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Safely and autonomously cutting 
meat with a collaborative robot 
arm
Ryan Wright 1,3, Sagar Parekh 2,3, Robin White 1 & Dylan P. Losey 2*

Labor shortages in the United States are impacting a number of industries including the meat 
processing sector. Collaborative technologies that work alongside humans while increasing production 
abilities may support the industry by enhancing automation and improving job quality. However, 
existing automation technologies used in the meat industry have limited collaboration potential, 
low flexibility, and high cost. The objective of this work was to explore the use of a robot arm to 
collaboratively work alongside a human and complete tasks performed in a meat processing facility. 
Toward this objective, we demonstrated proof-of-concept approaches to ensure human safety while 
exploring the capacity of the robot arm to perform example meat processing tasks. In support of 
human safety, we developed a knife instrumentation system to detect when the cutting implement 
comes into contact with meat within the collaborative space. To demonstrate the capability of the 
system to flexibly conduct a variety of basic meat processing tasks, we developed vision and control 
protocols to execute slicing, trimming, and cubing of pork loins. We also collected a subjective 
evaluation of the actions from experts within the U.S. meat processing industry. On average the 
experts rated the robot’s performance as adequate. Moreover, the experts generally preferred the 
cuts performed in collaboration with a human worker to cuts completed autonomously, highlighting 
the benefits of robotic technologies that assist human workers rather than replace them. Video 
demonstrations of our proposed framework can be found here: https:// youtu. be/ 56mdH jjYMVc.

Meat processing is a critical worldwide industry that has made great strides in safety and productivity over the last 
few decades. However, meat processing facilities across the United States are currently facing labor shortages that 
negatively impact facility owners, livestock producers, and food consumers. This labor shortage was exacerbated 
by the COVID-19 pandemic: livestock processing plants were among the top industries affected, comprising 6 
to 8% of total cases and 3 to 4% of total deaths by mid July  20201,2. The labor shortages experienced in the meat 
industry can also be attributed to the public perception that meat industry jobs are often low-satisfaction  careers3 
with increased risks of physical injury or post-traumatic stress  disorder4. Today’s meat industry needs safe, skilled, 
and precise workers that can maintain the rigorous standards necessary for animal welfare and food  safety5. 
Overall, improving the availability of labor would support more streamlined and reliable supply chains, ensure 
consistent and rigorous animal welfare standards, and maintain reliability in meat product availability, quality, 
and  price6–8. Progress toward a more consistent and reliable workforce would not only enable the industry to 
better meet public needs, but will also increase competitiveness in the face of international meat price  volatility9.

Collectively, these labor supply challenges present an emerging opportunity for augmenting the workforce 
with robotic agents that assist human  workers10,11. We recognize that there are already specialized machines 
that automate specific parts of the meat processing workflow (e.g., forming machines that shape 200, 000 nug-
gets per hour)12, however these technologies are not flexible or collaborative. For  example13,14, use 2D cameras 
for image segmentation and planning cuts,  while15 uses contact force feedback to adjust the cutting speed and 
cutting tool angle. These methods automate specific parts of the process where the robot operates in an isolated 
space. Similarly, the majority of existing technologies are built for a single  purpose16 and traditionally replace 
human labor without opportunities for  collaboration17. To encourage widespread usage of automation in the 
meat industry, particularly for small and mid-sized plants, we must be able to account for carcass variability and 
dynamic  workflows18. Looking beyond the meat industry, recent research in robotics has developed learning and 
control algorithms for multipurpose, collaborative robot arms. This includes control schemes to ensure robots 
are safe around  humans19–21, as well as vision and learning tools that enable robots to adapt to new  tasks22–24. 
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Recent growth of precision agricultural technologies and agricultural human–robot interactions is apparent in 
crop harvesting, fruit picking, and grading and  sorting25–27. The application of these same advances would directly 
address the needs for flexible and collaborative autonomous technologies within the U.S. meat industry; however, 
autonomous, collaborative, and multi-purpose meat processing robots have not yet been thoroughly investigated.

The objective of this work was to demonstrate a framework that enables a multipurpose robot arm in a shared 
human–robot space to perform example meat processing tasks (e.g., slicing, trimming, and cubing). After a 
human co-worker places the meat in front of the robot arm, our system autonomously detects where to cut, 
and then moves the robot arm (and attached knife) to complete these cuts. In this proof-of-concept demonstra-
tion of a flexible, collaborative approach to meat processing with robotic arms, we focus on two critical system 
requirements: safety and performance. Safety concerns have been identified in human–robot collaboration due 
to the large force and rapid movements executed by robots in the  workspace19. Current human–robot collabora-
tive technologies implement power and force limits, speed limits, as well as single action stopping function as 
mentioned in the technical specifications for collaborative robots (ISO/TS 15066). Further, they implement the 
use of collision avoidance strategies, most of which are based on distance  sensing28,29. A broader suite of comple-
mentary sensors may be required in the application of collaborative technologies to meat processing, however, 
since contact is desirable between knife and meat but undesirable between knife and human collaborators. We 
hypothesized that instrumentation, detection, and control systems to monitor robot location and knife contacts 
could be designed to support safety goals. Toward our performance objectives, we hypothesized that a combined 
vision and control approach could be designed to visually detect the meat, fat, and any markers placed by the 
human and enable precise cutting by mapping visual inputs to robot trajectories and subsequently executing 
those trajectories. We performed experiments with a 6 degree-of-freedom multi-purpose robot arm, and tested 
these safety and performance frameworks during the completion of the example meat processing tasks.

Materials and methods
To progress towards our long-term objective of integrating multi-purpose robot arms into meat processing, we 
explore approaches to support safety and performance of a flexible, collaborative meat processing system built on 
6 degrees-of-freedom (DoF) robot arms. This initial execution of the system enables a multi-purpose robot arm 
to perform basic processing tasks including slicing a loin into chops, trimming excess fat, and cutting meat into 
cubes. While executing these tasks, we developed strategies that lay the groundwork to ensure the system and 
attached knife are safe around human workers, and that the system can accurately plan and execute the desired 
cuts either autonomously or in collaboration with humans. Here we discuss in detail our proposed framework 
and the experimental procedures used for deploying the groundwork of this framework. In section “Safety: pre-
venting unanticipated collisions” we outline our bilateral approach for ensuring safety. In section “Performance: 
planning and executing cuts” we discuss our physical setup and explain our vision and control algorithm for 
automating the robot arm to perform precise cuts. We overview the system in Fig. 1, and we outline the experi-
ments in both sections in Fig. 2.

Safety: preventing unanticipated collisions
In order for human coworkers to seamlessly and confidently collaborate with a meat processing robot arm, we 
first must ensure that the robot is safe. Consider the example in Fig. 1 where a human is placing meat on the 
table in front of the robot: we need to prevent the robot from coming into contact with the human, and if an 

Figure 1.  A multi-purpose robot arm for meat processing. (Left) A human collaborator places meat in 
front of the robot. Using an attached camera the robot detects the location of the meat. Under our proposed 
framework the robot can either plan and execute desired cuts that process the meat autonomously, or the robot 
can collaborate with the human to determine which cuts to make. (Right) In our experiments we leverage this 
framework to process a pork loin by slicing it into multiple cuts, trimming the fat from these cuts, and finally 
cubing the meat.



