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Abstract— When humans physically interact with robots, we
need the robots to be both safe and performant. Series elastic
actuators (SEAs) fundamentally advance safety by introducing
compliant actuation. On the one hand, adding a spring mitigates
the impact of accidental collisions between human and robot;
but on the other hand, this spring introduces oscillations
and fundamentally decreases the robot’s ability to perform
precise, accurate motions. So how should we trade off between
physical safety and performance? In this paper, we enumerate
the different linear control and mechanical configurations for
series elastic actuators, and explore how each choice affects
the rendered compliance, passivity, and tracking performance.
While prior works focus on load side control, we find that
actuator side control has significant benefits. Indeed, simple PD
controllers on the actuator side allow for a much wider range of
control gains that maintain safety, and combining these with a
damper in the elastic transmission yields high performance.
Our simulations and real world experiments suggest that,
by designing a system with low physical stiffness and high
controller gains, this solution enables accurate performance
while also ensuring user safety during collisions. See videos of
our experiments here:

I. INTRODUCTION

Robots are becoming increasingly common in the daily
lives of humans, moving from controlled and isolated settings
in factory floors to collaborative environments. When these
robots work alongside human users, physical interaction
between humans and robots is inevitable. This introduces
a question of safety for the humans working alongside
these robots. For example, if a robot is performing a high-
speed task and the human intervenes — intentionally or
unintentionally — the impact with the human may cause
serious injuries [1]. Hence, we need to ensure safety of the
human and performance of the robot.

Series Elastic Actuators (SEAs) provide a mechanical
solution for safety during human-robot interactions. SEAs
are formed by introducing a compliant element between the
actuator and the output of the system [2] (see Figure 1).
When a robotic system with such compliant elements collides
with a user, the compliant element softens the impact. That
is, instead of being impacted by the rigid body of the robot,
the users feel the compliance of the spring in the system. As
opposed to safe control approaches that operate at a fixed
frequency and may fail to act promptly given an impact,
SEAs advance the fundamental safety of the system in a
way that control-based approaches cannot achieve. However,
the addition of a compliant element introduces oscillations
in high-inertia robots making control of the system more
complex [3]. Recent works have explored different solutions
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to ensure performance after the introduction of this compliant
element. Some approaches focus on the mechanical aspect of
the system, exploring solutions involving additional damping
[4] and non-linear stiffness [5]. Other approaches focus on
control mechanisms for the series elastic actuators [6].

Across these prior works, however, we consistently find
the trade-off between increasing compliance and perfor-
mance. Intuitively — the softer the spring, the safer the
system during impact. But softer springs also inherently
limit the range of control gains we can choose [7], and add
oscillations that prevent accurate trajectory tracking [3]. We
want to answer the question: how can we ensure both safety
and accuracy of the system when interacting with humans in
the real world? While the mechanical and controls solutions
have their drawbacks individually, our insight is that:

SEAs can ensure safety and performance of the system by
combining physical damping with actuator-side control.

In this paper we systematically evaluate mechanical and
linear control solutions for SEAs. We explore each approach
along three axis: 1) the rendered compliance of the system,
2) the stability of the system when coupled with a human,
and 3) the performance of the system in terms of position
tracking. Building on the findings from this theoretical anal-
ysis and leveraging our insight, we propose a solution that
combines mechanical damping and actuator-side control for
series elastic actuators. This design and control combination
guarantees compliance and coupled stability during human-
robot interaction, while also allowing for high gains and
accurate tracking performance.
Overall, we make the following contributions:

Passivity Analysis of Design and Control Strategies. We

perform passivity analysis to get the bounds on physical
and controller parameters under which the different design
and linear control architectures of SEAs maintain coupled
stability. We then consider the systems that are passive for a
wide range of control parameters and analyze the behavior of
each system along the axes of compliance and performance.

Combining Mechanical and Control Approaches. Build-
ing on our analysis of the different design and control strate-
gies, we propose a system that combines damped SEA design
with actuator-side control. We then derive the conditions for
passivity of this system and analyze its performance and
safety. This system allows for a more accurate control over
the load position while also ensuring safety for a wide range
of impact frequencies.

