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Abstract—In shared control and shared autonomy systems,
humans collaborate with robot agents to achieve common goals.
Research in this area dates back over 40 years, with numerous
applications, such as in manufacturing, robot surgery, and
assistive technologies. Shared control approaches have even seen
some commercialization efforts in areas like semi-autonomous
driving and automotive assembly. Recently, shared control and
shared autonomy approaches have gained significant traction,
with hundreds of new methods published in scientific papers
each year. In this paper, we examine recent approaches and
trends in these methods, investigating several crucial aspects
that are underexplored in previous surveys. First, we provide
descriptive statistics and trends related to human input methods,
technical approaches, and applications. Second, we examine the
growing role of generative artificial intelligence approaches in
shared control and autonomy. Based on these insights, we offer
updated recommendations for future approaches.

Index Terms—Shared control, shared autonomy, generative
artificial intelligence

I. INTRODUCTION

OBOTS offer the potential to support humans across a

wide range of domains, from factories to homes. While
fully autonomous robots offer the allure of completing tasks
independently, many scenarios benefit from human-in-the-loop
systems, where skilled humans and robots team together to
leverage their respective strengths. This setup is particularly
desirable in tasks that are under-defined, safety critical, or
require human judgment. Human involvement in such systems
can vary dramatically, but one popular class of approaches are
shared control or shared autonomy (SC/SA) methods, where a
human provides input to an intelligent robot, and the actions
of both agents are combined together to achieve shared goals.
In this survey, we examine the growing literature of shared
control/autonomy systems to provide a broad look at the most
recent trends and opportunities in the field.
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Fig. 1. Overview of the key elements of shared control and autonomy
investigated in this survey. Our main review includes a historical perspective
on the terminology and origins of shared control/autonomy, a review of recent

trends in the past five years, discussion of shared control/autonomy with
generative Al, and recommendations for future research.

Shared control and autonomy systems provide an interme-
diate between manual robot teleoperation and full autonomy,
in terms of the robot’s level of autonomy. A successful
implementation often requires a number of critical design
decisions related to the human interface and the robot system.
A typical taxonomy requires specifying the form of user
input, specification of robot autonomy (e.g., control laws,
an autonomous policy), and an arbitration law that dictates
how the input from the human and the autonomous agent
can be combined. Introduced initially for domains where
human access was impractical and robust robot autonomy was
impossible (e.g., space robotics), shared control/autonomy has
seen success in many areas, including assistive robots, surgical
applications, and general robotic manipulation tasks.

Given the growing popularity of shared control/autonomy
approaches, previous surveys have developed taxonomies and
provided some analysis of past literature, but have not pro-
vided a structured review of the literature, including both
a quantitative analysis of current trends and an overview
of modern aspects, such as the role of generative artificial



intelligence approaches. Abbink et al. [1] provide design
and evaluation guidelines for shared control systems and a
review of techniques in common domains, such as automotive,
surgery, and brain-machine interfaces. Losey et al. [2] provide
a review of three key elements of shared control systems:
intent estimation, arbitration, and communication mechanisms.
Selvaggio et al. [3] provide a categorization of different shared
control/autonomy arbitration approaches and discuss the role
of haptics, human models, and environment information in
their implementations. Li et al. [4] propose an alternative tax-
onomy for telerobotic shared control approaches and a review
of learning-approaches and adaptive-autonomy approaches.
Other surveys focus on specific application domains, such as
semi-autonomous driving [5], [6], [7].

Despite these prior surveys, key questions remain: What
approaches are most common in modeling how humans and
robots contribute in shared control systems? What are the most
popular applications of the technology? What is the impact
of new generative Al approaches on shared control/autonomy
systems? Our survey addresses these gaps through two primary
contributions. First, we provide a broader and structured
review of recent literature that allows us to quantify recent
trends. We survey the most recent five years in several general
robotics publication venues to provide descriptive statistics
related to key design and evaluation choices for SC/SA ap-
proaches, including human input, modeling, applications/tasks,
and evaluation criteria. We further use the same broad review
to identify recent trends. Second, we analyze the role of
emergent generative Al techniques (e.g., language models,
diffusion, vision-language-action models), which have been
transformational in robot learning, in accelerating the capa-
bilities of SC/SA approaches and systems. Through these
two key contributions, we are able to provide an updated
discussion and recommendations. For researchers developing
new shared control/autonomy approaches, we hope that our
structured review and analysis of shared control/autonomy
techniques will identify recent progress in the area and aid in
design choices, such as inputs, modeling approaches, choice
of application, implementation, and study design.

In the remaining sections of this survey, we provide a brief
historical perspective on the definitions and use of shared
control and shared autonomy (Section II), we describe our
literature review process and paper selection criteria (Sec-
tion III), we discuss the main results and trends (Section IV),
we highlight recent work incorporating generative artificial
intelligence in shared control and autonomy systems (Sec-
tion V), and we conclude with a general discussion and
recommendations for future work (Section VI).

II. A HISTORICAL PERSPECTIVE ON SHARED CONTROL
AND SHARED AUTONOMY

This section provides a brief historical review of early
shared control and shared autonomy systems, drawing particu-
lar attention to the origin of the two terms and the automation
landscape at the time of their introduction. We also aim to shed
light on the initial motivations for shared control and shared
autonomy systems, and to highlight the interchangeable use
of the terms in early approaches.

Both shared control and shared autonomy emerged to
describe robot control schemes that lie between manual teleop-
eration and full autonomy. Prior to their introduction, Ferrell
and Sheridan proposed supervisory control [8] as a human-
autonomy teaming paradigm for settings where direct control
was infeasible, such as for assistive applications or scenarios
with large time delays. While the initial intent of supervisory
control was for the operator to issue high-level commands
(e.g., goals) to a lower-level autonomous routine, in practice
less strict definitions of supervisory control served as an
umbrella for many teleoperation systems, including those with
some aspects of autonomy [9].

New terminology emerged to offer more precise distinc-
tions across the expanding range of human-in-the-loop control
strategies. Shared control appeared first in the early 1970s
during the development of the autonomous control subsystem
at NASA Jet Propulsion Laboratory. Differentiated from super-
visory control, the first shared control systems were designed
for lower-level human-computer interactions in space station
operations and involved observing user inputs, inferring the
desired tasks, and taking appropriate control actions [10], [11].
These systems, which augmented human input to conform to
a desired task plan, were categorized as subsets of supervisory
control (alongside traded control where the human and ma-
chine alternate periods of control) [9], [12]. Notably, many of
the methods studied at the time were applied to remote robot
space operations, where reliable autonomy was not possible
and latency and a lack of proper perception precluded more
direct control approaches. Beyond space applications, other
early approaches included Nagata et al.’s conversational itera-
tive method where a robot learns and executes commands from
a human teacher and Madni et al.’s underwater manipulation
interface that allocated subtasks between the operator and
robot manipulator [13], [14]. While neither method was origi-
nally introduced as shared control, Khatib’s Artificial Potential
Fields [15] and Rosenberg’s Virtual Fixtures [16] both became
popular formalisms used in shared control systems [17]. Such
approaches often define shared control objectives based on
desiderata in the robot’s configuration space (e.g., collision
avoidance) or task space (e.g., goals or constraints).

