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Abstract— Ensuring safe and effective collaboration between
humans and autonomous legged robots is a fundamental chal-
lenge in shared autonomy, particularly for teleoperated sys-
tems navigating cluttered environments. Conventional shared-
control approaches often rely on fixed blending strategies that
fail to capture the dynamics of legged locomotion and may
compromise safety. This paper presents a teleoperator-aware,
safety-critical, adaptive nonlinear model predictive control
(ANMPC) framework for shared autonomy of quadrupedal
robots in obstacle-avoidance tasks. The framework employs
a fixed arbitration weight between human and robot actions
but enhances this scheme by modeling the human input with
a noisily rational Boltzmann model, whose parameters are
adapted online using a projected gradient descent (PGD) law
from observed joystick commands. Safety is enforced through
control barrier function (CBF) constraints integrated into a
computationally efficient NMPC, ensuring forward invariance
of safe sets despite uncertainty in human behavior. The control
architecture is hierarchical: a high-level CBF-based ANMPC
(10 Hz) generates blended human–robot velocity references, a
mid-level dynamics-aware NMPC (60 Hz) enforces reduced-
order single rigid body (SRB) dynamics to track these refer-
ences, and a low-level nonlinear whole-body controller (500 Hz)
imposes the full-order dynamics via quadratic programming
to track the mid-level trajectories. Extensive numerical and
hardware experiments, together with a user study, on a Unitree
Go2 quadrupedal robot validate the framework, demonstrating
real-time obstacle avoidance, online learning of human intent
parameters, and safe teleoperator collaboration.

I. INTRODUCTION

Legged robots are increasingly envisioned as collabo-
rative agents in disaster response, search-and-rescue, and
other safety-critical domains where fully autonomous op-
eration remains challenging. In such environments, shared
autonomy—the integration of human teleoperation with au-
tonomous decision-making—offers a promising paradigm
that combines human intuition with robotic precision. Nev-
ertheless, achieving effective shared autonomy for legged
robots is nontrivial: human inputs are often noisy and
unpredictable, while autonomous algorithms must simulta-
neously ensure safety in cluttered, dynamic environments.
Compounding these challenges, legged robots themselves are
inherently unstable systems, characterized by high degrees
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of freedom (DoF), underactuation, unilateral contact con-
straints, and hybrid dynamics arising from contact switching.

A. Related Work
To address these challenges, model predictive control

(MPC) techniques have emerged as a powerful tool for trajec-
tory optimization and control of legged robots. In particular,
MPC has been effectively integrated with reduced-order,
or template, models [1], which provide low-dimensional
abstractions of the complex, nonlinear dynamics of legged
locomotion. Prominent examples include the linear inverted
pendulum (LIP) model [2] and its extensions, such as the
angular momentum LIP [3], spring-loaded inverted pendulum
(SLIP) [4], vertical LIP [5], and hybrid LIP [6]. Other widely
used formulations include centroidal dynamics [7] and the
single rigid body (SRB) model [8]–[12]. While quadratic
programming (QP)-based MPC formulations for linearized
template models are computationally efficient, they strug-
gle to incorporate nonlinear effects and enforce collision
avoidance. This limitation has motivated the development
of nonlinear MPC (NMPC) frameworks [13], [14], which
directly account for nonlinear robot dynamics and safety
constraints. NMPC has been successfully applied to gait
planning and safety-critical locomotion of legged robots, see,
e.g., [15]–[20].

Control barrier functions (CBFs) provide formal guaran-
tees of safety for robotic systems [21]. In their standard
form, CBFs are implemented as zero-horizon, QP-based
controllers that minimally modify a nominal control law
while enforcing safety constraints [22]. More recently, CBFs
have been integrated with MPC to extend these guarantees
over a nonzero prediction horizon, enabling safe motion
planning for quadrupedal robots [14], [16], [17] and even car
racing systems [23]. Despite these advances, most existing
MPC/NMPC frameworks for legged robots assume fully au-
tonomous operation and do not explicitly incorporate human-
in-the-loop shared autonomy or intent modeling.

Shared autonomy has been widely studied in the context of
teleoperation, where the goal is to combine human intuition
with robotic autonomy. In general, shared autonomy focuses
on balancing the human’s high-level knowledge (e.g., the
goal the system should reach) with the robot’s low-level
automation (e.g., the motions to reach that goal) [24]–[26]. A
variety of shared autonomy algorithms have been developed
for robot arms [27], [28], quadrotors [29], and smart vehicles
[30]. However, these methods are not directly applicable to
legged robots, where safe and effective operation requires



Fig. 1. Side-view and top-view snapshots from one of the 48 human-in-the-loop experiments conducted with 12 participants using the proposed teleoperator-
aware CBF-based ANMPC framework. In this trial, the human operator steers the Go2 quadrupedal robot from a designated initial position toward target
points, located at the far end of the laboratory, while safely navigating around 10 cylindrical obstacles. The videos are provided in the supplementary file.

solving highly dynamic, interconnected control problems in
real time. For instance, if a human commands a quadruped
to step laterally but its legs are not in a feasible stance,
executing the command without accounting for the robot’s
dynamics could lead to instability or even falling.