Simulated and Real-World Experiments. We compare the
performance of our proposed approach to different con-
trollers in simulated as well as real world experiments. The


https://youtu.be/jmJ3YBkuHo0
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simulated tests show the importance of physical damping
for the performance of the system, while the real world
experiments highlight its accuracy in position tracking and
low perceived stiffness when interacting with humans.

II. RELATED WORK

Compliant Actuation. Recent works have focused on mak-
ing robotic systems safe during interaction with humans
[8]-[10]. Some approaches here include safety filters [6],
motion planning [11] and human-behavior prediction [12].
Compliant actuation has also been explored to make the
robotic systems physically safe by design [13]. Traditionally,
SEAs introduce a compliant element having a fixed stiffness
between the actuator and the output of the system [2]. During
collisions, these compliant elements can soften the impact,
enabling safe interactions with humans. However, due to
the introduction of this compliant element, the performance
of the system may be compromised [3]. Some works have
explored variable stiffness actuators (VSAs) that change
the stiffness of the compliant elements by introducing an
additional physical system, generally in the form of motors
[5]. While these systems can change the mechanical stiffness
of the system (i.e., modulate the physical spring stiffness),
this change in stiffness requires control decisions and cannot
be achieved instantaneously in response to collisions.

Stable Control of SEAs. Given these challenges for me-
chanical solutions, we next turn to the different controllers
used for compliant systems. Control architectures specific
to compliant mechanisms can tackle the trade-off between
safety and performance [14]. Cascaded controllers have been
used for force control of compliant actuators by breaking
the controller down into position and velocity components
[15], [16]. Similarly, velocity sourced impedance controllers
(VSIC) have been explored to directly control the output
velocity [17], [18]. Unfortunately, these approaches intro-
duce fundamental limitations on the physical and control
parameters necessary to maintain stability during human-
robot interaction. [7], [19]. These constraints may limit the
system accuracy or compromise the safety of the system
during interactions with humans. Some works have tried
incorporating physical damping to relax the controller con-
straints [4], [20]-[23]. Our work is most similar to [24],
which adds active virtual damping into the linear control
of the system, and [25], which derives relaxed stability
bounds for VSIC in the presence of physical damping. These
approaches minimize some of the constraints on the physical
and controller parameters of the system. However, since
they rely on the load-side control, their controller gains
are still bounded by the physical stiffness of the compliant
element. Contrary to these approaches, we instead propose
an alternative perspective using actuator-side control, and
demonstrate that — with the addition of damping into the
compliant system — we can outperform load-side control in
terms of both safety and performance.
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Fig. 1. Schematic of a 1-DoF series elastic actuator (SEA). The actuator

with mass m and internal damping b is connected to the output via a
compliant element D1. In general, the transmission could include either
a pure spring or a spring and damper. By default, the load side is not
connected to the ground. But we explore generalizations with a compliant
element Do that again could consist of a spring and/or damper. F'4 and FT,
are the forces acting on the motor and the output, and X 4 and X, denote
the position of the actuator and the output. We want to design a system
that can be enable accurate tracking of the load position X, while also
rendering a low stiffness at the output during interactions with humans.

III. PROBLEM STATEMENT

We consider scenarios with a 1-degree of freedom (DoF)
SEA and linear control. Our goal is to design a hybrid system
with mechanical and control components that is precise and
stable when coupled to human user, ensuring safety and
accuracy. In this section we will discuss the preliminary
details regarding the design of the series elastic actuators
and define what it means for a SEA to be passive.