Shared autonomy did not emerge in the robotics literature
until nearly twenty years later. The earliest examples include
the development of the DLR Robot Technology Experiment
(ROTEX, shown in Figure 2) in the early 1990s, where the
role of shared autonomy was to create local sensory feedback
control, such as for shaft-turning tasks [18]. Michelman et al.
developed another early approach where primitive autonomous
actions controlled the fingers of a robot hand that were
commanded by simplified human input [20]. Notably, early
approaches were also described as TeleSensor Programming
(TSP), and used the terms shared control and shared autonomy
interchangeably [21]. While the majority of work from this
time focused on space robotics technology, Taylor et al. dis-
cussed opportunities for shared autonomy for computer-aided
robot surgery, where partial autonomy would aid in functions
such as instrument positioning and readjustments for patient
positioning [22]. Around the same time, Hirai provided an
early framework for shared autonomy systems by comparing



Fig. 2. Robot Technology Experiment (ROTEX) was an early shared auton-
omy approach, where the robot operated with partial autonomy to complete
low-level sensor-based feedback control tasks [18]. Reprinted from [19], with
permission from Springer Nature. © Springer Nature 2003.

previous approaches [23]. In an early survey on distributed
autonomous robotic systems, Asama defined shared autonomy
as a cooperative system between machines and humans and
draws attention to design of the human interface, telepresence,
and virtual reality technologies [24].

As shared human-robot systems have matured and further
diversified, researchers have increasingly revisited distinctions
between the two terms. Shared control has been the preva-
lent terminology used to describe human-robot systems with
low-level interaction or intervention from the human, likely
due to its earlier introduction in the literature. However,
shared autonomy has seen increasing use in recent years.
Previous surveys, methods, and taxonomies have attempted
to establish clearer definitions within the broader automation
landscape. Levels of automation curves, such as in Endlsey
and Kaber, place shared control as an intermediate between
manual control and supervisory control [25]. Selvaggio et
al. differentiate shared control as where the human manually
tunes the level of autonomy and shared autonomy as where
the system automatically adjusts the level of autonomy based
on sensing, inference, and modeling [3]. Li et al. adopt a new
set of terminology: semi-autonomous control, state-guidance
shared control, and state-fusion shared control to re-categorize
recent control-sharing approaches [4]. However, given similar
conceptual foundations and practical overlap in the literature,
we argue both shared control and shared autonomy will likely
remain popular, and thus use the terms interchangeably in
conducting our survey of recent trends.

III. LITERATURE REVIEW APPROACH

Our review required two main efforts. First, we conducted
a structured literature review of shared control/autonomy
papers from the last five years in general robotics venues.

We then separately conducted a review of emergent methods
that leverage generative artificial intelligence techniques (e.g.,
transformers, diffusion policies) as part of shared autonomy
systems to aid our discussion around future SC/SA systems.

For the structured review, our goal was to provide a
clear and tractable snapshot of recent trends in the shared
control/autonomy literature. We chose to focus on the three
general robotics venues with highest h5-index and to target
the last five full years of published papers (between 2020
and 2024). We conducted our search on March 18, 2025. At
this time, the three venues with the highest h5-index were
the IEEE Robotics and Automation Letters (RA-L), the IEEE
International Conference on Robotics and Automation (ICRA),
and Science Robotics. We cut off our selected venues and
inclusion years to yield a quantity of papers that could be
discussed and categorized within a single survey. With the
given venues and years, our initial search yielded 405 papers.
We acknowledge that there are other general robotics venues
where shared control and shared autonomy are regularly
published—such as the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), the ACM/IEEE
International Conference on Human-Robot Interaction (HRI),
and IEEE Transactions on Robotics (T-RO) (in addition to
specialized domain-specific venues). While we were unable
to exhaustively survey publication venues in our review, we
believe the high-level trends provide useful data to researchers
trying to understanding shared control/autonomy research.

Each paper from our search was subsequently screened
for exclusion. Exclusion criteria included workshop papers,
surveys, and papers where shared control/autonomy were only
mentioned in related or future work. In total, 210 papers were
excluded, leading to a final list of 195 papers for our review.
We were encouraged that 21 of the excluded papers cited
shared control/autonomy implementations as future work. The
final list included 101 papers from RA-L, 92 papers from
ICRA, and two papers from Science Robotics. For each
paper, we categorized key components of the shared con-
trol/autonomy approach, including the input method, modeling
approach, and application area. Additional details regarding
our search criteria and categorization methodology can be
found in Appendix A.

Given the fast rate of change in shared autonomy approaches
using generative artificial intelligence methods, instead of a
structured review, we more broadly searched for and identified
papers representing different key technologies and applications
in shared control/autonomy. In total, we surveyed 34 papers.
These papers include both shared autonomy methods and
generative Al background that contextualizes shared autonomy
research directions. The work is split across Sections V and VI
(as part of the recommendations). We hope that as shared
control/autonomy with generative models matures, we will see
future structured reviews of this literature.

IV. TRENDS IN SHARED CONTROL AND
SHARED AUTONOMY

From our structured review, we conducted two primary
analyzes that are detailed below. The first analysis computed



TABLE I
DECOMPOSITION OF SA/SC APPROACHES BY INPUT METHOD, MODELING
APPROACH, AND APPLICATION DOMAIN.

Input Method Paper Count

Direct Control Interfaces 54
Haptic 44
Kinesthetic Control 30
Physiological Signal 23
Gesture/Hand Tracking 18
GUI 14
VR/AR 9
Simulation/Dataset 4
Language Controller 4
No Actual Interaction 2
Implicit Cues 2

Modeling Approach

Optimization 41
Input Blending 32
Compliance Control 24
Intent / Goal Inference 22
Reinforcement Learning 20
Filtering 18
Input Mapping 16
Planning 14
Supervisory Control 14
Templates 14
Virtual Fixtures 14
Classical ML 13
Traded Control 12
Prob. Graphical Model 12
Imitation Learning 11
Generative Modeling 10
Divisible Control 10
Prob. Modeling 10
Multi-Robot Control 10
Deep Learning Models 5
LLM-based Approaches 3

Application Domain

Assistive Robotics 49
General Manipulation 46
Medical Robotics 35
Navigation Robotics 20
UAV 11
HRC 10
Industrial Robotics 9
Space Robotics 8
Multi-Robot Systems 7
Emergency Response Robotics 3

descriptive statistics about the prevalence of different key
design decisions for shared autonomy systems. The second
analysis identified key trends and used these trends to organize
a discussion of the survey literature.

A. Descriptive Statistics

To better understand the landscape of shared autonomy re-
search, we characterize the distribution of key design decisions
and application domains in recent methods. Specifically, we
assessed shared autonomy work based on the method of human
input, the underlying modeling approach, and the application
where the resulting system was applied. We also analyzed
evaluation details, such as user study population and metrics.

We provide a broad overview of our descriptive statistics in
Table I, including the categories identified for the key shared
autonomy design decisions. For input method (Table Ila),

modeling approach (Table III), and application (Table IIb),
we report both total counts to show prevalence as well as five-
year trends to highlight areas of potential growth or decline.
The trend directions are determined using linear regression,
where the sign and magnitude of the fitted regression line’s
slope indicate whether a category is increasing (slope > +0.5),
stable (—0.5 < slope < 40.5), or decreasing (slope < —0.5).
Given that these trends are estimated from five annual data
points (2020-2024), they should be interpreted as descriptive
rather than strongly inferential. For input methods, we note a
few high-level trends. Overall, we see a general increase of
all input types across the five-year period, with direct con-
trol devices (e.g., joysticks, joypads, keyboard, teleoperation
interfaces) remaining prevalent. Language-driven interfaces
have emerged in the past few years, fueled by advances in
language models. Though not shown in the table, we also
see increases in multi-modal inputs (e.g., combining manual
and physiological inputs) to capture more rich measures of
user intention. For modeling approaches, we see the largest
diversity across categories. Optimization continues to dom-
inate, likely due to its flexibility in modeling desired shared
control objectives (e.g., task performance, safety, and comfort).
In the last year, reinforcement learning has also seen sharp
growth, perhaps due to the flexibility afforded by the reward
function and the success of human-in-the-loop reinforcement
learning methods [26], [27]. With advances in large language
models, LLM-based approaches began to appear in shared
autonomy in 2024, most commonly for specifying high-level
tasks or inferring user intent from language. Applications
are dominated by assistive robotics, which tend to have an
emphasis on human-robot interaction and thus relevance for
shared control. The second most popular area is general
manipulation (e.g., pick and place) which is often used to study
foundational questions in shared autonomy. Across categories,
we did not see many areas of decline. We hypothesize a few
possible reasons. First, we are still seeing large general growth
in shared autonomy which may mask declines through the
volume effects. Second, many of the specific categories are
complementary, serving different problem settings and thus
may continue to experience growth in the long term.