Most relevant to our shared autonomy approach are related
methods that combine intent blending with safety guarantees.
[31] introduced a stochastic optimal control framework that
couples a noisily rational Boltzmann model of human behav-
ior [32] with shielding-aware robust planning to ensure safe
and efficient human–robot interaction under uncertainty. This
approach approximates the stochastic optimal control prob-
lem using a scenario-tree-based stochastic model predictive
control (SMPC) formulation. However, this framework and
related methods were primarily developed for autonomous
driving contexts and robotic manipulation, and do not address
the unique challenges of safe legged locomotion, such as
high dimensionality and underactuation. [33] developed an
MPC framework that incorporates human input commands
to control the front legs of a quadruped rescue robot while
autonomously generating back-leg and center of mass (CoM)
motions to ensure static stability. However, this approach
does not consider teleoperator-aware, safety-critical NMPC
for obstacle-avoidance. In addition, [34] proposed a whole-
body shared-control framework with bilateral force feedback
for obstacle avoidance of a wheeled humanoid robot, but this
method does not employ a safety-critical NMPC formulation
that explicitly accounts for human intention.

B. Contributions
The overarching goal of this paper is to develop a

computationally efficient, teleoperator-aware, safety-critical,
and adaptive nonlinear model predictive control (ANMPC)
framework for shared autonomy of quadrupedal robots per-
forming obstacle-avoidance tasks. The main contributions are
as follows.

1. Teleoperator-aware shared autonomy: The framework
employs a fixed arbitration weight between human and robot
actions, but enhances this scheme by explicitly modeling
human inputs with a noisily rational Boltzmann model. Real-
time trajectory planning is then formulated as a CBF-based
NMPC for the human–robot system.

2. Online adaptation: The human value function is pa-
rameterized as a convex function, combining quadratic goal-
reaching terms with logarithmic barrier functions for safety.
The parameters of this value function are adapted in real
time using a projected gradient descent (PGD) law based

on observed joystick commands, enabling the robot to adapt
online while maintaining forward invariance of the safety set.

3. Efficient incorporation of barrier constraints: Since
the inclusion of logarithmic barriers makes prediction of
human actions within the NMPC nontrivial, we introduce
a computationally efficient method that allows human-aware
safety constraints to be incorporated into the NMPC.

4. Hierarchical control architecture: The overall control
architecture is hierarchical. At the high level, the proposed
CBF-based ANMPC generates blended human–robot veloc-
ity references at 10 Hz. At the mid level, a dynamics-aware
NMPC enforces SRB dynamics to track these references at
60 Hz. At the low level, a nonlinear whole-body controller
(WBC) imposes the full-order dynamics via quadratic pro-
gramming to track the mid-level trajectories at 500 Hz.

5. Validation on hardware: The proposed framework is
validated through extensive hardware experiments and user
studies on the Unitree Go2 quadrupedal robot navigating
uncertain environments (see Fig. 1). The results demonstrate
real-time obstacle avoidance, online adaptation of human
intent parameters, and safe teleoperator–robot collaboration.

II. PROBLEM FORMULATION

A. Robotic Agent and Environment
We consider a general class of nonlinear, input-affine,

discrete-time dynamical systems to describe the evolution
of the robotic agent:

Σ:

{
x(t+ 1) = f(x(t), u(t)) = a(x(t)) +B(x(t))u(t)

y(t) = C x(t),
(1)

where x ∈ X ⊂ Rnx and u ∈ U ⊂ Rnu denote the
state vector and control input, respectively, for some positive
integers nx and nu. The discrete time index is given by
t ∈ Z≥0 := {0, 1, · · · }. The nonlinear state transition map
f : X×U → X is input-affine, i.e., f(x, u) = a(x)+B(x)u,
with a(x) ∈ Rnx and B(x) ∈ Rnx×nu . The output y ∈
Rny encodes the robot’s position in the xy-plane and its
orientation (yaw angle), with ny = 3, and is obtained through
the output mapping C ∈ Rny×nx .

We focus on shared autonomy in obstacle-avoidance tasks,
where the control input to the robotic agent is determined
collaboratively by the human and the trajectory planning
algorithm. To capture this interaction, the control input is
modeled as a weighted combination of the human input
uH(t) and the robot input uR(t) (i.e., linear policy blending).
Here, uH(t) corresponds to joystick commands provided
by the human operator, while uR(t) denotes the output of



the proposed human-aware, CBF-based, ANMPC algorithm.
Specifically, the control input in (1) is given by

u(t) = λuR(t) + (1− λ)uH(t), (2)

where λ ∈ [0, 1] is a weighting factor. The two extreme
cases correspond to fully autonomous control when λ = 1,
and fully human control when λ = 0.