3

Vol.:(0123456789)

Scientific Reports |          (2024) 14:299  | https://doi.org/10.1038/s41598-023-50569-4

www.nature.com/scientificreports/

unexpected contact does occur, we need to detect that contact. Since the human and robot share a workspace and 
common objective, this is an instance of human–robot  cooperation30. ISO/TS 15066 is the technical specifications 
for collaborative robots which provides guidelines for risk assessment and designing collaborative operations. 
In accordance with these guidelines, the 6 DoF robot arm must have speed and torque limits on the joints and 
must have a means to immediately stop the robot. Further, within physical human–robot cooperation, a major 
aspect of safety focuses on avoiding collisions between humans and  robots31. Intuitively, we can reduce the risk 
of collision by adding motion constraints for maintaining a safe distance between human and  robot32. Let the 
trajectory be the robot’s motion path (i.e., the sequence of states the robot visits). To maintain a safe distance 
between this trajectory and the human, we will impose limits on the robot’s workspace during task planning 
and execution. These limits constrain the robot into a safe region above the cutting board, so that nearby human 
workers know that the robot will always stay within this space. But even within this safe operating space, we need 
precautionary measures to detect when the robot collides with an object and to stop the robot’s motion if this 
collision is unexpected or  undesired31. Accordingly, we demonstrate how an instrumented knife can be used to 
detect contact, and explore the data structures and approaches needed to sufficiently parameterize a system to 
enable robust contact detection through knife instrumentation.

Constraints on the robot
At the start of the meat processing task the human collaborator places a piece of meat on the cutting board in 
front of the robot (see Fig. 1). We designate a fixed location on the table for meat placement. We then define a 
bounded region around this cutting board. In doing so, we constrain the robot’s gripper and attached knife to 
always stay within the bounded region and avoid collision between the human and robot (see Fig. 3). Math-
ematically, restricting robot movement is achieved by adding limits to the gripper’s state. Let the gripper’s state 
be st = (xt , yt , zt) , where the superscript t indicates the current timestep. We enforce limits on this state such 
that xmin ≤ xt ≤ xmax , ymin ≤ yt ≤ ymax , zmin ≤ zt ≤ zmax . These limits are imposed both when the robot 
is planning a motion as well as when the robot is executing that motion. During planning, our framework cal-
culates a desired trajectory. This trajectory is a sequence of robot states {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . . } 
that the robot must follow. After calculating this trajectory, each point within the trajectory is checked to ensure 
it lies within the safe region. Any point that is outside the safe region is adjusted back into the bounds of the safe 
region by setting the coordinate exceeding the region bounds as equal to those bounds. Specifically, if a point in 
the planned trajectory is (1.1xmax , 1.2ymax , 1.05zmax) , then this point is changed to (xmax , ymax , zmax) . When the 
robot actually executes this planned motion, we implement a secondary check for safety. Specifically, as the robot 
progresses through each step along the motion plan it checks if the next step violates the workspace limits. If any 
step takes the gripper outside the safe region the robot does not execute that step. For instance, if the knife is at 
the boundary (xmax , ymax , zmax) , any control action that would violate the limits is discarded to keep the knife 
within the limits. Collectively, these path-planning and path-execution checks effectively add constraints on the 
robot’s motion to ensure that the knife always stays within the safe operating space. In theory, these constraints 
minimize the likelihood of the robot unintentionally interfering with any humans working in proximity to the 
robot. This control of the robot workspace is critical groundwork to support safety in collaborative human–robot 

Figure 2.  Left: safety precautions for avoiding human–robot collision. Here we constrained the robot’s motion 
into a safe operating region above the cutting board. We also designed an instrumented knife for detecting 
unexpected contacts between the knife and another object. We conducted two experiments using the knife to 
cut butter and meat. We discuss the safety framework in section “Safety: preventing unanticipated collisions” 
and the results of the experiments in section “Safety through the instrumented knife system”. Middle: testing the 
error between the robot’s planned motion and the desired cut (i.e., the robot’s cut precision). This is discussed 
in section “Performance: planning and executing cuts”. Right: example meat processing using our vision and 
control framework. We enable the robot to autonomously detect meat and fat (vision) and then control its 
motion to cut the meat into various products. We test our approach on four meat cutting operations: slicing, 
removing fat autonomously (trimming) or in collaboration with humans (point-to-point), and cubing. More 
details of our vision and control framework are provided in section “Performance: planning and executing cuts”. 
The results of the meat processing with this framework are listed in section “Outcomes from autonomous and 
collaborative meat processing”.
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 environments31. We note that this framework is flexible and can be modified to match the environment inside a 
meat processing factory; for example, designers can increase or decrease the dimensions and shape of this safe 
region to match available workspace or when moving the robot from one workstation to another.

Experimental setup of instrumented knife
The constraints on the robot operating space reduce the risk of contact between human and robot outside the safe 
operation region in which the robot is restricted. During collaboration, however, the human can enter the robot’s 
operating space, either intentionally (through actions like placing the meat on the table) or unintentionally. In 
these instances, we need additional safety precautions to prevent undesirable contacts between the human and 
the robot. Toward this need, we demonstrate how an instrumented knife can be used to detect contact, and use 
preliminary tests conducted while executing the example meat processing tasks to inform guidelines for more 
comprehensive safety protocol development. In this initial execution of the instrumented knife framework, we 
hypothesized that contact with meat could be determined by a proximity sensor and an inertial measurement 
unit (IMU). Further, we hypothesized that due to the unique nuances of the different cutting tasks, unique con-
tact detection approaches would be needed for each task, but that these approaches could be generalized across 
individual pieces of meat. We collect data from a human using a sensor-equipped knife while performing three 
meat processing tasks (slicing, trimming, and cubing) to determine the accuracy of using the sensors for contact 
determination. Although beyond the scope of this experiment, determining that the knife is in contact with 
meat is a critical step toward a broader safety protocol which could use this contact detection along with visual 
and control inputs to explore whether the knife should be in contact with an object, and what kind of object the 
knife is in contact with. Here, we present the proof of concept that an instrumented knife can provide valuable 
feedback focused on contact detection for this eventual safety system.