In addition to input, modeling, and application, a critical
piece of shared autonomy is evaluation. We analyzed the size
of user evaluations and common evaluation metrics in our
surveyed papers. First, we looked at number of participants
(shown in Figure 3). Out of 195 papers, we found that 41
papers had fewer than two participants, typically meaning they
did not run a user evaluation or had an informal user evaluation
(e.g., system demonstrations by the authors). Of the studies
with more than two participants, the median value was 10.
Often, studies with small number of participants leveraged
expert populations (e.g., surgeons). Regarding metrics, the
most common evaluative tool was the NASA task load index
(TLX) [28]. Other common metrics (as relevant) included
tracking error, effort, success rate, and task completion time.
Many papers also introduced non-standardized, task-specific,
highlighting both the diversity of shared autonomy scenarios
and the lack of current unified evaluation benchmarks.



TABLE II
YEARLY EVOLUTION OF (LEFT) INPUT METHODS AND (RIGHT) APPLICATION DOMAINS IN SHARED AUTONOMY AND SHARED CONTROL RESEARCH
(2020-2024). ARROWS INDICATE TREND DIRECTION: 1 INCREASING, > STABLE, | DECREASING.

(a) Input Method

(b) Application Domain

Input Method 2020 2021 2022 2023 2024 Total Slope Trend Application Domain 2020 2021 2022 2023 2024 Total Slope Trend
Direct Control 7 12 12 8 15 54 1.2 1T Assistive Robotics 5 11 12 8 13 49 1.3 1
Interfaces General Manipulation 7 6 7 11 15 46 2.1 T
Haptic 10 13 3 7 11 4 -04 <« Medical Robotics 5 8 7 7 8 35 05 —
Kinesthetic Control 2 8 4 9 7 30 1.1 T Navigation Robotics 3 7 1 1 8 20 04 —
Physiological Signal 3 6 4 4 6 23 04 - UAV 2 5 1 0 3 11 -03 <«
Gesture/Hand 2 3 2 5 6 18 1.0 T HRC 1 5 1 3 0 10 -04 <«
Tracking Industrial Robotics 1 4 2 1 1 9 -0.3 —
GUI 2 1 4 3 4 14 06 T Multi-Robot Systems 1 2 1 0 3 7 0.2 ~
VR/AR 1 2 2 0 4 9 0.4 > Space Robotics 1 1 1 1 4 8 0.6 T
Language Controller 0 0 0 1 3 4 0.7 T Emergency Response 0 2 0 0 1 3 0.0 ~
Simulation/Dataset 0 1 2 0 1 4 0.1 s

No Actual Interaction 0 2 0 0 0 2 -0.2 >

Implicit Cues 0 2 0 0 0 2 02

B. Research Trends

As indicated by the proceeding section, shared con-
trol/autonomy approaches span diverse input modalities, mod-
eling approaches, and application domains. Motivated by
this breadth, we introduce a new taxonomy for categorizing
approaches for shared control/autonomy. Our taxonomy is
human-centered and divides approaches based on the principal
benefit that the approach offers to the human teammate. Given
that shared control systems have long existed to help humans
in work that would be completed manually otherwise (e.g.,
in person or through teleoperation), we argue this human-
centered categorization is appropriate and will hopefully en-
courage future researchers to consider the principal human
benefit when developing new algorithmic or applied ap-
proaches. From our review, we identified four main categories
for the principal human benefit for shared control/autonomy:
minimizing human time (31 papers), minimizing human input
(43 papers), improving human input quality (111 papers),
and maximizing human output (10 papers). In cases where a
method is designed for multiple human benefits (they are not
mutually exclusive), we chose the category that best aligned
with the technical approach. We explain these categories in
greater detail in the following sections and use the categories
to structure our review of recent trends.

1) Minimizing Human Time: These methods are designed
for tasks with periods that do not require human oversight and
input, allowing the human to temporarily focus on a different
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Fig. 3. Histogram of SC/SA evaluation participant count (bin size of two).

task. A common approach is traded control, where a robot
and human take turns completing sequences within the overall
task [29]. Typically, it is assumed that the human has deeper
knowledge of the task than the robot, and thus is prompted
to takeover at key points throughout the task. The key to
enabling such approaches is a trigger where the robot system
recognizes the need for human input and can elicit help.
Common approaches to developing trigger-based approaches
to minimize human time include explicit role modeling based
on task phase or context, and confidence-based approaches for
the autonomous robot system to monitor when help is needed.

Many approaches to minimize human time explicitly model
the task times when human input is needed. For example,
several approaches elicit human input upfront to aid in down-
stream autonomous execution. These requests include asking
the human to identify key manipulation parameters (e.g., grasp
pose) [30], [31], [32], [33], [34], [35], [36] or register task
trajectories under environment uncertainty [37]. Other upfront
input approaches aim to understand the high-level plan or
objectives of the human before the robot takes over, either
through preference queries [38], [39], task sequences [40], or
language clarifications [41]. In addition to upfront human in-
put, it is also common to model and allocate subtasks to either
the human or the robot. Several surgical robot shared control
approaches study task variability and complexity to identify
what surgical subtasks require human takeover [42], [43], [44],
[45]. In manufacturing, Hopko et al. design a collaborative
polishing task where the human provides input on challenging
trajectory segments to study the impact of operator fatigue
and characteristics in such takeover settings [46]. Finally, some
approaches determine sub-task allocation (and thus, transitions
of control) for humans and robots based on reinforcement
learning approaches [47], [48]. Approaches leveraging explicit
modeling of control handovers offer the benefit of knowing
when human input will be requested, which can enable the
person to better allocate and plan their time. However, these
methods require explicit modeling of when human input is
needed which is not always possible or possibly can lead to
very conservative takeover requests. For example, there may
be a suturing step in a medical operation that occasionally
requires human intervention. In this case, explicit modeling



approaches will always hand over control to the person for
the suturing though help is infrequently needed.

The second common class of trigger-based methods for
minimizing human time develops confidence-based triggers
on the robot side to indicate when the robot needs help.
Triggers include identifying when the system deviates from
the intended path [49], identifying when the automated system
fails to generate a quality solution [50], [51], and explicit
features measuring the likelihood of robot success on a
task [52], [53]. The trigger can also be based on factors related
to the human. This includes estimating the user’s desired
trajectory, such as in Huang et al. where confidence over the
driver’s desired trajectory is used in semi-autonomous driving
and in Kizilkaya et al. where deep reinforcement learning
is used to model mode-switching based on user trajectory
intent [53], [54]. Li et al. [55] also show how human trust
measures can be used to estimate confidence for takeover
requests. In confidence-based approaches, the control can be
frequently traded as the robot experiences intervals of varying
confidence throughout the task. Several systems instead focus
on mediating a single handover of control through a robot
autocomplete where the robot observes the human inputs and
takes over when it is confident it can complete the remainder
of the task autonomously [56], [57], [58], [59]. In addition
to confidence requests based on robot uncertainty, Owan et
al. trade control based on robot certainty where the robot
takes over when it is certain it can perform confined-space
manufacturing tasks faster than human teleoperation based on
a learned model from user demonstrations [60]. Finally, recent
work by Liu et al. demonstrates how large language models
can be leveraged in mediating takeovers by consulting an LLM
that has been prompted with example scenarios where human
input should be elicited [61].