Example 1 (Kinematic Model): As an illustrative case,
we consider the kinematic car model:ṗxṗy

α̇

 =

v cos(α)
v sin(α)

ω

 , (3)

where x := col(px, py, α) ∈ R3 denotes the state vector, with
px and py representing the Cartesian coordinates of the robot
in the xy-plane and α the yaw angle. Here, “col” denotes
the column operator. The control input is given by u :=
col(v, ω) ∈ R2, where v and ω denote the linear and angular
velocities, respectively. The continuous-time kinematic car
model in (3) can be discretized using the Euler method and
expressed in the input-affine form of (1).

The target position of the robotic agent is assumed to
be known to both the agent and the human operator, and
is represented by the vector g ∈ R3. This vector encodes
the desired Cartesian coordinates of the target in the xy-
plane together with the desired orientation (yaw angle). Static
obstacles in the xy-plane are represented by their center
points oℓ ∈ R2 for ℓ ∈ O := {1, . . . , nO}, where nO
denotes the total number of obstacles. We further assume
that the positions of the obstacles are known to both the
human operator and the robotic agent.

B. Human Action Model
We aim to design a CBF-based ANMPC algorithm that

predicts the human teleoperator’s actions using a parame-
terized model, while learning and updating the parameters
in real time to ensure effective and safe planning for the
robotic agent in obstacle-rich environments. To this end, we
adopt the noisily rational Boltzmann model, widely used in
cognitive science [32]. In this framework, the human selects
an action uH according to a reward-based decision rule:

P
(
uH | x, θ

)
=

e−β Q(x,uH,θ)∫
e−β Q(x,ũH,θ) dũH

=
e−β Q(x,uH,θ)

Z(x, θ)
, (4)

where Q(x, uH, θ) denotes the human’s state–action value
function (equivalently, the negative reward), parameterized
by a set of unknown and time-varying parameters θ ∈
Rnθ , β > 0 is the rationality coefficient, and Z(x, θ) :=∫
e−β Q(x,ũH,θ) dũH. Under this model, the teleoperator se-

lects actions that are exponentially more likely to yield higher
rewards (i.e., lower values of Q), that is,

uH⋆(x, θ) := argmax
uH

P
(
uH | x, θ

)
= argmin

uH
Q
(
x, uH, θ

)
.

1) Parametrization of the Human’s Value Function:
We assume that the human’s state–action value function is
convex and composed of quadratic terms that minimize the
distance between the robot’s output and the target while
reducing human effort, and logarithmic barrier functions
that penalize collisions with obstacles. More specifically, we

consider the following parameterized human’s value function

Q
(
x, uH, θ

)
:=

∥∥C f(x, uH)− g
∥∥2
M(θ1)

+
∥∥uH

∥∥2
M(θ2)

− θ3

nO∑
ℓ=1

ln

∥∥Cxy f(x, u
H)− oℓ

∥∥2
d2th

, (5)

where C f(x, uH) ∈ R3 denotes the predicted position and
orientation of the robot at the next time step under the human
input, Cxy f(x, u

H) ∈ R2 represents the corresponding
predicted position in the xy-plane (excluding orientation),
and dth is a safety distance threshold. In our formulation, the
parameter vector is decomposed as θ = col(θ1, θ2, θ3), where
θ1 and θ2 are vectors and θ3 is a scalar. For each i ∈ {1, 2},
we define M(θi) := diag(θi) as a diagonal matrix with the
entries of θi on the diagonal. Finally, for any vector z, we
use the notations ∥z∥2M := z⊤Mz and ∥z∥2 := z⊤z.

The parameters must be chosen such that M(θ1) > 0,
M(θ2) > 0, and θ3 > 0. Under these conditions, the first
quadratic term in (5) encourages the robot to approach the
target point, the second term penalizes the magnitude of
the human action, and the final logarithmic term promotes
maintaining a safe distance from obstacles.

2) Parameterized Human Action and Computational
Challenge: From the parameterized and convex Q-function
in (5), the operator’s optimal action must satisfy the sta-
tionarity condition ∇uHQ(x, uH, θ) = 0, which yields the
following algebraic equation:

φ
(
x, uH, θ

)
:= B⊤ C⊤M(θ1)

(
C
(
a+B uH)− g

)
+M(θ2)u

H

− θ3

nO∑
ℓ=1

B⊤ C⊤
xy

(
Cxy

(
a+B uH

)
− oℓ

)
∥Cxy (a+B uH)− oℓ∥2

= 0. (6)

Thus, for each (x, θ), we estimate the operator’s input uH⋆

by solving φ(x, uH, θ) = 0. In doing so, we adopt a
deterministic NMPC formulation rather than a computation-
ally expensive SMPC, ignoring additional uncertainty in the
estimation. Instead, our framework accounts for uncertainty
in the parameters of the Q-function, which are updated
online. Since the algebraic equation (6) is nonlinear in uH,
no closed-form solution generally exists for uH⋆, posing a
major challenge for designing a human-aware, safety-critical
controller. In Section III, we demonstrate how the proposed
ANMPC scheme efficiently overcomes this difficulty.