Series Elastic Actuators. A general design for 1-DoF
damped series elastic actuator, consistent with prior works,
is shown in Figure | [22], [23]. In this figure the actuator
with mass m and damping b is connected to a load L via
a compliant element K. More generally, the load may also
be connected to the ground via a second compliant element
Dy. The actuator and load positions are given by X4 and
X1, respectively. This design of series elastic actuators is
acted upon by two forces, namely, the force applied by the
actuator to move the motor (F4) and the force applied by
the human on the load (F). The force F, is considered to
be positive when the spring is in tension. The equations of
motion for this system are:

fa+ fo=mZa(t) +bia(t) (1)
fo=D1(t)(xp(t) — za(t)) + D2(t)2r(t) 2

Let 84 and 0}, be the desired positions of the actuator and
the load, and let C'4 and Cp be the controllers on the
actuator and load side that move the system towards the
desired positions. For example, C'4 could be a proportional
controller that regulates the forces of the actuator based on
the displacement between 64 and x 4. The combined force
output of the actuator, based on these controllers, is:

fa=Ca)(0a —zat)) +Cr(t)(0r —zL(t)) ()

Since the user interacts with the system on the load side,
the stiffness perceived by the user (k,ps) can be found by
analyzing the force and displacement of the load during
an interaction. Specifically, the rendered stiffness follows
F, = kops X . Combining Equations (1)—(3), we can write



the perceived stiffness of the system in Laplace domain as:

Fr_ (Di(s) + Da(s))(a + Ca(s)) + Di(s)CL(s) @
X a+ Ca(s) + Di(s)
where o = ms? 4 bs. We want to design a system that, on
impact with an external force, remains compliant. In other
words, we want this perceived stiffness (¥, /X ) to be low,
so that human experiences a softened impact.

Passivity. A system is considered to be passive if it does not
generate energy. That is, the energy output by the system is
less than or equal to the energy that is input to drive the sys-
tem [26]. Studying the passivity of a system can provide us
with the range of allowable control and physical parameters
that ensure the system will remain stable for all operating
conditions when coupled to any other passive system. Thus,
passivity provides us with a sufficient condition for safe
interaction when we try to balance the trade-off between
safety and performance. For our case of SEAs, the interaction
passivity of the system can determined by analyzing the
impedance transfer function [18], [27]:

1 Fr
Z =-.= 5
L) =5 %, (5)
Following [26], a system with a transfer function Zp,(s) is
considered to be passive if Z7,(s) is positive real. That is, if

the following three conditions are satisfied:

« the poles of Z,(s) on the imaginary axis are simple.

e Z1(s) is stable.

e Re(Z1(s)) >0V w € R where jw is not a pole.
The first two conditions are always satisfied since the only
pole of the system on the imaginary axis is at the origin and
the coefficients of the denominator are always positive [28].
Thus, for ensuring the passivity of the system, we require
that the third condition is satisfied. The real part of Z(s)
can be given as:

Re(Z1(jw)) = R€<Num(jw)Den(jw)> ©)

Den(jw)Den(—jw)

where Num(-) and Den(-) represent the numerator and
denominator of Zp(-). Since the denominator of Equation

is always non negative, we get the following condition for
SEA passivity:

Re(Num(jw)Den(—jw)) >0 (7

We will leverage passivity analysis to examine the perfor-
mance and safety of a system with a given controller and
mechanical design. For example, how much can we crank
up the controller gains or decrease the physical stiffness of
the system while ensuring that the system remains passive
(i.e., coupled stable)? In the next section we will explore how
different mechanical and control choices affect the passivity
and perceived stiffness of the system.

IV. DESIGN AND CONTROL ANALYSIS OF SEAS

In the previous section we provided an overview of a
general design for series elastic actuators and outlined its
conditions for passivity. In this section, we now evaluate how

different mechanical and controller designs can affect passiv-
ity, rendered compliance, and performance. Specifically, in
Section we explore the effect that physical changes —
i.e., additional springs and dampers — have on the system,
and in Section we study how different linear control
strategies change the performance of the system. Note that
we only consider the linear controllers shown in Section III,
where C'4 and C, can be arbitrary transfer functions. Finally,
in Section , we combine the solutions from design and
control perspectives and propose a system that is passive,
compliant, and high-performance.