TABLE III
YEARLY EVOLUTION OF MODELING APPROACHES IN SHARED AUTONOMY
AND SHARED CONTROL STUDIES (2020-2024). ARROWS INDICATE
TREND DIRECTION: 1 INCREASING, <+ STABLE, | DECREASING.

Modeling Approach 2020 2021 2022 2023 2024 Total Slope Trend

Optimization 5 14 5 6 11 41 04 “
Input Blending 4 8 6 7 7 32 05 —
Compliance Control 1 9 6 2 6 24 03 ~
Intent / Goal Inference 1 6 4 4 7 22 1.0 T
Reinforcement Learning 3 4 3 2 8§ 20 08 T
Filtering 2 3 6 2 5 18 05 ~
Input Mapping 3 5 3 1 4 16 -02 <+
Planning 3 5 3 0 3 14 -05 —
Supervisory Control 2 2 4 4 2 14 02 —
Templates 2 1 5 1 5 14 0.6 T
Virtual Fixtures 4 2 2 2 4 14 00 <~
Classical ML 2 6 1 1 3 13 -03 <«
Traded Control 4 2 1 2 3 12 -02
Prob. Graphical Model 2 4 0 3 3 12 0.1 ~
Imitation Learning 1 3 4 1 2 1 00 —
Generative Modeling 2 3 1 2 2 10 -0.1 >
Prob. Modeling 1 3 2 2 2 10 0.1 ~
Divisible Control 1 3 2 1 310 02 >
Multi-Robot Control 2 5 2 1 0 10 -0.8 1
Deep Learning Models 0 1 0 2 2 5 0.5 &~
LLM-based Approaches 0 0 0 0 3 3 0.6 T

2) Minimizing Human Input: These methods are designed
for tasks where it is infeasible, undesirable, or unnecessary
for the human to fully control the robot system, and thus the
shared control approach focuses on minimizing the total input
needed from the human to complete the task. Differentiated
from minimizing human time, which can also minimize input
by reducing intervention time, we categorize approaches that
minimize human input as those assuming that the human
is actively monitoring or giving continuous input as needed
for the robot to succeed. These approaches typically rely
on techniques to reduce the dimension of human control
input. Common approaches include dimensionality reduction
techniques, divisible shared control, and interfaces to provide
sparse corrective or supervisory input.

In cases where the appropriate robot actions can be inferred
by low-dimensional human input, dimensionality reduction
techniques are often used in shared autonomy to reduce the
input burden for humans. A common approach leverages
shared control templates (SCTs) that define low-dimensional
control spaces for particular tasks [62], [63], [64], [65]. In
addition to minimizing human input, SCTs have also been
shown to benefit traded control approaches [66] and robot
learning [67]. Often, including some SCT methods, the ap-
proach to dimensionality reduction is data-driven. Losey et
al. use a variational autoencoder to learn a low-dimensional
mapping for manipulation tasks from task demonstrations [68],
[69]. Variants have also been proposed to eliminate the need
for demonstrations [70], learn a linear control mapping [71],
present discrete options to the user [72], and to use facial
movements as the low-dimensional input [73]. Instead of
directly mapping inputs to robot commands, other methods
use demonstration variance to extract low-dimensional human
corrective interfaces to adjust the robot’s behavior [74], [75],
[73]. A similar corrective approach is used in Chang et al. to
correct the robot optimization objective rather than the current
robot behavior [76]. Cognetti et al. also employ a corrective
mechanism for robot navigation tasks where users can adjust
the properties of the trajectory represented by a B-spline [77].

Another common approach to reducing human input in-
volves divisible shared control, where the human controls a
subset of the robot’s output and the remaining dimensions
are controlled by the robot. One possible allocation is where
the human remotely teleoperates a robot manipulator and the
shared control automatically controls the view of a cam-
era [78], [79]. Other typical allocations include where the robot
controls only force or alignment [80], [81], the distal robot
joints [82], the vehicle the robot arm is attached to [83], and a
second robot arm during bimanual surgical operations [84].
While most approaches rely on the robot inferring control
outputs that complement the partial human input, several
approaches instead divide the robot control across several
human users [85], [86]. Finally, some divisible approaches are
designed for the robot to provide assistance during physical
human-robot collaborations [87], [88]. Here the task is divided
across the human and robot rather than dividing robot control
dimensions. For example, Tao et al. learn a cooperative robot
policy for multi-agent object manipulation by iteratively refin-
ing a model of the human’s goal [89].
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Fig. 4. Summary of the high-level trends (including a representative approach) of the shared control/autonomy survey, categorized by the principal benefit
offered to the human. (Left to right) A representative approach for minimizing human time has a human completing a secondary task until they receive haptic
feedback that the robot requires assistance (Reprinted from [103], © 2021 IEEE. Reprinted with permission). A representative approach for minimizing human
input has the human provide four-degree-of-freedom input and the robot infers the remaining degrees of orientation during grasping (Reprinted from [104],
© 2018 IEEE. Reprinted with permission). A representative approach for improving input quality involves virtual fixtures during remote teleoperation to aid
in tracking dissection splines during a surgical procedure (Reprinted from [105], © 2018 IEEE. Reprinted with permission). Finally, a representative approach
for maximizing human output involves a human assisting multiple robots sequenced around uncertainty (Reprinted from [106], © 2023 IEEE.).

The final common approach to minimize human input has
the person actively monitor and provide sparse intervention
to the robot as it works. Several methods rely on physical
interventions where the person interrupts and physically guides
the robot through the correct actions [90], [91], [92], [93],
such that the robot can learn desired behavior for future
task instances. Instead of applying physical input directly to
the robot, Shen et al. provide a physical coupling through
a haptic input device that uses a control barrier function to
enforce that only safe changes are made to the robot task
model [94]. Outside of physical intervention, other recent
work has investigated sparse input using head control [95],
Electroencephalography (EEG) [96], [97], a laser pointer [98],
natural language [99], and user preference queries [100], [101].
Lin et al. investigate the impact of unreliable autonomy on
systems employing sparse user inputs and correlations to the
desired level of robot autonomy [102].

3) Improving Input Quality: These are methods where the
primary purpose of the interaction is to take user input,
which is often imperfect or coarse, and to refine it toward
successful task completion. Such setups are the most popular
in recent shared control/autonomy literature and tend to focus
on settings where it is possible for the robot to, at least,
partially model the task (e.g., user intent) and fuse its task
knowledge with the provided human input to achieve more
accurate or efficient task outcomes. Common motivations
and approaches to improve input quality involve blending
input based on online human goal/intent prediction, explicit
methods to compensate for low-fidelity human input, trajectory
guidance methods, and optimization approaches.