Design of instrumented knife The knife was instrumented with a SparkFun ESP32-S2 Thing Plus (SparkFun 
Electronics, Niwot, CO) microprocessor, a SparkFun 9 Degrees of Freedom (DoF) IMU Breakout, and a SparkFun 
Proximity Sensor Breakout using a hook and loop attachment for easy repositioning and cleaning. The IMU was 
selected as a candidate sensor  because33 leveraged accelerometry as a tool for collision detection.  Similarly34, 
were successful in using time-of-flight proximity sensors for collision detection, thus we also selected proximity 
sensing as another candidate sensor. To accommodate ease-of-use and maximize logical placement of these sen-
sors, the microprocessor and IMU were placed on either side of the knife handle, just below where the handle is 
gripped. The proximity sensor was placed below the handle, perpendicular to the knife, to allow it to aim along 
the knife blade toward the object being cut. These positions, as well as the selection of sensors were confirmed 
based on a preliminary test of reliability. In this test, the sensor readings were collected at 100 hz while a human 
repeatedly cut into a block of butter. While the knife was in contact with the butter, the human pressed a button 
to code ground truth data representing contact. An initial test of the use of these sensor data to classify that 
contact yielded error rates < 1.1% (data not shown). Based on the initial success of this instrumentation system 
confirmation exercise, we progressed to demonstrate the system in a meat processing context.

Data preparation To determine whether this knife instrumentation system would be able to classify when 
the knife is in contact with meat, we conducted an experiment using the knife to perform the three target meat 
processing tasks (slicing, trimming, and cubing) on two pork loins. The experiment resulted in 23, 26, and 27 
replicates of slicing, trimming, and cubing. The differences in replicate number are due to some slicing actions 
not being recorded, differences in fat content among some slices (i.e., some slices did not need trimming), as 
well as the fewer number of slicing actions needed to create trimmable and cubeable slices. Based on success in 
the preliminary test with butter, the microprocessor controlling the instrumentation system was programmed 

Figure 3.  Schematic showing the robot’s safety framework. The robot cuts the meat placed on a cutting board 
in front of it. (Left) We define a safe operating region around the cutting board, shown here in red, in which 
the robot is restricted throughout the operation. Staying within this bounded region helps to avoid undesirable 
contact with humans. (Right) We designed an instrumented knife for detecting undesirable contacts of the knife. 
This can inform the robot to re-plan its trajectory whenever needed to avoid collision with humans. To validate 
the effectiveness of the knife we perform two experiments: first, a human cuts butter with this knife; second, a 
human cuts meat with this knife. We test how accurately our setup can predict contact.
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using Arduino IDE to collect and log data from the proximity and IMU sensors at 100 hz. This data collection 
resulted in 10 features (i.e., independent variables) for use in training the contact detection algorithm. These 
features included the proximity reading, as well as the x, y, and z axis readings of the accelerometer, magnetom-
eter, and gyroscope. Ground truth measurements indicating when the knife was in contact with the meat were 
determined by the human operating the knife. When the human felt the knife come into contact with the meat, 
they pressed a button on the microprocessor. The button was continuously pressed during the entire time the 
knife was in contact with the meat. The microprocessor was coded such that this binary response variable (i.e., 1 
if pressed, 0 otherwise) was logged with the 10 associated sensor measurements. The average replicate resulted 
in 1462 observations, of which 69.5% represented contact with the meat. The data were transferred in real-time 
from the microprocessor to local storage via universal serial bus (USB). Prior to analysis, each reading from each 
replicate was centered and standardized, and values exceeding 5 standard deviations of the mean were omitted 
from analysis as presumed sensor errors.

Because the ground truth observations were determined by when the human pressed the button, there was 
opportunity for human error. To minimize this, we visually confirmed that the human did not accidentally let 
go of the button during the cutting action by evaluating the consistency and duration of the indicator for con-
tact in each cutting action. There will be residual human error associated with imperfect identification of the 
exact millisecond when the knife came into or exited contact with the meat; however, for the purposes of this 
proof-of-concept exercise, that error in ground truth coding was deemed acceptable. In future work exploring 
the refinement of this system for use in a broader safety protocol, high-speed imagery will be needed to confirm 
ground truth more precisely.

Data analysis To explore the accuracy with which this prototype knife instrumentation system could be used 
to classify whether the knife was in contact with or approaching the meat, we trained a random forest classifica-
tion algorithm (RF) using the randomForest  package37 of R v 4.2.1 (R Core Team, 2022). The target response 
to be classified was the binary indicator representing contact with the meat, and the features or independent 
variables used by the RF were the 10 sensor readings. The RF is a supervised machine learning algorithm that is 
used to classify data by bootstrapping samples from the original data, building decision tees for each sample, and 
averaging the predictions from those trees in an ensemble to generate a final estimated outcome. The RF tends 
to be more robust than other classification approaches, with simple hyperparameter tuning and high prediction 
 accuracy38. To derive our RF, we split the data from each cutting task into 2 subsets, with 60% of the observations 
used for training, and 40% used for independent evaluation of classification accuracy. The 60% used for train-
ing was also used to tune the model parameters using the tuneRF function of the randomForest package. Based 
on this tuning, we bootstrapped 500 samples from the training dataset, building 500 trees with 4 to 6 variables 
tried at each split. The resulting tuned RF was then evaluated against the 40% of held-out data to determine the 
number of true and false positives and negatives, as well as the overall error rate. The error rate was calculated 
as the number of false positives and false negatives divided by the total number of observations.

To better understand the generalizability of the knife instrumentation system, we explored this training and 
testing strategy applied to three different data structures. In the first data structure (Superficial, within cut type; 
SWT), we combined all data from individual replicates within a cutting task into a single dataset for each cut-
ting task. These data were then split 60/40 as described above to benchmark the accuracy of the system when 
an individual algorithm is trained for each type of cut. This was a superficial split, meaning that all data were 
considered equally during the splitting into training and testing sets, without explicitly accounting for grouping 
factors like replicate. In the second data structure (Superficial, Across Types; SAT) we sought to explore how an 
algorithm could generalize across cut types. In this structure, we combined all data from the three cutting tasks, 
and split this combined data 60/40 for training/testing, as described above. Again, this represented superficial 
splitting as replicates were not considered as a grouping factor when determining the data splits. In the third data 
structure (By Replicate, Within Type; RWT) we explored the impact of training and testing within individual cuts 
of meat. We trained the RF using the cut-specific datasets, but split such that 60% of the replicates were used for 
training and 40% of the replicates were used for testing. This meant that during testing, some replicates would 
reflect entirely “new” pieces of meat, which would be more representative of a real-world context where contact 
on new pieces of meat would need to be determined without prior opportunity to learn on data from that specific 
cut. Another series of random forest regressions was then applied to each of these data structures to evaluate the 
ability of the sensors to predict when an object was approaching. In this analysis, the same 60/40 training/testing 
split was used to predict an incoming object in the 10-100 milliseconds prior to contact.

In a real-world application of a full-scale safety control system, an acceptable error rate would be 0% . However, 
given that this instrumented knife is only one element of what could be incorporated into such a system, and 
we had potential for human error in pressing the contact button for determining ground truth in this proof-of-
concept, we set a target error rate of < 3% . Time-of-flight proximity sensors such as the one employed in this 
experiment have accuracy and precision generally estimated as 1% of the distance from the object. Based on the 
length of the instrumented knife, the expected precision was 1.5 mm. The accuracy and precision of the IMU 
was expected to be ± 0.5◦ heading accuracy for the magnetometer, 1.5% sensitivity for the gyroscope, and 0.5% 
sensitivity for the accelerometer. Based on these hardware specifications, we expected that the random forest 
approach would support high fidelity detection of contact.