A. Mechanical Approaches

Here we evaluate how different configurations of springs
and dampers affect series elastic actuators. Consistent with
prior works, by default we use load-side proportional con-
trol. That is, we set C'4(s) = 0 and C(s) = kg, where kq
is the virtual stiffness of the controller. Substituting these
controller parameters in Equation 4, the stiffness transfer
function simplifies to:

Fr_ (Di(s) + Da(s))a + Di(s)ka) ®)
X a+ Dy (S)
For each of the spring and damper configurations we consider
in this section, we define the compliant element of the SEA
transmission, D1(s), and any connection between the load
and the ground, Ds(s). We then analyze the passivity of
the resulting system and report the stiffness as a function of
frequency. This analysis is summarized in Table .

1) Pure Spring: We first consider a system where the
load is connected to the actuator via a pure spring D; =
k1 and there is no compliant element between the load
and the ground Dy = 0. Substituting these values into
Equation (8), we obtain the stiffness transfer function and
passivity condition shown in Row 1 of Table . This suggests
that the system will be always be passive if the controller
stiffness is smaller than or equal to the physical stiffness of
the spring, i.e., kg < k. The frequency response for this
controller demonstrates that — as the frequency of control
increases — the perceived stiffness of the system goes to
the mechanical spring stiffness k. By designing a system
with a low stiffness k1 we can ensure higher compliance.
However this also limits the accuracy of the system due to
the constraints on the controller stiffness, thus making its use
in robotic applications challenging.

2) Disjointed Spring-Spring: We next consider a system
with two springs, one in the transmission (D1 (s) = k1), and
the other connecting the load to the ground (D2 (s) = ko).
Row 2 in Table I provides the stiffness transfer function and
passivity conditions for this case. The behavior of this system
with an external spring connected to the ground, where the
condition for passivity can be given as kg < ki + ko, is
similar to that of the single pure spring connecting the load
to the actuator. This again makes the use of this system
difficult in human-robot interaction scenarios where we want
to increase gains for high performance.



TABLE I
PASSIVITY AND COMPLIANCE ANALYSIS OF DIFFERENT MECHANICAL CONFIGURATIONS OF SEAS WITH LOAD SIDE PROPORTIONAL CONTROL

Method Parameters Transfer Function

Passivity Condition

Frequency Response
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3) Parallel Spring-Damper: Until now we have consid-
ered cases with pure springs, inducing no additional damping
in the system. However, in the real world, we do not have
access to pure springs due to friction in the transmission
and the internal damping of the system. In this case, we
model the system with spring constant k; and damping b,
(D1(s) = b1s + ki1, D2(s) = 0). Substituting this value of
D1 (s) in Equation (8), we get the stiffness transfer function
for a parallel spring-damper system (Row 3 of Table I).
Leveraging equation Equation (7), the passivity conditions
suggests that this system will always be passive when kg <
ki and kg < (b* + b - by)/m. These conditions, depending
on the mechanical stiffness as well as the damping of the
system, require that we either have high damping or low
controller stiffness. Looking back at the frequency response
of the system in Table I, we observe that the stiffness of the
system increases with an increase in the frequency due to
the additional damping. However, this increase in perceived
stiffness may still allow for safe interactions based on the
choice of the system parameters (m, b, k1, b1), thus trading-
off between the safety and performance of the system.

4) Disjointed Spring-Damper: Finally, we consider a case
of a spring with stiffness D (s) = k; connecting the actuator
to the load and a damper with damping constant Ds(s) =
ba(s) attached between the load and the ground. The stiffness
transfer function for this system and the corresponding
passivity conditions are provided in Row 4 of Table . Since
m, b, kg, k1 and by are positive constants, for this system
to always be passive, the following constraints should be
satisfied: kg < kq and Kk < b2/m. Since the stiffness of the
spring k; depends on the damping of the system, the system
requires the use of a spring with a low spring constant. This
makes the choice of the control and physical parameters more
restrictive as compared to the case of a pure spring — hence,
this configuration is strictly worse than the default structure.