A popular shared control approach was introduced by
Dragan et al. [17] where a robot uses the past human tra-
jectory to infer the most plausible goal object location and
provide assistance toward an optimal trajectory to the desired
goal. Since that time, goal-conditioned or intent-predict based
methods have remained popular in shared control/autonomy.
Many recent methods similarly infer user goals [107], [108],
[109], [110], [111] or desired future actions [112], [113],
[114], [115], [116], [117], [118], [119] to provide appropriate

assistance. Cai et al. propose a hierarchical framework that
infers both high-level goals and low-level actions. When
blending inputs based on inferred goals, communication is
critical for successful teaming [120]. Haptic feedback is
commonly used to indicate robot desired assistance [121].
Mullen et al. additionally investigate augmented reality for
communicating the planned assistance and uncertainty over
intent [103]. While past human inputs are the most common
signal to detect intent, gaze is also often used as an additional
signal that can indicate intent [122], [123]. Often the input
blending in these systems directly combines the human input
and robot estimated action (e.g., as a weighted combination),
but Bowman et al. investigated different blending coefficients
for each robot control dimension [124]. Beyond input blend-
ing, goal-inference approaches can also be applied to close-
proximity human-robot collaboration where intent inference is
used to plan collaborative actions or avoid collisions with the
human [125], [126].

A second common motivation for systems that improve
input quality is for settings where human input is low-fidelity
or coarse. In contrast to goal inference, where assistance
improves efficiency but the person could complete the task
on their own, in low-fidelity settings the raw human input
is typically insufficient for task success. Commonly, these
systems use Electromyography (EMG) input [127], [128],
[129], [130], [131], [132], [133], [134], [135], inertial mea-
surement units (IMUs) [136], [130], [137], and brain machine
interfaces (BMlIs) [138]. In the case of EMG or BMI input, the
motivation is typically for assistive shared control/autonomy
setups where these signals can aid users who might not be able
to provide input through another means. IMUs are leveraged
for their affordability and setups often aim to exploit their use
for mobile input devices that are accessible to a wider range
of users. Beyond these coarse human inputs, Sanchez et al.
explore the use of foot control for laparoscopic surgery [139],
Panzirsch et al. explore force interactions using virtual reality
interactions [140], and Laghi et al. use vision to improve
human inputs using a virtual reality controller for high preci-
sion bimanual manipulation tasks [141]. While it is typically



assumed that the physical interface is the source of coarse
or lower-fidelity input, Cho et al. use a similar formulation to
study how novice remote driving can be improved by modeling
the novices as experts corrupted by noise [142].

When tasks can be modeled more explicitly, including safe
regions of operation, methods often employ explicit trajectory
guidance. Such methods frequently leverage virtual fixtures
(VFs) [16] that constrain the actions that the person can
execute. VFs typically provide either haptic guidance or input
overrides through blending to ensure users control the robot
safely and efficiently. Several recent methods focus on surgical
or medical applications where the virtual fixtures provide
trajectory guidance toward safer behaviors [143], [144], [145],
[146], [147], [148]. For example, Marinho et al. use virtual
fixtures during suturing to guide the surgeon toward higher-
performing needle passes [146]. Outside of surgery, other
approaches employ virtual fixtures for explicit trajectory mod-
eling in periodic tasks [149], [150] and for path following
applications [151], [152], [153], [154], [155], [156]. It is
also common to derive virtual fixture trajectories based on
prior human demonstrations [157], [158]. Dynamic movement
primitives (DMPs) and other movement primitives are used to
learn stable trajectories from a small number of demonstrations
that can later be used for trajectory assistance [159], [160],
[161], [162], [163]. Gaussian processes and Gaussian mixture
models are also commonly used to encode demonstrations for
use in virtual fixtures and can vary assistance based on the
model variance [164], [165], [166], [167]. Human demon-
strations can also be used to formulate primitive geometric
constraints in shared control/autonomy systems [168], [169],
[170]. Several recent approaches leveraging virtual fixtures
also aim to provide a more interactive experience with the
user. Poignonec et al. develop an approach where the fixtures
adjust over time for cases with incorrect guidance or a shifting
desired trajectory [171]. Pruks et al. provide an interactive
framework where users can specify features, primitives, and
constraints to build fixtures for challenging contact tasks [172].

The third major category of approaches improving input
quality leverage optimization approaches. Dating back to
early work on potential fields [15], many methods leverage
optimization to avoid robot collisions. Modern approaches
still aim to create effective optimizations that preserve human
input as possible while effectively calculating and avoiding
collisions [173], [174], [175], [176]. Often collision infor-
mation is conveyed to the user through haptics [177], [178],
[179], though Chen et al. leverage augmented reality during
surgical applications for the human to visualize difficult-to-see
anatomy [180]. Zhong et al. [181] propose a haptic feedback
approach to collision avoidance that further measures human
attention to allow for closer passes to collision geometry when
the person is highly engaged. Beyond collisions, optimization
is also used for broader notions of safety and stability. Several
methods filter user inputs to preserve the overall robot system
stability [182], [183], [184]. Other methods filter inputs to
preserve additional safety measures, such as in safety-critical
applications like semi-autonomous vehicles [185], high-speed
drones [186], and an assistive wheelchair [187].

Given the flexibility of optimization formulations in shared

control/autonomy, other approaches more broadly use opti-
mization to preserve desirable motion properties. For example,
in surgical applications, optimization can be used to minimize
force and damp surgeon tremor [188], [189] and in general
applications, optimization helps create desirable (e.g., smooth)
motion outputs [190], [191], [192], [193]. Backman et al.
use optimization in drone landing to optimize the inputs of
less-experienced pilots to better match expert inputs [194]. In
shared control/autonomy systems involving physical human-
robot interaction (pHRI), optimization is often used to adjust
the impedance or admittance of an interaction [195], [196],
[197], [198], [199], [200], [201]. For example, Pezeshki et
al. propose a game-theoretic approach to set the gains and
stiffness of a variable impedance rehabilitation robot [197].
In pHRI interactions, the optimization of the shared controller
often also prioritizes minimizing physical human effort [202],
[203], [204], [205], [206], [207], [208] or improving er-
gonomics [209], [210], [211]. For example, Mitra et al. design
an approach to optimize ergonomics during object handovers
between a robot and human [209].

Work on improving input quality also extends beyond tech-
nical formulations for input blending. Recent work investigates
practical concerns such as how to communicate with the
human and the impacts of unreliable autonomy. Regarding
communication, Zhang et al. show how haptic feedback can
be used to signal the level of robot autonomy and can improve
the user’s experience [212]. Jonnavittula et al. show how the
robot can change its task movements to communicate how it is
interpreting human inputs [213]. Concerning the reliability of
autonomy, systems that improve the human’s inputs are only
useful when the system can determine required modifications
to the human input. Balachandran et al. learn an adaptive
policy that shifts back control authority to the human as vision
measurements of the robot system degrade [214]. Other works
show how reliability can be assessed implicitly by measuring
human trust of the robot in the shared control/autonomy sys-
tem [215], [216]. For more successful deployments of future
shared autonomy systems, we hope to see increased work
investigating practical considerations for system deployment,
including bidirectional communication and methods assessing
and improving the robustness of autonomy.

4) Maximizing Human Output: These approaches typically
rely on scaling a person’s output across supervision of a
small fleet or coordinated set of robots. Differentiated from
approaches to shared control that minimize human time as
the primary objective, these settings often heavily utilize the
worker (i.e., the worker remains in the loop) while distributing
their input across several robots.

A common approach involves fleet supervision, where one
person oversees multiple robots and the individual robots re-
quest human input during periods of uncertainty. Papallas et al.
propose a multi-robot shared control approach where human
supervision is requested when mobile robots are unable to ef-
fectively plan through trajectory optimization [217]. Hagenow
et al. propose a multi-robot shared autonomy approach that
learns times of task uncertainty from expert demonstrations
and develops a scheduling optimization such that a single
operator can intervene across robot executions that offset



periods of variability [106]. Swamy et al. propose a fleet
supervision method that shifts recognition of uncertainty to
the human and estimates the likelihood that human assistance
will be given to robots in a mobile robot fleet [218]. The
trends of intervention are empirically learned from small-scale
supervision experiments. Finally, Chandan et al. show how
augmented reality can provide passive guidance during multi-
robot supervision so the person can visualize robot plans and
plan intervention accordingly [219].