Performance: planning and executing cuts
In the previous section we discussed the first part of our framework, which ensures the robot arm and attached 
knife are safe around humans. Next, we discuss the second part of our framework that enables the robot to pre-
cisely process meat. Specifically, we demonstrated a system that can autonomously or collaboratively perform 
meat processing tasks like slicing a loin into chops, trimming the fat off the meat, and cutting meat into uniform 



6

Vol:.(1234567890)

Scientific Reports |          (2024) 14:299  | https://doi.org/10.1038/s41598-023-50569-4

www.nature.com/scientificreports/

cubes. To complete these cutting operations, the robot must know where to make the cuts (i.e., vision) and 
it must be able to move with precision while cutting (i.e., control). Accordingly, for each new and previously 
unseen piece of meat, we leverage the robot’s vision to plan a cutting motion based on the task. Next, we design 
a control algorithm that accurately follows the motion plan to make precise cuts. We highlight that each piece 
of meat used in the experiments can have different shape, size, and coloration. Moreover, the fat distribution on 
the meat slices has significant irregularity. Our method is capable of working under these sources of variability. 
We test the accuracy of our vision and control framework, and then perform the meat processing tasks (i.e. 
slicing, trimming, cubing).

Experimental setup for the robot arm
We performed our experiments with a multi-purpose UR10 robot arm (Universal Robots). This robot has 6 
degrees-of-freedom and is commercially used by manufacturing industries for tasks like assembly, sanding, 
and  welding39. This robot complies with the ISO 10218-1 regulations for collaborative robots as mentioned on 
the manufacturer website (https:// www. unive rsal- robots. com/ artic les/ ur/ safety/ safety- faq/). We mounted one 
RGB webcam (Logitech C290) on the robot arm using a custom 3D-printed attachment. This camera was placed 
near the robot’s gripper, moved with the robot, and could see the cutting board and any meat products on that 
board. We also rigidly attached a Henckels Everpoint stainless steel cutting knife to the robot’s grippers. In the 
robot’s home position this knife pointed down towards the table (see Fig. 4, top-left). Although our system uses 
this specific combination of robot, camera, and knife, the vision and control approaches are designed to flexibly 
extend to other robot, camera, and knife combinations.

In order for the robot arm to use the mounted camera we needed to convert from the camera’s frame (i.e., the 
camera’s perspective) to the arm’s frame (i.e., the robot’s perspective). For a summary of this conversion method 
refer to the Fig. 4 (top-right). The camera captures objects in pixel coordinates, and in order for the robot to 
reach that object, it needs to know what x–y position corresponds to the given pixel. We leveraged constrained 
optimization to calibrate the robot and  camera40. First, we measured the position of four markers in the robot’s 
local coordinate frame (i.e., positions in meters). We then sent the robot to its home position and used the camera 
to get the coordinates of those same four markers (i.e., positions in pixels). Let pi

R
 be the position of the i-th 

marker in the robot’s frame and let pi
C

 be the position of that same marker in the camera frame. The relationship 
between these two positions is given as

where � is some offset and T is the scaled transformation matrix. We solved for the scaled transformation matrix 
and the offset by minimizing the total error between pR and pC subject to the constraint that the basis of this 
transformation were  orthogonal41. Let θ = (θ0, . . . , θ4) be the parameters of this transformation matrix and 
offset. The optimal parameters θ∗ are found using

The result of this optimization is a calibrated transformation (with parameters θ∗ ) that maps camera pixel 
coordinates to robot arm coordinates; for any point the camera sees, the robot knows the corresponding point 
on the table’s x–y plane. Hence, the robot can reach for the objects that it sees through the camera. This calibra-
tion process needs to be repeated when the robot’s workspace changes (i.e., when the robot is placed on a new 
factory floor, the operators would need to perform this calibration once). However, our framework automates 
the key steps of the calibration process, and operators would only need to input the measured positions pi

R
 for 

each marker. The remaining steps could be autonomously performed by a provided a code package for increased 
flexibility.

Robot vision and control
Vision The robotic system developed in this work includes several elements, enabling vision (camera), actuation 
(knife and robot arm), and control (computer). We collectedly refer to these collaborative elements as the robot, 
with the understanding that individual elements have unique functions which work seamlessly to support the 
overall robot performance. To support the vision function of the robot, the camera mounted on the robot arm is 
controlled by the computer to collect and send visual information which the computer then processes and uses 
to inform the desired trajectory for the arm. In this workflow, the human partner places the meat on the cut-
ting board, and the robot collects an image of the cutting board and surrounding environment. The robot then 
segments this image to separate out the meat, fat, and any visual markers placed there by the human co-worker. 
To identify all these objects the robot relies on color: i.e., for detecting meat the robot was programmed with 
an upper and lower range of red RGB values. The largest continuous red contour is classified as the meat, the 
largest white contour is labeled as fat, and any purple squares are treated as human-provided markers. The black 
cutting board provides a uniform background and the robot ignored any pixels outside of this cutting board. 
One advantage of our color-based approach is that it is robust to the meat product’s shape (i.e., the meat could 
be more circular, more rectangular, or entirely irregular).

We use three meat cutting tasks to test our approach. First, our framework cuts a loin into chops (slicing). 
Then it removes excess fat from the chops either autonomously (trimming) or under guidance from a human 
(point-to-point). Finally, it cuts the meat into uniform cubes (cubing). Figure 4 (bottom) shows example cuts for 

(1)piR = T · piC −�

(2)θ∗ = argmin
θ

4∑

i=1

∥
∥
∥
∥
piR −

[
θ1 · cos(θ0) − θ2 · sin(θ0)
θ1 · sin(θ0) θ2 · cos(θ0)

]

︸ ︷︷ ︸

T

piR +

[
θ3
θ4

]

︸︷︷︸

�

∥
∥
∥
∥

https://www.universal-robots.com/articles/ur/safety/safety-faq/
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these tasks. In slicing and cubing the robot cut along straight lines to make uniform pieces. During slicing, the 
vision module planned N equally spaced lines between the left and right edges of the meat. In point-to-point, 
the robot cuts along a straight line between the two markers placed by a human. This allows human partners 
to intervene and direct the robot: the human coworker can place and move the markers to indicate where the 
robot should cut, and then leave the robot to autonomously complete this cut. Cubing was similar to slicing—our 
framework planned N equally spaced lines between the top and bottom of the meat (making cuts orthogonal 
to the slices). In trimming, however, we need to cut around irregularly shaped fat, so simply drawing a straight 
line between the fat and meat is insufficient. Instead, we found the points at the intersection of the fat and meat 
contours, and then fit a trajectory to these points. To autonomously identify a smooth and efficient trajectory (i.e., 
motion path) between the fat and the meat, we used the “Spatial QUalIty Simplification Heuristic—Extended” 
or SQUISH-E  algorithm42. SQUISH-E inputs an initial trajectory of all the points between the fat and the meat, 
and then compressed that trajectory to a minimum number of points while ensuring that the error between the 
compressed and the original trajectories was below a given threshold. The resultant vision framework detects the 
meat and outputs a desired planar trajectory (i.e., x–y motion) to make the desired cuts in each task.