C. Collision Safety and Problem Statement
We define the safe set as the super-level set of the

Euclidean distance, ensuring a minimum separation between
the agent and all obstacles:

S := {x ∈ X | ∥Cxy x− oℓ∥ ≥ dth, ∀ℓ ∈ O}, (7)

where Cxy x denotes the Cartesian coordinates of the robot
in the xy-plane, as introduced earlier. Ensuring system safety
in the presence of a human in the loop can be formulated
as maintaining the forward invariance of S [21]. However,
designing a safety-critical NMPC law to guarantee this



invariance is challenging because: 1) the parameters of the
human’s value function θ are generally unknown and time-
varying, and 2) the human action must satisfy the algebraic
constraint φ(x, uH, θ) = 0, as given in (6), for which no
closed-form expression of uH is available. To overcome these
challenges, the algorithm proposed in Section III introduces a
computationally efficient ANMPC framework that explicitly
accounts for both sources of uncertainty.

The safe set can equivalently be reformulated as

S := {x ∈ X | h(x) ≥ 0}, (8)

where the continuous function h is defined as

h(x) := col{hℓ(x) | ℓ ∈ O} ∈ RnO , (9)

with individual components given by hℓ(x) := ∥Cxy x −
oℓ∥−dth. Before establishing the proposed human-aware and
safety-critical ANMPC algorithm, we introduce the notion of
discrete-time CBFs for the human–robot system.

Definition 1 (Discrete-Time CBF [35]): The function h
is said to be a CBF for (1) if there exists a class K function
γ, satisfying γ(s) < s for all s > 0, such that

∆h(x(t), u(t)) ≥ −γ (h(x(t))) , ∀x(t) ∈ X , (10)

where ∆h(x(t), u(t)) := h(x(t + 1)) − h(x(t)) :=
h (f(x(t), u(t)))− h(x(t)).

Lemma 1 (CBF Condition [35]): If h is a discrete-time
CBF on X for (1), then any discrete-time control input u(t)
that satisfies (10) renders the set S forward invariant.

Here, we assume that h has relative degree r = 1. Under
this assumption, the CBF condition in (10), together with the
weighted sum of the human and robot actions in (2), can be
expressed as the following inequality constraint

ψ
(
x(t), λ uR(t) + (1− λ)uH(t)

)
≥ 0, (11)

which must hold for all t ∈ Z≥0.
Problem 1 (Problem Statement): We aim to design a

computationally efficient, human-aware, safety-critical, and
adaptive NMPC algorithm that computes the optimal robot
action uR(t) ∈ UR ∈ Rnu to steer the robotic agent from
an initial condition to the target point g, while (i) predicting
the human action through the algebraic constraint (6), (ii)
ensuring the forward invariance of the safety set S, and (iii)
learning in real time the unknown parameters θ of the human
state-action value function.

III. HUMAN-AWARE, SAFETY-CRITICAL ANMPC
This section presents the high-level human-aware, safety-

critical ANMPC algorithm, which leverages CBFs for real-
time trajectory planning of quadrupedal robots in obstacle-
rich environments, as in Problem 1. Let θ̂(t) ∈ Rnθ denote
the estimate of the unknown, time-varying parameters θ(t).
The proposed ANMPC algorithm consists of two loops. At
each time step t, the inner loop is formulated as a human-
aware, CBF-based NMPC that optimizes the robot’s action
subject to the current parameter estimate θ̂(t). The outer loop
serves as the learning layer, updating the parameter estimate
for the next time step using a PGD method.

A. Inner Loop: CBF-based NMPC
Within the inner loop, our goal is to design a computation-

ally efficient CBF-based NMPC algorithm that incorporates
human actions via the algebraic condition (6), given the
parameter estimate θ̂(t) at time t. As noted earlier, no
general closed-form solution exists for the optimal human
action uH⋆(x, θ). While one could attempt to approximate
these actions numerically—for example, by gridding the
state and parameter spaces and applying machine learning
techniques—substituting such approximations into the col-
laborative dynamics

x(t+ 1) = f
(
x(t), λ, uR(t) + (1− λ), uH⋆(x, θ̂(t))

)
, (12)

would introduce additional nonlinearities, thereby increasing
the complexity of the NMPC formulation.