Overall, our analysis for mechanical configurations sug-

gests that — for SEA systems with load-side proportional
control — the most feasible mechanical design is a pure
spring connecting the load to the actuator. This design
offers compliance for safe interactions and is passive for
all control gains below the spring’s physical stiffness. But
this restriction on the control gains still fundamentally limits
performance [27], and thus we turn to control approaches to
try and enhance the system.

B. Control Approaches

In the previous section we evaluated the effect that dif-
ferent configurations of springs and dampers had on the
behavior of a compliant system. In this section, we now
look at this problem from a controls perspective and explore
how different controller configurations affect the tradeoff
between performance and safety. For the analysis in this
section we assume the standard SEA setup with a pure
spring (D1(s) = k, D2(s) = 0). Substituting these values
in Equation (4), we get the stiffness transfer function:

Fr o k1(ms? 4+ bs + Ca(s) + Cr(s))
X, ms? +bs+ k1 + Ca(s)

We follow a linear control architecture and employ different
load-side and actuator-side control structures to evaluate the
performance of the system. For each controller selection,
we provide the stiffness transfer function, perform passivity
analysis, and discuss the impact safety of the system; the
outcomes are summarized in Table

1) Load-Side Control: We first consider controlling the
system from the load side (C'4(s) = 0). Here we place the
encoder on the load, and use feedback from this encoder
to modulate the actuator torque. Since we ultimately want to
move the load to the desired position, using load-side control
intuitively seems like the most direct way to reach accurate
performance. However, as we will see from our analysis, this
is not always the case.
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TABLE I
PASSIVITY AND COMPLIANCE ANALYSIS OF DIFFERENT CONTROLLERS FOR SEAS WITH A PURE SPRING AS THE COMPLIANT ELEMENT

Method Parameters Transfer Function Passivity Condition Frequency Response
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Proportional Control. This setup replicates the Pure Spring
setup in Section . The passivity analysis for this system
is discussed in Section , and the frequency response is
provided in Table

Proportional-Derivative Control. We next consider a PD
controller on the load side with Cf,(s) = kq+bgs. Row 1 in
Table II gives the stiffness transfer function and the passivity
constraints for this controller. These conditions suggest that
this system will always be passive if kg < (b4 bg)k/b and
—bgkim > 0. While the first condition can be satisfied by
tuning the values of k4 and b4, the second condition cannot
be achieved for a compliant system with PD control (bg, k1 >
0). Thus, a PD controller on the load-side cannot be used for
designing a safe SEA.

Proportional-Integral Control. The final load-side method
we consider is a PI controller (C,(s) = iq/s+ kq), Where i4
is the integral gain of this controller. The stiffness transfer
function and the conditions for passivity are summarized in
Row 2 of Table II. Similar to PD control, we cannot find
proportional and integral gains of the system that would
ensure passivity for all frequencies w. This suggests that
— for load-side control of a standard SEA — the only
feasible solution is a proportional controller with controller
gains kg < kp. But this goes back to our original problem:
the constraints on the controller gains and the lack of any
physical or controller damping leads to oscillations in the
system, and inherently limits its performance (see Section

). Thus, we require a controller for which the gains can be
tuned to minimize oscillations and maximize performance.

2) Actuator-Side Control: With this problem in mind, we
finally consider actuator-side control for SEAs (Cr(s) = 0).
These approaches track the actuator position and determine
the actuator torques using C' 4. Note that under this controller
we have no direct feedback based on the position of the load,
but can only indirectly affect its position via the actuator.
Proportional Control. Similar to load-side control, we first
start with proportional control on the actuator side (C'4(s) =
kq). The stiffness transfer function and the passivity condi-
tions for this system — summarized in Row 4 of Table
— suggest that the system will be passive for all values of
controller stiffness. The frequency response for this system
suggests that, as the frequency increases, the perceived
stiffness of the system converges to the physical stiffness of
the spring. Contrary to load-side control, this approach does
not have any constraints on the controller gains, allowing us
increase the controller gains to achieve a better performance
while also maintaining the safety of the SEA system. This is
promising; but, as we will experimentally show, without any
way to remove energy from the system the load-side tracking
error is still significant.
Proportional-Derivative Control. We now consider a PD
controller on the actuator-side (C4(s) = kq + bgs). Using
these values in Equation (9), we get the stiffness transfer
function for the system as summarized in Row 5 of Table
Similar to the proportional control, the passivity condition for