Control We next controlled the robot to accurately follow these desired trajectories and perform cuts. There 
were three aspects of this control problem: (a) orienting the knife so that the blade was in the direction of the 

Figure 4.  (Top) Our proposed robot vision and control framework. A camera is mounted on the robot arm. 
The gripper of the robot holds a knife for cutting. During calibration we use the position of the four blue 
markers in the camera frame and the robot frame to optimize Eq. (2) and find the optimal parameters θ∗ . 
(Middle) Robot motion in three dimensions. The output of the vision module is a trajectory in x–y coordinates. 
While following this trajectory, the robot pauses at intervals and moves in the z direction according to a 
sinusoid of time period T. This up-and-down motion moves the robot in and out of the meat to perform cuts. 
(Bottom) Example meat processing tasks. We design experiments with three tasks that are representative of 
meat processing applications in industry. First, meat is sliced into thin strips. Then, any excess fat on the strips 
is cut off; this is done through interaction with human coworkers (point-to-point) or completely autonomously 
(trimming). Finally, we produce uniform cubes from the slices (cubing).
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desired cut, (b) precisely following the desired x–y trajectory along the table, and (c) modulating the height of 
the knife to cut the meat products.

Let st = (xt , yt , zt ,φt) be the robot’s actual state at time t. This state consists of the x, y, and z position of 
the gripper and φ , the orientation of the knife. Our control objective is to drive st towards the desired state 
std = (xtd , y

t
d , z

t
d ,φ

t
d) . Here xd and yd are the desired planar position of the knife that are output by our vision 

module. To get the desired height zd , we programmed the robot to follow a sinusoidal up-and-down motion 
along the z axis. Each time the robot moved down, the blade of the knife cut into the meat. As the robot came 
up, the blade was removed from the meat. The robot either moved in the z direction or in the x–y plane. When 
moving in x–y plane the robot stopped at equal intervals to move up-and-down sinusoidally with a cycle time 
T. After completing the movement in z the robot resumed moving along the x–y trajectory at a constant height 
zd . A schematic of this motion is shown in Fig. 4 (middle), where the robot’s three dimensional trajectory is 
highlighted in red. Next, to get the correct orientation of the knife φd we calculated the angle between the desired 
position at time t and the next desired position at time t + 1 . We applied velocity control to guide the robot along 
the desired motion. We define ut as the robot’s velocity command at time t: we computed this velocity using 
proportional feedback u = K(std − sd) , where K is an overall control gain. Prior robotics research has shown 
that this controller is stable and causes the actual state st to converge to the desired state std

43. We implemented 
our robot controller at a frequency of 1 kHz. During implementation we also incorporated the safety measures 
described in section “Safety: preventing unanticipated collisions”: the robot was constrained to move in a region 
around the cutting board to ensure safety for the humans who interacted with and worked around the system.

Robot accuracy
Before we use our vision and control framework to process meat, we first need to test the efficacy of the 
vision and control modules of our framework. Accordingly, we performed a preliminary experiment with 
three representative tasks: using point-to-point cuts to move from side-to-side (horizontal) and from front 
to back (vertical), and trimming the fat to move along a curve (trim). These horizontal, vertical, and trim-
ming motions are the primitive movements that our robot needs when performing meat cutting operations. 
For each task we conduct three trials. During the experiments, we record the planned trajectory output by the 
vision module {(x1d , y

1
d , z

1
d), (x

2
d , y

2
d , z

2
d), (x

3
d , y

3
d , z

3
d), . . . } as well as the robot’s actual trajectory while moving 

{(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), . . . } . In order to be accurate, our method should enable the robot to per-
form the planned motion with minimum error, i.e., the distance between the planned and the actual trajectories 
should be minimal.

Meat cutting procedure
To test our proposed vision and control approach for safe and autonomous robot cutting we performed stud-
ies with multiple meat products. In these studies the proctors placed fresh pork loins on a table in front of the 
robot arm, and the robot had to safely and precisely process the meat. We divided the meat processing into three 
representative sequential tasks: slicing the loin into chops (slicing), separating the detected fat from the meat of 
each chop autonomously (trimming) or by interacting with humans (point-to-point), and cubing the chop (cub-
ing). Although not intended to represent a high-value workflow for the meat processing industry, this sequence 
of cuts allowed proof-of-concept that the robot could execute diverse and sequential tasks on a piece of meat 
collaboratively with human partners. Please refer to Fig. 4 (bottom) for examples of these tasks. Throughout 
this process we measured the robot’s trajectories and the accuracy of the cuts, and assessed whether the final 
products met the desired industry specifications.

Meat products In this proof-of-concept demonstration, the robot processed four pork loins. Each cut of pork 
was approximately 1.696 kg and contained a layer of fat surrounding the top side of the meat. The meat processing 
of the pork loins was done sequentially; first, the robot cut the pork loins into a total of 33 chops. It then removed 
the excess fat from each chop before cutting each chop into uniform cubes, producing a total of 158 cubes.

Independent variables To identify and make cuts, the robot followed the vision and control framework 
described in section “Robot vision and control”. We varied the robot’s task across three levels: slicing, removing 
fat, and cubing. When slicing, the robot attempted to cut the loin into equally sized chops; the chops numbered 
between 8 and 10 depending on the individual pork loin. For removing fat we compared two strategies: point-
to-point (a collaborative approach) and trimming (a fully autonomous approach). The point-to-point strategy 
allowed humans to interact with the robot: we asked proctors to place two felt markers on either side of the meat 
product to cut away fat, and the robot cut a straight line between those markers. Put another way, this allowed 
proctors to guide the robot in making desired cuts. Our alternative strategy was autonomously trimming the 
fat: when trimming, the robot attempted to automatically cut the fat that it detected from the sides of the meat 
based on the visual inputs. Finally, when cubing, the robot made final cuts to produce equally sized squares of 
meat about 3× 3 cm in dimensions. As the cubes are made from the cuts of meat after fat removal, the height of 
the cubes is determined by the thickness of the chop from which they are cut. Hence, we only include the width 
and length of the cubes in our analysis.

Dependent variables We used both qualitative analysis and quantitative metrics to evaluate the robot’s per-
formance. From the robot’s perspective, we recorded the robot’s desired trajectory with states sd and the robot’s 
actual trajectory with states s. We then calculated the error in the robot’s motion, where error was defined as: 
Error = 1

n

∑T
t=0 �s

t
d − st� . Here, n is the number of discrete points in the robot trajectory. When focusing on the 

meat, we measured the consistency and accuracy of the robot’s cuts. Here, consistency includes the dimensions 
and weight of each piece of meat the robot produced: for the slicing and cubing tasks, the robot should output 
meat products of almost identical sizes and weights. Accuracy refers to the precision of the robot’s cuts when 
separating the meat from the fat. In both point-to-point and trimming tasks, we took the pieces that the robot 
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had cut away from the main body of meat and measured the dimensions of the fat and meat layers removed. 
We also weighed the meat removed during trimming. Ideally the robot should only remove fat, and the size and 
weight of the removed meat should be close to zero.