As an alternative, we adopt a computationally efficient
strategy by incorporating the state equation (1), subject to
the condition (2), together with the algebraic constraint (6).
In this formulation, the decision variables of the CBF-based
NMPC problem consist of the predicted trajectories of the
states, the robot control inputs, and the human inputs over
the horizon, denoted by x(·), uR(·), and uH(·), respectively.
This formulation allows the NMPC to solve for the human
action implicitly by enforcing the algebraic condition (6) as
an equality constraint. Importantly, the output of the NMPC
algorithm is the first robot action, while the human action
trajectory is discarded—used only to ensure satisfaction of
the algebraic constraint and to support parameter estimation.
More specifically, we propose the following CBF-based
NMPC, given the parameter estimate θ̂(t) at time t:

min
(x(·),uR(·),uH(·),δ(·))

LR
terminal(xt+N |t) +

N−1∑
k=0

LR
stage(xt+k|t, u

R
t+k|t)

+

N−1∑
k=0

LH
stage(u

H
t+k|t) +

N−1∑
k=0

w δ2t+k|t

s.t. xt+k+1|t = f(xt+k|t, λ u
R
t+k|t + (1− λ)uH

t+k|t)

φ(xt+k|t, u
H
t+k|t, θ̂(t)) = 0 (Human Action)

ψ(xt+k|t, λ u
R
t+k|t + (1− λ)uH

t+k|t) ≥ δt+k|t 1 (CBF)

uR
t+k|t ∈ UR (Feasibility)

k = 0, 1, · · · , N − 1, (13)

where N is the prediction horizon, and xt+k|t, uR
t+k|t, u

H
t+k|t,

δt+k|t denote the predicted states, robot inputs, human inputs,
and CBF slack variables at time t + k, computed at time
t using the prediction model and the algebraic constraint,
with xt|t = x(t). The cost function consists of the terminal
and stage costs, defined as LR

terminal(xt+N |t) := ∥xt+N |t −
xref
t+N |t∥

2
P R , LR

stage(xt+k|t, u
R
t+k|t) := ∥xt+k|t − xref

t+k|t∥
2
QR +

∥uR
t+k|t∥

2
RR , LH

stage(u
H
t+k|t) := ∥uH

t+k|t∥
2
RH , where xref(·)

denotes the reference state trajectory for steering the robot to
the goal, and PR, QR, RR, and RH are symmetric positive-
definite matrices. The weighting factor w > 0 penalizes
slack variables, and 1 := col(1, · · · , 1) is an all-ones vector.
The equality constraints of the NMPC originate from the
collaborative system dynamics (1) and the gradient-based



law for the human action in (6). The inequality constraints
stem from the CBF condition (10) for obstacle avoidance,
augmented with a slack variable to ensure feasibility of the
NMPC, as well as from the input admissibility condition.

The CBF-based NMPC is solved in a receding-horizon
fashion at 10 Hz for a given θ̂(t). The first optimal robot
action, defined as πR(x, θ̂(t)) := uR

t|t, is applied to the
robotic system, while the estimated human action uH

t|t is
passed to the adaptive law in Section III-B to update the
parameter estimate θ̂ for the next time step.

B. Outer Loop: PGD-based Adaptive Law
Within the outer loop, we aim to design a PGD-based

adaptive law that updates the estimated parameters of the
human’s value function using the observed human action.
Let uH(t) denote the actual human action executed by
the operator, which can be measured from the joystick.
The estimation is updated at each time step based on the
most recent human measurement and its deviation from the
estimated human action uH

t|t. More specifically, we consider
the following cost function:

J(θ̂) := 1
2

(
uH
t|t − uH(t)

)⊤
Γ
(
uH
t|t − uH(t)

)
, (14)

where uH
t|t − uH(t) represents the deviation between the

estimated and observed human actions, and Γ = Γ⊤ ≻ 0
is a positive definite weighting matrix. Importantly, the cost
function J(·) depends on the current estimate θ̂(t) in a
nonlinear manner, since uH

t|t is implicitly determined by θ̂(t)
through the parameterized constraint φ(·, ·, θ̂(t)) = 0 in the
NMPC formulation (13).

To establish the PGD algorithm, we differentiate the cost
function with respect to θ̂, yielding

∂J

∂θ̂
(θ̂) =

(
uH
t|t − uH(t)

)⊤
Γ
∂uH

t|t

∂θ̂
, (15)

since uH(t) does not depend on the estimated parameters.