this system in Table [ will always be satisfied for all values
of the controller stiffness as the condition does not depend on
kq. In our simulations, we leverage this controller and show
that this system can ensure safety as well as accurate tracking
of the actuator position. However, since there is no damping
on the load side, we have no control over the oscillations of
the load and thus compromise the performance.

Proportional-Integral Control. Finally, we test a actuator-
side PI controller where (C4(s) = kq+iq/s). The last Row
of Table Il outlines the stiffness transfer function and the
passivity conditions for this controller. Similar to the integral
control on the load-side, since the physical spring stiffness
of the system cannot be negative, we cannot ensure that the
passivity condition is satisfied. From this combined analysis,
we conclude that for the actuator-side control of series elastic
actuator with pure spring, PD control is a feasible solution
for safe and compliant interaction. Further testing will be
done in Section V to explore its performance.

C. Combining Mechanical and Control Solutions

So far we have discussed separate solutions for mechan-
ical properties and control parameters. We now consider a
combined solution that factors in both the mechanical design
of the system as well as its control methodology. Building
on our observations from the previous sections, we propose
a two part solution: i) placing a damper in the transmission
to reduce oscillations between actuator and load while ii)
using actuator-side PD control to guarantee passivity over a
large range of values. We perform passivity analysis on this
system and outline conditions under which it is passive.

Since we are performing actuator control with parallel
spring-damper, we have Cr(s) = 0 and Dy(s) = 0. The
damped compliant element in the series elastic actuator can
be represented using D1 (s) = k1 + b1 s, and the controller
on the actuator side can be written as C4(s) = kq + bygs.
Substituting these values in Equation (4), we write the
stiffness transfer function of the system as:

Fr (ki +bis)(a+ bas + ka)
X a+(by+bg)s+ki+ka

We leverage Equation (7) along with the impedance transfer
function for the system to get the passivity condition:

m?b1w® + by ((b+ ba)? + bby + bibg — 2mkg)w?

(10)

>0
+ (b k2 4 bk? + bgk?)w? -
(1D
In this condition the coefficients of w® and w?, are always

positive. Eliminating these terms from the inequality, we can
rewrite the simplified condition for passivity of this system
as follows:

bi((b+ba)* 4 bby + bibg — 2mkg)w* >0 (12)

Here we observe that the passivity of the system does not
depend on the physical stiffness of the spring. In other
words — we can have a soft transmission, and still maintain
passivity with high control gains. To ensure the passivity

of the system, we only need the controller stiffness k; <
((b+bg)? + bby + b1by)/2m. This is effectively a constraint
on the ratio between the controller stiffness k; and the
controller damping b;. We can ensure the passivity of the
system by tuning the controller’s gains, k; and by, such
that this condition is satisfied. Additionally, by tuning the
value of the physical compliance D;, we can reduce the
mechanical oscillations in the system while also making the
system compliant to any external impacts. The ability to
independently tune the physical and controller parameters of
the system enables simultaneous optimization for both safety
and performance.

V. SIMULATIONS

So far we have enumerated different mechanical and
control solutions and performed theoretical analysis for the
stability and compliance of those approaches. But what
about system performance? Restricting our focus to only the
feasible options identified in Section IV, we here conduct
controlled simulations to empirically evaluate the perfor-
mance of passive SEAs.

Experimental Setup. We consider a 1-DoF SEA with actu-
ator mass m = 1kg and internal damping b = 10N -s/m. To
simulate a robotic system where the actuator is connected to
the robot link via a transmission, we connect the compliant
element of the SEA D; = ki +b;s to a pure mass mp,. Prior
works have shown that pure masses are worst-case scenarios
for SEA performance and stability [27], [29]. We therefore
set Dy = 0 to evaluate the coupled stability of the system.