Besides these objective measures, we also analyzed the performance of the robot subjectively in point-to-point 
and trimming. We took photos of the meat products before and after the robot had completed the cut. We then 
conducted an online survey with 7 anonymous, independent experts recruited from a number of meat processing 
facilities across the country. These experts from companies such as Smithfield, Tyson, Cargill, etc. had an average 
work experience of 8 years in the meat industry. In the survey we first informed the experts about the robot’s 
objective of separating the fat and meat. We then showed an image of each meat slice before and after the robot 
removed the fat, and asked the experts to rate the robot’s performance on a scale of 1–7. We emphasize that the 
experts did not know which method—point-to-point or trimming—was used to remove the fat. We divided the 
scores into three categories to classify the performance. A score ≤ 2 was labelled poor, a score in the range 3–5 
was labelled fair, and a score ≥ 6 was labelled good. Each expert was asked to rate a total of 31 slices. We excluded 
2 slices from the survey since they did not have enough fat for removal. We counted the expert ratings for each 
of the three categories and calculated the percentage of times the experts ranked the cuts as poor, fair, or good.

Results and discussion
Our high-level goal is to enable multi-purpose robot arms to safely and autonomously process meat while col-
laborating with human co-workers. In section “Materials and methods” we introduced a formalism for safety 
(bounding the robot’s motion and instrumenting the knife to detect contact) and for autonomous meat process-
ing (visually sensing the meat and then controlling the arm to precisely cut the meat into various products). In 
this section, we discuss the results of our experiments. First, in section “Safety through the instrumented knife 
system” we summarize the results of our instrumented knife and identify future work needed to leverage the 
instrumentation system for a broader safety framework. Second, in section “Outcomes from autonomous and 
collaborative meat processing” we discuss the results for the autonomous meat cutting tasks, including slicing, 
trimming, point-to-point, and cubing motions. Videos of the meat processing tasks and our proposed framework 
can be found here: https:// youtu. be/ 56mdH jjYMVc.

Safety through the instrumented knife system
Here we list the results of the experiments from section “Safety: preventing unanticipated collisions” that test 
our instrumented knife protocol, a critical first step toward a comprehensive safety system. We first report how 
accurately the approach was able to detect contact while performing the desired cuts. Next, we explore how differ-
ent approaches to algorithm detection inform criteria and focus for future data collection and system refinement 
efforts. Three specific analyses were compared, including superficial data splitting within cut task (SWT), data 
splitting by replicate within cut task (RWT), and superficial data splitting across cut tasks (SAT).

In the SWT analysis, the instrumented knife system was able to detect contact with the meat with error rates 
ranging from 1.86 to 3.69% (Table 1). Although the error rate for trimming exceeded our desirable threshold, 
the error rates achieved for slicing and cubing positively reflect the capacity of the system to predict contacts, 
and support future use of this instrumentation in developing safety algorithms for collaborative meat process-
ing. Our instrumentation system builds on the work  of44 by advancing past the exclusive use of proximity as a 
contact detection tool. Similarly, we advanced the IMU-based approach advocated  by33 to also include proxim-
ity. By bringing together these two sensor systems, we were able to generate high-fidelity detection of contact 
from limited and preliminary data set. Building on the testing of our instrumentation system to include more 
data and improve the precision of ground truth labeling is expected to further advance the utility of this knife 

Table 1.  Results of random forest classifications from experiments with instrumented knife. This includes 
both detecting contact types (Top) and detecting if the knife is approaching contact (Bottom).

Data Action False positives False negatives Total occurrences Error rate (%)

Superficial, within cut type (SWT)

Slicing 86 168 13,670 1.86

Trimming 143 300 11,998 3.69

Cubing 236 328 18,779 3.00

By replicate, within cut type (RWT)

Slicing 30 304 8123 4.11

Trimming 147 79 11,948 1.89

Cubing 826 779 16,769 9.57

Superficial, across types (SAT) All cuts 802 1148 44,090 4.42

SWT approaching contact

Slicing 0 88 13,438 0.007

Trimming 2 91 12,135 0.008

Cubing 0 108 18,924 0.006

RWT approaching contact

Slicing 0 87 8123 0.011

Trimming 0 17 12,135 0.001

Cubing 0 133 16,769 0.008

SAT approaching contact All cuts 5 305 44,448 0.007

https://youtu.be/56mdHjjYMVc
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instrumentation system within the context of a broader safety management system. Based on these data and 
their consistency with previous findings, we demonstrate that cut-type-specific algorithms can be developed to 
identify contacts between the instrumented knife and the meat.

Before designing experiments to support the use of a knife instrumentation system in broader safety man-
agement protocols, it is critical to address methodological questions relevant to the training and refinement of 
the instrumentation system. A key performance indicator for a successful contact detection system is the ability 
to recognize contact in novel situations. The superficial data splitting approach used in the SWT analysis does 
not allow for exploration of how the model performs on previously “unseen” objects. Therefore, to address the 
question of whether the algorithms trained in this assessment were generalizable to new pieces of meat within 
each cut type, we adjusted our training and testing data to test against entirely new pieces of meat (RWT analy-
sis). In the RWT analysis, error rates were acceptable for trimming ( 1.89% ) but excessive for slicing ( 4.11% ) and 
cubing ( 9.57% ; Table 1). Because the average error rate from the RWT analysis was higher than in the SWT 
assessment, we can conclude that the system suffers from a lack of generalizability. Generalizability (i.e., effective 
performance across multiple tasks and settings) is commonly identified as an important target in robotic control 
 literature45, and a critical goal in the meat processing  context46. In tests on generalizability in other contexts, RF 
approaches show strong performance among various machine learning algorithms  tested47. However, superficial 
data segmentation for training and testing is acknowledged as a methodological pitfall likely to overestimate 
model  performance48. In this case, the error rates achieved from RWT are more reliable indicators of the expected 
algorithm performance in future scenarios than the error rates achieved through SWT. The confirmation of 
these differences in presumed algorithm performance is critical because it informs the appropriate experimental 
unit necessary for future system refinement. Specifically, in future model refinement tasks, we must focus on 
replicating a large number of meat cuts to allow for sufficient cut replicates for model training. A large number 
of observations per cut is important but insufficient to overcome the role of individual cuts in supporting deriva-
tion of more generalizable algorithms.