Next, we evaluate
∂uH

t|t

∂θ̂
. As the NMPC enforces the algebraic

constraint over the prediction horizon, and in particular at
time t, we have

φ(x(t), uH
t|t, θ̂(t)) = 0, ∀θ̂(t) ∈ Θ, (16)

where Θ ⊂ Rnθ denotes the set of feasible parameters
(e.g., nonnegative values). Differentiating both sides of this
algebraic constraint with respect to θ̂ gives

∂φ

∂uH

∂uH
t|t

∂θ̂
+
∂φ

∂θ̂
= 0. (17)

Assuming that ∂φ
∂uH ∈ Rnu×nu is invertible, one can ex-

plicitly solve for
∂uH

t|t

∂θ̂
from (17) and substitute it into (15),

yielding

∂J

∂θ̂
(θ̂) = −

(
uH
t|t − uH(t)

)⊤
Γ

(
∂φ

∂uH

)−1
∂φ

∂θ̂
. (18)

Our numerical and experimental results in Section V indicate
that this assumption is not restrictive; indeed, the square
matrix ∂φ

∂uH is consistently invertible in practice.
The PGD-based update law is formulated in two steps:

η(t+ 1) = θ̂(t)− µ(t)∇θ̂J(θ̂(t))

= θ̂(t) + µ(t)
∂φ

∂θ̂

⊤ (
∂φ

∂uH

)−⊤

Γ
(
uH
t|t − uH(t)

)
θ̂(t+ 1) = ΠΘ(η(t+ 1)) = argmin

z∈Θ
∥z − η(t+ 1)∥2, (19)

where µ(t) is the step size, and ΠΘ(·) denotes the projection
operator onto Θ, defined as the closest point in Θ to η(t+1)
under the Euclidean norm. The updated parameter θ̂(t + 1)
is then used in the CBF-based NMPC executed at time t+1.
IV. MIDDLE AND LOWER LAYERS OF THE ALGORITHM

This section provides a concise overview of the mid- and
low-level layers of the layered control scheme, adapted from
[13], [14] with modifications.

Mid-Level NMPC: The control framework employs the
proposed human-aware, CBF-based ANMPC algorithm, sub-
ject to the kinematic model of the quadrupedal robot pro-
vided in Example 1, at the high level of the control hierarchy
and running at 10 Hz. This layer generates the reference
linear and angular velocities of the robot collaboratively from
the actual human action and the ANMPC output, namely,

u(t) = λπR(x(t), θ̂(t)) + (1− λ)uH(t), (20)

where, as discussed earlier, πR(x(t), θ̂(t)) and uH(t) denote
the first optimal action computed by the CBF-based ANMPC
and the human action, respectively.

At the mid level of the control scheme, we employ an alter-
native, dynamics-aware NMPC algorithm running at 60 Hz,
which enforces the reduced-order single rigid body (SRB)
dynamics of the quadrupedal robot to track the reference
trajectories prescribed by the high-level CBF-based ANMPC.
More specifically, the mid-level NMPC incorporates the 6-
DoF SRB dynamics of the robot, consisting of the transla-
tional and rotational motion of the torso subject to ground
reaction forces (GRFs) [14]. This layer optimally computes
the GRFs to ensure dynamic stability, satisfy friction cone
constraints, and track the reference velocity trajectories.

Low-Level Whole-Body Controller: At the low level, we
employ a nonlinear WBC that enforces the full-order dy-
namics of the quadrupedal robot to track the prescribed SRB
states and GRFs. The WBC is adopted from [11], [36] and
is implemented as a real-time QP running at 500 Hz.

V. EXPERIMENTS
A. Setup and Controller Synthesis

In this paper, we employ the Unitree Go2 quadrupedal
robot as the hardware platform for both numerical and
experimental validation of the proposed teleoperator-aware
CBF-based ANMPC framework. The Go2 is a lightweight,
15.0 kg quadruped with a standing height of 0.28 m and 18
DoFs, including 12 actuated joints—three per leg (hip pitch,
hip roll, and knee pitch). For perception, it is equipped with
a Unitree L1 4D LiDAR offering 360°×90° hemispherical
coverage, from which a deskewed point cloud is used for
obstacle detection. Human teleoperation commands are pro-
vided via a Sony DualShock 4 controller, which specifies
linear and angular velocities of the robot’s torso. The pro-
posed CBF-based ANMPC algorithm is executed offboard



in a multithreaded configuration on a desktop workstation
with a 12th Gen Intel® Core™ i9-12900F CPU and 64 GB
of RAM, with communication handled over a LAN. For
numerical simulations, the RaiSim physics engine [37] is
used to evaluate the performance of the control framework.

CBF-based ANMPC Hyperparameters: We set the sam-
pling time to Ts = 0.1 s for discretizing the kinematic model
in (3), the prediction horizon to N = 100, and the teleoper-
ation blend factor to λ = 0.35 in (2). The gain matrices of
the CBF-based NMPC for the kinematic model in Example 1
are specified as QR = diag{4, 4, 4}, PR = diag{40, 40, 40},
RR = diag{0.4, 0.2}, QH = diag{0.02, 0.02}, and w = 103.
The safety parameters, including the CBF gain γ and the
keep-out radius dth in (7) and (10), are set to γ = 0.1 and
dth = 0.5 m, respectively. For the experimental validation,
we parameterize the Q-function in (5) using four parameters.
The first quadratic term employs θ1 := col(θx1 , θ