Independent Variables. We compare the performance of our
proposed coupled mechanical and control solution (Ours)
to two approaches discussed in Section [V: 1) Pure spring
with Load-side Proportional control (LP), and 2) Pure spring
with Actuator-side PD control (APD). For each of these
approaches, we fix stiffness of the compliant element k; =
1000N/m and the mass of the load (m; = 10kg), and
compute the controller parameters kg, by and b; that lead
to the best case performance of each system (See Figure
for optimized values).

While we compute these optimal parameters with a fixed
load mass mp, in a real world setting, the robot may need
to move objects with varying masses. In such situations, a
controller tuned for a fixed value of load mass mj should
be able to perform well even when the mass of the load
changes. Assuming the payload of the robot to be 25kg, we
evaluate the performance of the controllers for three discrete
mass values my = {lkg, 10kg, 25kg}.

Dependent Variables. To evaluate the performance of the
system we provide a step input to the position of the load, and
the controller tries to bring the system back to equilibrium
position. For each controller and selected load mass we
measure the final state error in the position of the load and
the settling time required for the controller to converge within
2% of the steady-state position.

Results. Our results for this simulation are summarized in
Figure 2. We observe that for all controllers and load mass
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Fig. 2. Results for simulated experiments. We evaluate the ability of the different controllers to bring the load to equilibrium across a variety of load

masses. (Left) The performance of load-side proportional control. (Middle) The object position using actuator-side PD control. (Right) The performance
of Ours. Across all mass values, Ours leads to a faster convergence with fewer oscillations in the system.

values the error in the load position converges to 0 after being
displaced by a step input of 0.5m. However, the time taken
by the load to reach this equilibrium position varies for the
different approaches. For all mass values, Ours converges to
the equilibrium in shorter time as compared to LP and APD.
We also observe that LP and APD induce high frequency
oscillations in the system for lower mass values, and LP
induces low frequency oscillations even at higher loads. On
the other hand, Ours converges to the equilibrium with fewer
oscillations as compared to the baselines across all loads.

These results suggest that while LP can keep the system
passive, it leads to a poor tracking of the load position.
Similarly — due to a lack of physical damping — as the
load increases, the performance of APD deteriorates as well.
Our proposed approach for combining physical damping with
actuator-side control enables accurate tracking of the load
position and brings the system to equilibrium in a shorter
time as compared to the baselines.

VI. EXPERIMENTS

Now that we have validated the performance of our
combined mechanical and control solution in controlled
simulations, we finally test our approach and the baselines in
the real world with a physical series elastic actuator (see top
left image in Figure 3). Videos of our real-world experiments
are available at:

Experimental Setup. The physical setup for the experiment
is shown in Figure 3 (top left). The system is actuated using
a Maxon Motor EC-30, with a gear ratio of 4.8, connected to
the load via a guide rail on a linear transmission. The position
of the motor is tracked using a rotary incremental encoder
(MR Encoder, 1000 cpt) and the position of the load with
respect to the spring (X — X 4) is measured using a linear
encoder (US-Digital EM1-0-500-I). We compute the mass
of the actuator (m), the actuator damping b, and the spring
stiffness and damping (k1,b1) empirically and report the
identified values of these parameters in Figure 3. The system
was controlled by connecting the actuator and encoders to
MATLAB and operated at a control frequency of 500 Hz.

Procedure. In this experiment — similar to our controlled
simulations — we compare the performance of our proposed
approach (Ours) to a load-side proportional control (LP),
which can ensure passivity of the system in the presence of a

damper (see Section [V). LP was chosen in part because it is
the standard mechanical and control strategy. [16], [24], [30]
We set the controller damping for the LP as by = 0 (since LP
is a proportional controller) and for our proposed approach
as by = 25. We evaluate the performance of the controllers
paired with the damped physical system for different values
of controller stiffness k4 € [0,2000] and for two values of
mass attached at the actuator output mL = {0.1,0.6}.