In addition to being able to generalize to new meat objects, it is also critical that a safety system is able to 
generalize across tasks. Specifically, we want to ensure the robot can detect contact irrespective of the task that 
is being conducted. Although training unique algorithms for each cut type supports understanding of a “best 
case scenario” in terms of system performance, it is the ultimate goal of this approach to develop a single algo-
rithm for contact detection that would work across any cutting task the robot is asked to perform. Toward this 
goal, we explored how the error rates were affected by training a single model across all cut types compared 
with models specific to each cut type (SAT approach). In this SAT analysis, the error rate was 4.42% (Table 1). 
Again, the elevated error rate here compared with the SWT analysis suggests a challenge with working toward a 
more generalizable system. Cross-task generalization in machine learning strategies is an active area of research, 
with various strategies tested for  reinforcement49 and unsupervised  learning50. In supervised learning contexts, 
meta-datasets are often used as a key strategy to enhance cross-task  generalizability51. Our work supports the 
idea that a more comprehensive dataset containing a broader array of cutting tasks will be important for the 
future refinement of this system. In addition to replication among many cuts of meat, replication across meat 
processing tasks is also critical.

Broadly, the majority of our testing showed error rates that exceeded the target level of precision. The few 
training and evaluation scenarios which yielded error rates below the target 3% demonstrate the theoretical 
opportunity to move toward extremely accurate and precise contact detection using this instrumented knife 
approach. Toward the larger goal of ensuring that undesirable contact is prevented, we performed another series 
of random forest regressions using the same SWT, RWT, and SAT data structures. In these predictions, we tested 
the ability of the sensors to classify proximity to an object in the 10–100 milliseconds prior to contact rather than 
the moment of contact itself. This time range was selected based on the ability to stop robot movement prior to 
contact while still providing enough freedom for the human and robot to work collaboratively. Implementation 
of collision prevention models in other human–robot collaborations require 130 milliseconds to calculate an 
incoming  object52. All error rates from the collision prevention models were less than 1% , which are notably 
lower than those for collision detection (Table 1). The collision prevention analysis using either SWT or RWT 
resulted in error rates between 0.006% and 0.008% or 0.001% and 0.011% , respectively. Similarly, the SAT collision 
prevention analysis resulted in an error rate of 0.007% . The general lack of false positives is promising; however, 
the false negative rates indicate opportunities for future refinement. False negatives place a human collaborator 
at risk because they indicate the system would not be able to identify an impending collision. Given the ultimate 
goal of having a system capable of predicting object proximity with accuracy, the collision prevention approach 
using the SAT data was favorable for accurately detecting an incoming object in a timely manner, regardless of 
the task being performed. Both the error rates and the generalizability make incoming object detection the most 
promising of the tested approaches. We hypothesize that the lower accuracies of the contact detection models 
relate to the uncertainty surrounding the exact moment that contact is achieved rather than uncertainty of an 
incoming object. A major limitation of the collision prevention approach is, of course, that some “collisions” are 
desirable (i.e., the system needs to come into contact with meat). Future refinement to support the application 
of these approaches for automated meat processing should consider implementing a combination of collision 
prevention, object detection and differentiation (classifying objects that should be cut versus those that should 
not be), and contact determination for redundant and optimal safeguarding of humans working in collabora-
tion with robots. Object detection and differentiation is outside the scope of the present project, but will be the 
goal of future work.
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Outcomes from autonomous and collaborative meat processing
Here we list the results of the experiments from section “Performance: planning and executing cuts” that test 
our vision and control framework for performing four meat processing tasks. We first report how accurately the 
robot was able to perform the desired cuts; i.e., how accurately the controller could execute the cuts output by the 
vision module. Next, we report the data from slicing, point-to-point, trimming, and cubing motions on four pork 
loins. This data includes objective measures of the work products and subjective evaluations by industry experts.

Accuracy of the vision and control framework
Before using our vision and control setup for meat cutting, we first tested our framework’s ability to correctly 
plan and precisely execute desired cutting trajectories. The robot performed three different types of motions, 
namely, vertical, horizontal, and trim. Three trajectories of each type of motion are shown in Fig. 5 (left). The 
gray lines are the trajectories planned by the vision module, and purple lines are the trajectories that were actually 
executed by the robot. We observe that the robot’s trajectory coincides with the planned trajectory, indicating 
high accuracy in executing the desired motion. The plot on the right in Fig. 5 quantifies the robot’s error when 
performing these tasks. We see that the error, averaged across the three trials, is less than 2.5 mm for each motion. 
The required accuracy in meat processing industries is generally ± 5  mm35,36. Hence, our robot controller causes 
the robot to accurately complete the cuts output by the vision module.

These results indicate that our method is adequately capable of meat processing applications. However, we 
recognise the drawbacks of detecting fat and meat based primarily on colors. Specifically, the downside of this 
mode of detection is that if the fat and meat have almost identical colors this visual method will fail, and we need 
to rely on additional modalities to distinguish between meat and fat. For example, the robot could palpate the 
meat to detect regions of differential  stiffness53,54 or implement more comprehensive visual detection using near 
infrared  spectroscopy55,56. This can be a new avenue for future research in the development of multi-purpose 
robot arms for meat processing.

Autonomously and collaboratively processing meat
Slicing In our test of the autonomous and collaborative meat processing, the proctor placed a pork loin on the 
cutting board and the robot autonomously sliced the pork loin into chops. In Fig. 6 we report the consistency 
of those chops in terms of their size and weight. The image on the left shows an example trajectory the robot 
planned for slicing. The bar graphs show the robot’s consistency in thickness (middle) and weight (right) for the 
slices. As a reminder, we wanted the robot to cut the meat into almost identical pieces that have similar thick-
nesses and weights. The average slice across all pork loins was 3.03 cm thick and weighed 205.25 g. The variance 
in slice thickness was 0.66 cm or around 21.7% of the mean value, while the variance in weight was 66.85 g or 
32.57% about the mean. When we look at the slices for each individual pork loin, the weight showed a variance 
of 33.2%, 38.18%, 32.35%, 27.77% about the mean. The variance in the thickness for the pork loins was 24.67%, 
18.5%, 23.53%, 20% respectively. Despite this variability, out of the 33 total slices, 31 were within the weight 
range suggested for pork chops in the Institutional Meat Purchase  Specifications57. Notably, the 2 slices that do 
not meet the requirements were the first slices cut from two different pork loins. Since these slices were cut from 
the edges of pork loins that had irregular shapes, it was not unexpected that the weight and dimensions of these 
two slices did not meet the specifications.

One of the primary reasons why the strips had variable sizes and weights was that different pork loins have 
different thickness. Even for the same pork loin the thickness and width is far from uniform in terms of both the 
meat and fat present. Our method did not explicitly account for irregularities in the size of pork loins. Rather, the 
robot detected the meat and fit equally-spaced cuts across the meat. This one-dimensional approach to trajectory 
planning could be improved in the future by explicitly considering additional information about the meat and 
desired specifications for the cut. For example, utilizing the views from multiple camera angles can provide a 
much more accurate estimate of the meat’s shape. Instead of simply fitting equally spaced lines across a overhead 
view of the meat, we envision future systems that build on our method to incorporate multiple camera angles to 

Figure 5.  Results from our experiments testing vision and control accuracy on the robot arm. (Left) The three 
images show example trajectories for the three motions: vertical, horizontal, trimming. The trajectories planned 
by the vision module are shown in gray and the trajectories executed by the robot arm are highlighted in purple. 
(Right) Error between the desired trajectory and the robot’s actual motion. The gray region shows the industry 
allowable threshold on  Error35,36.
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better divide the meat into equal portions. Such a system could eventually consider quality or value parameters, 
selecting the optimal breakdown for a primal based on visually sensed information and projected cut quality 
and value. In the meantime, this preliminary demonstration highlights that our proposed approach led to slices 
that satisfied the industry standard specifications.