Instead of individual intervention, several methods use hu-
man input to coordinate the efforts of a robot fleet toward
a centralized task. Miyuachi et al. develop a multi-operator,
multi-robot strategy where a swarm of robots balance task
completion and maintaining communication lines under phys-
ical constraints [220]. Dai et al. propose a brain-computer
interface that estimates human intent and uses the estimated
intention field to focus the efforts of a swarm of robots in for-
aging [221] and firefighting [222] applications. Macchini et al.
propose a shared control method where human gestures control
a leader drone that coordinates a collective swarm behavior
of drones via Reynold’s algorithm [223]. Focusing instead on
manipulators, Ozdamar et al. propose a control architecture
where a person can control multiple arms, including groups of
coordinated arms, during general manipulation [224] . Finally,
Yang et al. investigate multi-robot conflict resolution when the
input to the fleet is shared across several users [225].

Given the practical constraint that these methods require
fleets of robots, there has been relatively less work in shared
autonomy. We expect that as robot hardware becomes more
accessible, we will see growth in this category. Early work
mostly demonstrates how to direct the operator’s attention
across multiple robots or to coordinate the actions of robots
toward a central goal. There are many unanswered questions
including how to enable effective fleet communication for
coordinated efforts (i.e., tasking a leader robot and effectively
delegating to the fleet) and how to scale human intervention
methods to larger fleets of robots where it becomes challenging
to maintain situation awareness [226]. Furthermore, we see
opportunities to bridge the two main approaches, where agents
can both coordinate and conduct individual work under the
supervision of a human.

V. GENERATIVE ARTIFICIAL INTELLIGENCE IN
SHARED CONTROL/AUTONOMY

Like in many robotics areas, the rapid growth of generative
model capabilities has created new opportunities in shared
control and shared autonomy. While work in this area is
not yet mature, we expect to see significant growth in the
coming years. In this section, we overview emerging shared
autonomy with generative artificial intelligence (Al), including
models for input dimensionality reduction (Sec. V-A), oppor-
tunities with large generative imitation models (Sec. V-B),
and recent shared autonomy interfaces with generative robot
policies (Sec. V-C). Based on the trends, we also provide
recommendations for pertinent work for generative Al and
shared autonomy in Section VI.

A. Simplifying Human Input with Generative Al

Before generative models were capable of modeling com-
plex long-horizon task behavior, their initial use in shared
autonomy was as part of lower level-of-autonomy systems
that simplify user input by learning a low-dimensional action
mapping through a generative model. Typically contextualized
in teleoperation, the goal of these systems is to develop
latent low-DoF control spaces that allow users to “turn
simplified knobs” to guide robots through task completion
without the high physical and cognitive burden associated
with high-DOF teleoperation. Here, the use of a generative
model affords learning from and reproducing multi-modal
action distributions. Early work learned fixed one or two-
DoF latent actions from demonstrations for smooth assistive
teleoperation, for example using a conditional variational
autoencoder (CVAE) [68]. Subsequent formulations build on
the core latent space formulation. For example, it is possible
to adapt latent mappings online based on the user’s inferred
intent, so that the same joystick input can change meaning as
goals become clearer [227]. Language was also explored as
a higher-level interface to manage different latent mappings.
For example, LILA binds language to latent spaces [228],
and LAMS uses LLMs to auto-switch latent mappings so
that users can provide simple two-DoF inputs without a need
to toggle mappings [229]. While language is employed in
several methods, the core motivation of latent action methods
is to ground user inputs to continuous robot actions, which
is a complementary capability to language, which typically
serves higher-level task communication. This dichotomy is
also reflected in recent work with generative robot policies,
described below. Summarizing, these early generative model
shared autonomy works let humans shape rich robot behaviors
from generative models with heavily simplified user input.

B. Generative Al Robot Policies and Opportunities

With recent efforts toward robot foundation models, new
opportunities are emerging for shared autonomy, particularly
focusing on targeted human interactions with generative robot
policies. To better understand this context, we first provide a
high-level overview of recent advances in generative policies
and the corresponding impact on shared autonomy. Behavior
cloning (BC) remains a common approach for modeling and
learning robot behaviors, and most recent methods model ac-
tion distributions generatively [230]. While early BC struggled
with coverage of the state space and multi-modal data, newer
approaches—autoregressive policies (e.g., ACT/ALOHA and
generalist visuomotor models) [231], [232], diffusion poli-
cies [233], [234], [235], and flow-matching policies [236],
[237]—Ilearn richer, multi-modal action distributions with
much stronger capabilities in modeling long-horizon behavior.
Given that shared autonomy systems rely on some amount
of robot autonomy and task modeling, more capable models
have opened the doors for more versatile shared autonomy
approaches. Most of these models are trained via human
data, and thus scalable data-collection interfaces have seen
increased attention [231], [238], [239], [240]. By developing
effective human demonstration interfaces, generative models



are able to learn both to more robustly perform and assist
in contact-rich manipulation robot behaviors [241], [235].
Given the importance of high-quality data, recent work has
investigated how to apply shared autonomy methods for better
data collection [242].

Despite growing data and more capable policies, autonomy
with generative models remains brittle. For example, 7y high-
lights challenges in generalizing to open-world settings. A lack
of robust autonomy limits the utility of these models in safety
or performance-critical domains [232], [236], [230]. Moreover,
while generative policies are capable of modeling multi-
modal behaviors, it is not clear whether multiple trajectories
are always equally desirable or if human input is needed
to disambiguate between them [243]. Thus, there are many
opportunities for shared autonomy with these frontier models:
from data collection, to uncertainty-aware methods where
shared autonomy helps improve overall robustness. Next, we
discuss early works tackling such challenges, for example
through interactive language and policy steering methods.

C. Shared Autonomy with Generative Robot Policies

Shared autonomy interfaces for interacting with generative
robot policies can be generally separated into two cate-
gories: interfaces leveraging language and interfaces lever-
aging lower-level interactions (e.g., to the robot state or
actions). Starting with language, many modern policies are
language-conditioned, making language a natural interface
for shared autonomy. Several system architectures support
basic human interaction by accepting a single initial language
prompt and then executing the robot behavior open-loop (e.g.,
OpenVLA, Octo, mp) [232], [234], [236]. Recent work enables
more real-time language guidance. Language interventions
have been shown to support real-time behavior changes and
to improve long-horizon manipulation [244], [245]. Recent
work has also shown that iterative human-in-the-loop pipelines
(e.g., language model question-asking paradigms) improve
LLM-conditioned manipulation [61]. In addition to helping
in the moment, Zha et al. show how language corrections
can be distilled into policy knowledge to reduce future in-
terventions [99]. Language can also be combined with low-
DoF input (e.g., through a joystick) or robot queries for
language assistance to create more capable shared autonomy
loops [246], [41]. Language thus provides a convenient and
flexible interface for shared autonomy, but assumes that human
feedback can be grounded in the robot’s control space.

Because language may not always be sufficiently grounded
in robot actions, several recent generative shared autonomy
methods let users intervene directly in the policy’s action
or trajectory space. The majority of these methods leverage
diffusion policies for their capabilities in representing multi-
modal task behavior. One of the earliest approaches, Diffusion
for Shared Autonomy, casts the input-blending assistance
problem as denoising in the policy action space [247]. Dif-
fusion shared autonomy policies have also investigated safe
handovers of control [248], causal low-level edits of behavior
during execution [249], physical human-robot collaboration
[250], and methods to circumvent the latency associated with

diffusion model inference [251]. Promoting further flexibility,
Inference-Time Policy Steering (ITPS) uses human input (e.g.,
keypoints, trajectory sketches, or small physical perturbations)
to bias sampling in a frozen generative policy—balancing
human alignment with the policy’s distribution of learned
behavior [243]. Complementary to language shared autonomy
interfaces, these lower-level interfaces enable human input
grounded directly in robot actions.