We first analyze the frequency response of the stiffness
transfer function for our approach given in Equation (10).
To see the effect of damping on the perceived stiffness in
real-world situations, we compute the perceived stiffness of
our system averaged over 10 independent physical impacts
using ko = Fr,/X1,. These impacts can be approximated as
step changes in load force. We then evaluate how quickly and
accurately the system moves the load to a desired position
after being displaced by an impulse. To test this condition,
we initialize the load at the 20mm position on the guide
rails and the motor tries to move that load to the equilibrium
position. For each value of the controller gain k; and load
mass mL, we compute the time required by the controller to
bring the system to equilibrium (settling time). Since robotic
systems need to reach the desired position quickly after being
displaced, we allow a maximum of 2 sec for the controller
to bring the system to equilibrium. For the testing conditions
where the controller settles to a constant value, we also
compute the steady-state error in the position of the load.
Ideally, we want this error to be as close to 0 as possible.

Results. The results for this experiment are summarized in
Figure 3. From the frequency response plot in 3, we observe
that the perceived stiffness of the system increases with an
increase in frequency. The observed stiffness of the system
in the real setup — averaged across 10 separate impacts
— was observed to be ko = 2292 + 91.6N/m, which
is greater than the physical stiffness of the system k; =
1005N/m. This shows that while the perceived stiffness of
the system increases because of the mechanical damping
in the transmission, the system is still compliant and can
soften the force of impact on collision. Additionally, by
choosing more compliant physical springs, systems with
lower perceived stiffness can be achieved.

Now that we have analyzed the safety and compliance
characteristics of our approach, we move on to evaluate the


https://youtu.be/jmJ3YBkuHo0

m=0.505kg  b=17.5 Ns/m
ki=1005 Nm  b;=8 Ns/m %\90
80
2
270
b
(]
S 60
| Ll Ll FEm|
10 102 10° 104
Frequency
2 E 5
o & LP: m=0.1kg
21.6 = 4
Py e @ LP:m=06kg
E 1.2 A 3 @ Ours: mp=0.1kg
& 2 Ours: mp=0.6 k;
0.8 g2 P IO 8
£ >
& 04 E 1
0 (93 I} -
400 800 1200 1600 2000 0 400 800 1200 1600 2000
Controller Gains (kqg) Controller Gains (kq)
Fig. 3. Results for real world experiments. (Top Left) Physical setup of

the SEA with the following elements: (1) Actuator (2) Friction Damper (3)
Spring (4) Linear Incremental Encoder (5) Output with load. (Top Right)
Perceived stiffness for Ours during sudden impacts with an operator. The
bottom row shows the settling time (left) and steady state error (right) of
each controllers for different values of mass attached at the load. We observe
that as the control gains increase, Ours leads to a better performance as
compared to LP. The dotted lines in the figures highlight the controller
gains after which LP becomes unstable.

performance of the system. We observe that, in this damped
system, as the controller gains are increased, Ours leads to a
lower settling time as compared to the LP. We also observe
that as the controller gains are increases, LP eventually
leads to unstable system behavior. Due to the physical and
controller damping, our approach has a higher error in
tracking the load position for lower values of controller gains
kq < 200. However, as the controller gains are increased,
these errors converge to 0, highlighting the ability of our
proposed approach to accurately control the system.

VII. CONCLUSION

We propose a mechanical and control SEA configuration
that enables accurate tracking while ensuring safety during
human-robot interaction. We consider 1-DoF SEAs and start
by analyzing the passivity and compliance of different me-
chanical designs and control solutions. Based on this analy-
sis, we propose the use of a physically damped SEA paired
with a proportional-derivative controller on the actuator side.
Our theoretical analysis and experiments demonstrate that
actuator-side control enables a wider range of control gains
than previously possible, and the mechanical damper com-
bines with those gains to minimize oscillations and maximize
performance. This result fundamentally advances the design
and control of SEAs; future works can develop more complex
actuator-side controllers that build on our findings.
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