y
1 , θ

α
1 ),

where θx1 = θy1 correspond to approaching the target in the
xy-directions, and θα1 corresponds to tracking the target in
the yaw direction. A scalar parameter θ2 captures the human
effort cost in both linear and angular velocity commands,
while θ3 parameterizes the logarithmic barrier function for
obstacle avoidance. The initial estimates of the human pa-
rameters in the PGD-based adaptation law (19) are chosen as
θ̂1(0) = col(θ̂x1 (0), θ̂

y
1(0), θ̂

α
1 (0)) = col(0.4, 0.4, 5), θ̂2(0) =

2, and θ̂3(0) = 2. The adaptation parameters are set to
Γ = diag{0.01, 0.01, 0.01, 0.01, 0.01} and µ = 1. The linear
policy blending in (20) is saturated to linear velocities within
[−0.4, 0.4] m/s and angular velocities within [−0.8, 0.8]
rad/s. The hyperparameters of the mid-level NMPC and the
low-level nonlinear WBC are selected based on [14].

Real-Time Computation: The nonlinear program (NLP)
in (13) involves 803 decision variables, namely x(·), uR(·),
uH(·), and δ(·), together with the initial state of the model,
which is constrained to match the measured state feedback at
time t. The NLP is implemented in the CasADi framework
[38] and solved using the IPOPT solver [39]. Each NMPC
iteration is restricted to 10 solver iterations, with the previous
solution used as a warm-start initial guess. Importantly, the
NLP is solved online without approximations to the nonlinear
dynamics, the algebraic constraints induced by the human
action, or the CBF constraints. The average solve time of
the NLP is 27 ms, and no infeasibility was encountered
during the experiments. The mid-level NMPC is likewise
implemented in CasADi and solved at 60 Hz, following [14].

B. Human-in-the-Loop Hardware Experiments
Experimental Setup: Human-in-the-loop experiments were

conducted in an 8.1 × 5.4 m2 laboratory space with 10
cylindrical obstacles (radius 0.125 m) and two target goals,
denoted gA and gB (see Fig. 1). Each target specified the
desired xy coordinates and yaw angle of the robot and was
marked on the floor with an arrow to guide participants.
Twelve subjects each completed four trials. In these trials,
participants were tasked with steering the robot from a desig-
nated initial condition to the target while avoiding obstacles.
Specifically, two trials involved fully human (i.e., baseline)

TABLE I
THE QUESTIONS ASKED IN OUR DEMO SURVEY.

Question
Q1: I could command the robot to do what I intended with ease.
Q2: I could feel the assistive movements from the robot.
Q3: Autonomy assisted me in completing the task.

Fig. 2. Results of the post-demo survey with questions in Table I comparing
the proposed shared control with the baseline control for the target gA.

control toward gA and gB (i.e., λ = 0), while the remaining
two trials employed shared autonomy, in which the proposed
high-level CBF-based ANMPC assisted navigation toward
gA and gB (i.e., λ = 0.35). During all trials, the operator
stood at the side of the lab with an unobstructed view
of the space. To mitigate ordering effects, trial sequences
were randomized uniformly. In total, 48 experiments were
conducted: 24 under baseline control and 24 under shared
autonomy. Participants were not informed which control
mode was active in each trial, ensuring unbiased interaction.

Quantitative Analysis: Across all 48 trials, the human
subjects successfully and safely navigated the quadrupedal
robot toward both designated goals. After completing each
pair of experiments for a given target—one under fully
human control and the other under shared autonomy—the
participants completed a survey questionnaire to evaluate the
performance of each control method, as shown in Table I.
Responses were recorded on a 7-point Likert scale, where
subjects indicated their level of agreement: Strongly Disagree
(1), Disagree (2), Slightly Disagree (3), Neutral (4), Slightly
Agree (5), Agree (6), or Strongly Agree (7). Figure 2 illus-
trates the results of the post-demo survey. The plot indicates
that users generally reported feeling more comfortable and
at ease when using the baseline controller compared to the
shared autonomy mode. This outcome is largely attributed
to the fact that participants were not informed about which
controller was active during each trial; as a result, in some
cases, their actions conflicted with the assistance provided
by the shared autonomy algorithm, as they attempted to
override or correct it to follow their intended commands.
Nevertheless, participants reported that the assistive behav-
iors introduced by shared autonomy were perceptible during
the task (paired t-test, p < 0.001). They also found shared
autonomy beneficial, helping them complete the task.

To quantitatively compare system responses under the
proposed shared autonomy and baseline control, Fig. 3 shows
the human-commanded velocity inputs uH = col(vH, ωH)
recorded from a representative subject while steering the
robot toward target gA. In the shared autonomy case, the
figure also overlays the predicted human inputs generated



Fig. 3. Plot of the measured human-commanded velocity inputs under
the proposed shared autonomy framework and the baseline control method,
recorded from a representative subject while steering the robot toward target
gA. The figure also illustrates the predicted human inputs generated by the
Boltzmann model in the CBF-based ANMPC algorithm.

