two segments: reaching

for the bowl and pushing it to the center of the table,

where each segment accounts for 50% of the subtask

success. The next subtask of shifting the can is broken

into three segments: reaching for the can, grasping and

lifting it, and placing it next to the bowl, each repre-

senting 33.3% of the subtask success. For example, if

the robot completes the first subtask and reaches the

can, but fails to close its gripper to grasp it, the rollout

is considered to be 66.6% successful.

Results. The results for this experiment are summa-

rized in Figure 7. An independent samples t-test did

not reveal a significant difference in the success rates of

policies trained with L2D2 and Teleop (t(18) = 11.37,

p = 0.441). This indicates that our sketching-based ap-

proach is also effective in long-horizon tasks, achieving

a performance similar to training with an equivalent

dataset of accurate real-world demonstrations.

6 Conclusion

In this manuscript we proposed L2D2, a drawing-based

interface for imitation learning. Throughout our work

we recognize that teaching robot arms by sketching the

desired trajectory brings advantages and disadvantages.

The key advantage is the ability to rapidly collect low-

effort human demonstrations (i.e., drawings). The dis-

advantages stem from the fundamental gap between

drawing the task in a static, 2D image and actually

performing that same task in our dynamic, 3D world.

To maximize the potential of learning from draw-

ings, we leveraged vision and language models to seg-

ment the initial image and generate a corpus of syn-

thetic environments. Human teachers could rapidly draw

on multiple of these images to convey diverse exam-

ples of the intended task (e.g., showing the robot arm

how to grasp a block at various positions on the table).

This ultimately resulted in a sketching interface that

users seamlessly interacted with to draw and annotate

their desired task. Participants perceived our method

for teaching by drawing to be easier, more intuitive,

and less taxing than state-of-the-art baselines.

To minimize the weaknesses that are inherent to

drawn demonstrations, we developed a two-part solu-

tion. First, we derived an optimization approach based

on Principal Component Analysis to place the robot’s

camera. By drawing on the images obtained from this

camera location, L2D2 mitigated information loss be-

tween the user’s 2D sketch and the robot’s 3D workspace.

Next, to address the gap between static images and dy-

namic interactions, we grounded the human’s drawings

by collecting a small set of physical demonstrations. Us-

ing these demonstrations L2D2 refined its understand-

ing of what the drawings meant, and reached a pol-

icy that captured how objects should transition. Our

experiments across short- and long-horizon tasks indi-

cated that L2D2 learned a policy that was as effective as

policies trained with teleoperated data — but required

less than 75% of the time that users spent in collecting

physical demonstrations.

Limitations. Our results suggest that the benefits of

L2D2 increase as the number of demonstrations required

to teach the robot scales up: with novice users, provid-

ing 100 demonstrations takes 20 minutes less with L2D2

than with traditional teleoperation. We therefore see

L2D2 as an important step towards intuitively teaching

robot arms to perform real-world tasks. However, one

limitation of L2D2 is that users need to translate the

behavior they want the robot to perform into a draw-

ing — and this can be challenging within long-horizon

settings. For instance, if the robot needs to manipulate

multiple objects, the human illustrator may be unsure

what object the robot is currently holding when com-
pleting their drawing. Similarly, if two objects are dy-

namically coupled in the task (e.g., the robot is pushing

a plate with silverware on top of that plate), the draw-

ing may not fully capture the interactions between these

objects. Our current solutions — including grounding

the drawings with real-world data — help to address

this challenge. But future work should ensure that the

visualization of the task captures object manipulation,

and that users understand how the gaps in their draw-

ings can be corrected through physical interventions.
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