VI. GENERAL DISCUSSION

In this section we summarize the findings of our survey.
First, we provide recommendations for future work in shared
autonomy, considering the five-year trends and recent methods
involving generative Al. We end with a discussion about the
limitations of our survey (and corresponding opportunities for
future work) and broad conclusions.

A. Recommendations

Based on the trends identified throughout our review, we
identified five core recommendations for future research in
shared control and shared autonomy systems. Our recom-
mendations include both broad recommendations for shared
autonomy (recommendations 1, 2, 3, and 5) informed by our
analysis of recent literature as well as specific efforts that are
needed for future generative Al systems (recommendation 4).

1) Improving the Breadth and Richness of Human Interac-
tion in Shared Control/Autonomy Systems: From our review,
we find that current systems primarily focus on fundamen-
tal technical questions in shared control/autonomy—such as
when to request help, how to give input, and how to blend
inputs in a safe and effective way—while comparatively little
research addresses how to create high-quality, user-centered
interactions. A key concern is that technologies developed
without intentional efforts to optimize the human experience
may hinder adoption if the shared autonomy system is not
engaging or aligned with the human’s interaction preferences.

While most shared autonomy systems rely on a fixed
type of human input, a promising direction is in developing
systems that accept flexible human input. Recent work has
investigated this in two main areas: inferactive learning and
real-time corrective feedback. Interactive learning is designed
for more flexible human input [252], including systems where
the human selects the appropriate feedback to provide [253],
[254], [255] and systems that define fixed interaction se-
quences [256], [257], [258]—for instance, beginning with
demonstrations and switching to preferences as the model
improves. For real-time interactions, Wang et al. explore how
multiple human inputs (e.g., physical intervention, keypoints,
sketches) can be used to steer a generative policy [243].
Finally, toward more rich robot-initiated interactions in shared
autonomy, INQUIRE and REALM are two recent approaches
that reason about the value of different human inputs and elicit
the most informative feedback in offline interactive learning
and real-time control settings, respectively [259], [260]. Given
the nascency of flexible input shared autonomy approaches, we
view this direction as an important open area.



More rich interaction in shared autonomy also requires fur-
ther efforts in how robots communicate and ask for feedback
in shared autonomy. With emerging generative Al capabilities,
we will see new frontiers of interaction in shared autonomy.
For example, new generative predictive visual models could
present options to the user in the form of video synopses
for how the robot wants to proceed [261], [262]. We expect
that human-centered shared autonomy systems that integrate
flexible input and expressive communication with lead to more
natural, conversational, and engaging collaboration.

2) Performance and Safety Guarantees for Learning-Based
Shared Autonomy: An important issue is how to provide
meaningful safety assurances during learning. Learning often
involves exploration, and in shared autonomy, that explo-
ration occurs while humans and robots jointly control the
system. Safety must therefore be guaranteed both during the
learning process and in the resulting learned behavior. Safe
exploration methods, such as those based on control barrier
functions or uncertainty-aware arbitration, can help ensure
that learning proceeds within safe boundaries [263]. Overly
restrictive safety measures, however, can also inhibit learning
and adaptation. Balancing safety with the need for progress
remains an open research challenge.

These questions take on urgency in high-risk domains such
as assistive robotics, surgical systems, and physical rehabilita-
tion, where the consequences of unsafe learning are immediate
and severe [264]. In these settings, shared autonomy may act
as a safety buffer that limits the robot’s autonomy while lever-
aging human oversight. However, as systems become increas-
ingly learning-driven, the field needs methods that maintain
safety envelopes while allowing robots to adapt to user-specific
needs, physical limitations, or changing contexts. For example,
an assistive robot that learns from user demonstrations must
ensure safety even when the human provides an incomplete
or suboptimal example. This tension between personalization
and protection is a key challenge for future work.

One promising direction is to couple learning with for-
mal safety frameworks and human-centered communication
mechanisms. Natural language input and output could allow
humans to define safety constraints, clarify intentions, or
authorize specific actions. At the same time, the robot could
communicate its uncertainty, reasoning, or safety status in
human-understandable terms. This approach connects closely
to the previous recommendation, which emphasizes richer
multi-modal interaction. Treating language as both a safety
and learning channel could enable safer and more transparent
shared autonomy systems. Moving ahead, open questions
remain. How can we formalize and measure safety during in-
teractive learning? How can we design learning objectives that
adapt to human feedback without exceeding risk thresholds?
And how can we ensure that safety mechanisms remain inter-
pretable and trusted by the human collaborator? Addressing
these questions will require joint progress in control theory,
interactive learning, and human-robot communication.

3) Toward Open World Shared Autonomy: EXxisting work
on shared autonomy often focuses on carefully controlled envi-
ronments. This is a natural first step; but for real-world impact,
we need to relax this strong domain knowledge and move

towards open-ended conditions. Overall, open world shared
autonomy faces challenges from both the robot’s perspective
and the human’s perspective.

From the robot’s perspective, the key issue is robustness to
out-of-distribution contexts. The designers cannot anticipate
every way in which the robot will need to assist the human
user; accordingly, the robot will need to learn how to share
autonomy for previously unseen scenarios. Early works on
shared autonomy often assumed a nominal trajectory or a
fixed number of goals, and modulated that trajectory or goal
based on the human’s inputs [17]. For unstructured tasks,
future works on shared autonomy will need to learn new
trajectories (or identify previously unspecified goals). This
could be achieved through the intersection of shared autonomy
and imitation learning: for example, the human user might
guide the robot through the entire task, and then—the next
time the human faces that task—the robot extrapolates from
the previous example to provide assistance [265], [116]. Of
course, if the robot’s shared autonomy adapts over time, then
the performance of that assistance also fluctuates. Within
unstructured environments the robot will therefore need to
identify when it can and cannot provide meaningful assistance.
Here we need robots that are able to recognize what they do
not know, and to defer to the human when uncertain.

From the human’s perspective, the key issue for open
world shared autonomy is how everyday users interface with
partially automated systems. It is not clear when and how
humans expect robots to provide assistance. Part of the solu-
tion here focuses on educating users (for example, through
augmented reality interfaces [266]) so that they can build
mental models of their robotic partners (i.e., training users
on how to operate shared autonomy robots). But another side
is making shared autonomy algorithms that are inherently
intuitive so that users can seamlessly integrate with them. Here
we envision algorithms with controls-grounded formulations,
uniting the open-ended assistance of shared autonomy with
clearly understood and predictable patterns of control systems.
This could more generally take the form of visualizing the
robot’s plan, notifying the human when the robot is going to
take or return control, having safety barriers to prevent catas-
trophic disagreements, and asking for the human’s feedback
to improve future experiences.

Beyond robot and human aspects, there is also a temporal
challenge to open world shared autonomy. Most experiments
surveyed in this paper take place in a less than a one hour
period. But when we rollout these shared autonomy robots in
the real world, people will be interacting with these robots for
days, months, and years. This means that challenges that arise
in short user studies may no longer be significant over longer
periods (i.e., as users get more familiar with the system).
Conversely, new issues may arise that we have not perviously
encountered. For example, as the robot adapts to the person
(and the person adapts to the robot), the person might change
their habits to select tasks that the robot can efficiently assist
for. For example, if the robot is really good at making coffee,
but terrible at making tea, the user might settle for coffee more
frequently. This sort of social and behavioral impact is not well
understood, and should be considered in future works.