Fig. 4. Plot of the minimum distance between the robot and the nearest
obstacle under the proposed teleoperator-aware CBF-based ANMPC (shared
autonomy) and the baseline controller (fully human control).

by the ANMPC framework using the Boltzmann model,
demonstrating the framework’s ability to approximate and
adapt to operator behavior in real time—most notably in the
linear velocity command. The results further highlight that,
with the CBF-based ANMPC, the robot initiates navigation
with a trotting gait and requires minimal human intervention
until approximately t = 30 s. In contrast, under the baseline
controller, the human operator must provide continuous input
to prevent the robot from trotting in place.

To evaluate safety performance, Fig. 4 plots the minimum
distance between the robot and the obstacles. As shown,
the proposed CBF-based ANMPC maintains larger safety
margins than the baseline controller, thereby enabling more
reliable obstacle avoidance. It is worth noting, however, that
because slack variables are introduced to relax the CBF con-
straints and ensure feasibility of the ANMPC optimization,
the guaranteed safe distance of dth = 0.5 m is slightly com-
promised, as reflected in Fig. 4. Finally, the time evolution of
the estimated parameters θ̂, updated via the proposed PGD-
based adaptation law, is shown in Fig. 5. Parameter updates
occur only when the human provides joystick inputs, and
the process pauses whenever no command is issued, with λ
set to 1. For instance, as observed in Fig. 5, no updates are
applied for t < 30 s since the human does not issue any
significant control commands during that interval.

C. Ablation Study, Discussion, and Future Work
We conducted extensive simulations and human-in-the-

loop experiments to analyze the effect of controller hyper-
parameters. The arbitration weight λ played a critical role
in balancing human influence with autonomy. At λ = 0.5,
human and ANMPC actions often canceled out, reducing
operator control, while λ = 0.1 gave the human excessive
authority at the cost of reliable obstacle avoidance. A com-

Fig. 5. Time evolution of the estimated parameters θ̂ under the shared
autonomy setting, updated online via the PGD-based adaptation law.

promise value of λ = 0.35 provided an effective balance and
was used for all user studies. Similarly, CBF slack variables
were essential for feasibility when λ < 0.5. The slack
penalty w determined how much violation was tolerated:
high values (104) ensured strong safety but resisted the
operator, while low values (10) allowed unsafe behavior. We
found w = 103 offered a good balance. The CBF threshold
dth = 0.5 m was selected to minimize human opposition
in narrow passages, though IMU drift occasionally caused
minor collisions when the robot traveled farther than 6 m.
The PGD-based update law was tuned via simulation. We
chose the above-mentioned Γ matrix to achieve stable con-
vergence for typical users, and initialized θ with steady-state
values observed in extended trials. As a result, in human-
subject experiments, the estimated parameters changed little,
reflecting a near-optimal initialization. These design choices
allowed the shared autonomy controller to achieve a 100%
success rate in reaching goals across all trials.

Beyond numerical performance, user studies revealed in-
sights into human-robot interaction. Some participants—
particularly novices—treated the task like car driving, fa-
voring straight paths and avoiding in-place yaw rotations,
which led to suboptimal trajectories that conflicted with the
ANMPC predictions. In several cases, users attempted to
override the autonomy rather than let it assist, revealing a
mismatch between user intuition and the shared autonomy
framework. These findings highlight the importance of user
training and improved transparency of the autonomy. Overall,
the results demonstrate that the proposed controller provides
robust safety guarantees and effective shared autonomy, with
future work aimed at reducing drift through better state
estimation and enhancing user collaboration through training.

VI. CONCLUSIONS

This paper introduced a teleoperator-aware, CBF-based
ANMPC framework for shared autonomy of quadrupedal
robots performing obstacle-avoidance tasks. The framework
employs a fixed arbitration weight to blend human and robot
actions, but enhances this strategy by explicitly modeling
human inputs with a noisily rational Boltzmann model.
The parameters of this model are adapted online using a
PGD law informed by observed joystick commands. Safety
is guaranteed by embedding CBF constraints into a com-
putationally efficient NMPC despite uncertainty in human
behavior. The control architecture is hierarchical: a high-
level CBF-based ANMPC (10 Hz) generates blended hu-



man–robot velocity references; a mid-level dynamics-aware
NMPC (60 Hz) enforces reduced-order SRB dynamics; and
a low-level nonlinear WBC (500 Hz) applies QP to track
the mid-level trajectories under full-order dynamics. The
proposed framework was validated through extensive hard-
ware experiments, and a user study on the Go2 quadrupedal
robot, demonstrating real-time obstacle avoidance, online
adaptation of human intent parameters, and safe human-robot
collaboration. An ablation study further analyzed the effect
of controller hyperparameters on feasibility and success rate.
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