4) Adapting and Developing Generative Models for Shared
Autonomy Interactions: Going forward, we see two emerging
ways that shared autonomy interacts with frontier generative
models: approaches that add human interfaces to existing gen-
erative models, and new generative models where interaction
is developed as a part of the robot’s model architecture.

Integrating shared autonomy with existing models requires
understanding the available signals from models that can be
used to request and structure human input. There is a long
history in shared autonomy of using confidence measures to
inform when human interventions are needed for the robot
system (i.e., minimizing human time in Section IV). A key
challenge with emergent models is determining how to repre-
sent robot uncertainty. Several recent methods propose entropy
and loss metrics for diffusion trained policies to understand
when they are encountering out-of-distribution states or have
ambiguity over multiple actions that may be taken (i.e., multi-
modal behavior) [267], [268]. A similar process has also
been used for vision-language-action models where token-
level uncertainty is used to trigger human assistance [269].
More broadly, we are also starting to see more work proposing
metrics to assess the confidence of VLA models [270]. While
these papers are promising starting points, more work is
needed for reliable assistance triggers that consider the many
sources of model uncertainty. If assistance can be reliably
triggered, an open question is how the person should provide
feedback to the robot, for example through language or by
taking over on the task until robot confidence is restored. As
mentioned above, this is tightly coupled with communication
where the policy should be able to indicate the information
needed to address its uncertainty. As open-source generative
robot models continue to advance, we hope to see more end-to-
end SC/SA systems addressing these key interface elements.

Rather than building shared autonomy around existing gen-
erative robot policies, there are also opportunities to make
shared autonomy and general human interaction a more funda-
mental part of future large generative models. Currently, this
is not done for large models, and shared autonomy approaches
instead adapt pretrained policies for interactions [243], [271]
or train policies that accept limited human feedback during
execution [244], [245]. While these capabilities are useful,
future robot foundation models should integrate shared con-
trol interactions directly within the model architecture. For
example, future models may have action heads that expose
steerable subspaces, explicit “ask-for-help” tokens, calibrated
confidence estimates, and sampling strategies designed for
human-in-the-loop operation. By considering shared autonomy
architecture in large models, we can encourage human interac-
tion as a core foundation-model capability to be designed and
evaluated when building new models [272]. Beyond interfaces
for shared autonomy input, an open question is how interactive
models can serve as adaptive teammates that personalize over
longitudinal use by people.

5) Developing Benchmarks to Standardize Evaluations,
Tasks, and Metrics: Our survey indicates that the experimental
metrics, tasks, and study design vary greatly across shared
control/autonomy literature. Following the popularity in other
areas of robotics (e.g., manipulation [273], reinforcement

learning [274], planning [275]), ideally benchmarks could be
developed to define standard tasks and experimental proto-
cols for shared autonomy. One critical difference in shared
autonomy is the human, which can make it challenging to
design benchmarks that meaningfully assess shared autonomy
systems. Furthermore, given differing goals and assumptions
of shared autonomy systems, it can be difficult to establish
reasonable baselines from existing literature when designing
experiments. Thus, there has been limited benchmarking work
in shared autonomy, and the few shared autonomy benchmarks
typically focus on specialized domains. Pan et al. propose a
Fitt’s law benchmark for target-reaching tasks using shared au-
tonomy [276]. For assistive applications, Stolen et al. propose
a shared control benchmark consisting of system modeling,
metrics, and practices for benchmarking [277]. Assistive Gym
further provides modeled tasks and pretrained baseline policies
to encourage benchmarking of assistive policies [278].

To expand work in benchmarking for shared autonomy,
there are critical questions remaining. How can we design
benchmarks with sufficiently-general tasks to promote adop-
tion by the research community? We also believe that defining
key metrics and baselines for shared autonomy benchmarking
are still open questions. One promising direction is to de-
fine subproblems within shared control/autonomy to establish
benchmarks. We believe that our categorization in Section
IV might provide an appropriate starting point to scope such
future benchmarks. For example, a benchmark focused on
minimizing human time could standardize secondary tasks,
baselines, and metrics related to worker utilization and situa-
tion awareness. Whereas, for systems focused on maximizing
human output, we might focus on fleet tasks and metrics
related to switching and robot fan-out [279]. While inevitably,
shared autonomy systems require domain-specific assump-
tions, which makes development of meaningful benchmarks
challenging, we believe there exists a taxonomy of benchmarks
(such as a benchmark for every principal human benefit) that
strikes an appropriate middle ground and will move the field
toward better standardization in metrics and evaluation.

B. Survey Limitations

For tractability, we conducted our survey over a five-year
window with three general robotics publication venues. Future
work could look at longer time periods or more inclusive
publication venues, but may limit how thoroughly trends can
be identified. Additionally, we provided descriptive statistics
related to input method, modeling, and application. Because
some areas (e.g., surgical robotics) have specialized confer-
ences, we acknowledge that this trend reporting specifically
considers publication rates in general venues. Finally, our
evaluation of generative Al focused on identifying popular and
promising emergent approaches. Once there is a larger body
of mature literature, it would be interesting to conduct a sys-
tematic review of generative Al and shared control/autonomy.

C. Conclusions
We present an updated survey on shared control/autonomy

that focuses on areas under or unexplored in past survey litera-
ture, including the historical perspective of shared control and



shared autonomy, recent descriptive trends of methods, and the
growing role of generative Al. As part of our investigation, we
provided an updated look at trends including a new taxonomy
for categorizing approaches based on their principal human
benefit: minimizing human time, minimizing human input,
improving human input quality, and maximizing human output.
We also provide a look at emergent literature leveraging
generative artificial intelligence for shared autonomy. Based
on our identified trends, we provide updated recommendations
for future research.
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APPENDIX A
REVIEW AND CATEGORIZATION METHODOLOGY

Our literature search was conducted using Google Scholar.
Google Scholar was selected due to its broad coverage of
robotics. As described in Section III, we surveyed three gen-
eral robotics venues: IEEE Robotics and Automation Letters
(RA-L), the IEEE International Conference on Robotics and
Automation (ICRA), and Science Robotics. We conducted our
survey on March 18, 2025. All retrieved records were exported
and archived at the time of search. The search was conducted
with the following search criteria (with a custom time range
of 2020 to 2024):

robot AND

("shared autonomy" OR "shared control") AND
(source:"robotics and automation letters"
OR source:"icra" OR

source:"science robotics")

The results were cached at the time to a table to be used for
subsequent analysis. Section IV reports both descriptive and
high-level trends for design decisions related to shared control
and shared autonomy systems. As part of the initial review,
we also flagged papers for exclusion. The predefined exclusion
criteria included workshop papers, position/opinion papers,
and papers that did not implement shared control/autonomy
(i.e., the only mention of shared autonomy was in in related
or future work). There was one duplicate entry which was
consolidated to the published venue version. Out of the 405
initial papers, this led to 210 exclusions, and a final set of 195
papers for review.

For any paper that was included, we coded the input
method, modeling approach, and application for each paper
and transcribed other pertinent paper information, such as
the study population and recorded evaluation metrics. The
review and coding was conducted by five of the authors. Code
consolidation was conducted by one author and independently
verified by a second author, leading to the final categories in
Section IV. For the input method, modeling approach, and
application, papers could be selected for multiple values (e.g.,
if they used two modeling approaches), whereas the primary
human benefit focused on the best-fit category. In addition to
coding, as part of the paper review process, we also noted any
trends or discussion points that were common across papers.
The initial review generated 17 thematic trends, which were
then grouped and distilled into the principal-human benefit
taxonomy in Section IV and the five recommendation areas
presented in Section VI
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