Removing excess fat Once the pork loins were sliced, the next task was to remove any excess fat from each 
slice. In order to test how accurately the robot arm was able to remove the fat, we implemented two methods 
for comparison. The first method, point-to-point, was a collaborative approach where humans placed markers 
to guide the robot through each cut. In the second method, trimming, the robot performed the task in a fully 
autonomous manner using our developed algorithm.

Point-to-point In this task the proctors placed two markers near the meat indicating their desired cut, and 
the robot cut along a straight line between these markers. The image at the top of Fig. 7 (left) shows an exam-
ple cut made by the robot based on the proctor’s guidance. The proctors used this approach (and placed their 
markers) to get the robot to cut fat away from the meat slices. The bar graphs at the bottom of this image show 
the average thickness of fat removed from each slice. We see that the robot was able to successfully remove an 
average of 1.28 cm of fat with a variance of 0.68 cm. Along with fat the robot also removed some amount of meat; 
the thickness and weight of this lost meat are also shown in these bar graphs. The thickness of meat removed 
averaged 1.38 cm with a variance of 0.52 cm and weight of the meat removed averaged 19.52 g with a variance 

Figure 6.  Results of slicing. (Left) An example trajectory planned by the robot’s vision module. This trajectory 
makes equally spaced cuts from an overhead view of the meat. The number of cuts depend on the length of the 
pork loin. (Middle) We plot the Consistency in the thickness of each slice. Green bars show the mean thickness 
of the slices produced from the same pork loin, i.e. pork loins 1, 2, 3, and 4. The orange bar shows the overall 
mean thickness of the slices across all pork loins. (Right) Plot of Consistency in the weight of the slices. As 
before, the green bars show the average weight of the slices produced from the same pork loin. The orange plot 
shows the average weight of slices calculated across all four pork loins. The gray region shows the weight range 
suggested for pork chops by the USDA.

Figure 7.  Results of point-to-point and trimming. (Left) Point-to-point: the robot cut between two felt markers 
placed by a human co-worker. The human was instructed to position the markers so that the robot’s straight-line 
cut between the markers would separate fat and meat. The plot shows the mean thickness of the fat and meat 
removed during cutting as well as the mean weight of the meat removed. (Middle) Trimming: the robot cut a 
curve that was autonomously fit along the intersection of fat and meat. The plots show the average thickness 
of fat that was removed as well as the mean thickness and weight of the meat that was erroneously removed. 
(Right) Subjective results from our expert survey. The experts were shown images of the meat products before 
and after robot removed the fat using either point-to-point or trimming. Experts rated the robot’s performance 
on a scale from 1–7. The scores are classified intro three categories: a score of 1–2 is poor, a score of 3–5 is fair, 
and a score of 6–7 is good. The frequency of each rating is calculated as a percentage of the total number of 
ratings. We compare the performance in point-to-point (blue) with that in trimming (orange); the scores from 
both approaches indicate that the robot’s cuts are fair or good roughly 70% of the time.
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of 16.97 g. We emphasize that with the point-to-point approach the robot is only cutting along straight lines 
between the human’s markers.

Trimming During trimming the robot autonomously planned cuts to remove excess fat. It identified the fat 
and meat based on color, and made cuts at the intersection of the fat and meat. The image at the top of Fig. 7 
(middle) shows an example trajectory planned for trimming. The average thickness of fat removed in trimming 
was around 0.62 cm with a variance of 0.44 cm. The average weight of the meat that was also erroneously removed 
was 8.95 g with a variance of 10.39 g. The thickness of the removed meat had a mean of 0.83 cm and a variance 
of 0.51 cm. These results are plotted in Fig. 7 (middle).

To understand if these cuts met industry standards, we conducted a survey with 7 experts working in meat 
processing plants like Smithfield, Tyson, and Cargill. The experts rated each cut for point-to-point as well as 
trimming on a scale of 1–7, where higher numbers indicated that the robot had performed a better cut. We 
divided this scale into poor (1–2), fair (3–5), and good (6–7). The plot in Fig. 7 (right) shows the results from this 
survey. From the point-to-point images, 29.82% were rated poor, 54.38% were rated fair, and 15.78% were rated 
good. On the other hand, the chops trimmed through the fully autonomous system yielded 34.84% categorised 
as poor, 54.54% as fair, and 10.6% as good.

In Fig. 8 we show representative examples of the robot’s performance in removing fat taken from point-to-
point as well as trimming. We chose these examples based on the expert ratings of the cuts. We picked the two 
highest rated cuts, the two lowest rated cuts, and two cuts with a score close to the average. From these images 
we can see that the robot removed fat in every case; even for the slices that were rated as poor by the experts, 
the robot autonomously removed some fat. The difference in the quality of performance is largely due to the 
meat that was lost along with fat. Cuts that were scored more highly appeared to have less meat removed, and to 
maintain a more desirable fat layer around the shop.

The results of the survey revealed that experts preferred collaborative cuts executed via point-to-point over 
fully autonomous cuts performed using trimming. Under point-to-point the average score was 3.6, and with 
trimming the average score was 3.48. Since trimming cuts along a curve at the intersection of fat and meat while 
point-to-point cuts along a straight line, we originally expected that the more versatile trimming would perform 
better than point-to-point. In fact, our quantitative results confirm that trimming did indeed lead to a lower 
loss of meat while removing all the excess fat—the average weight of meat removed by trimming (8.95 g) was 
less than half of that removed by point-to-point (19.52 g). But experts still slightly preferred point-to-point; this 
contrast in the objective and subjective results indicates that having a human-in-the-loop results in cuts that are 
more aligned with the expectations of the meat industry. We again highlight that experts were not told which 
method was used for cutting during the survey.

Cubing Finally, after removing the fat, the robot finally had to cut the slices of meat into equally sized squares 
of 3× 3 cm. We measured the weight of each cube and found that the cubes weighed an average of 19.57 g with a 
variance of 7.83 g. The average dimensions (i.e., length and width) of the cubes were 3.31× 3.33 cm respectively. 
We observed a variance of 0.51× 0.616 cm in the length and width of the cubes respectively. For a summary 
of these results refer to Fig. 9. Overall, 11.4% of the total cubes fall within ±0.3 cm of our desired dimensions, 
and 48.1% of the total cubes lie within ± 0.6 cm of our desired dimensions. We see a high variation in weight of 
the cubes even though the variation in the size of the cubes was not as high. In fact, half of the cubes fall within 
the 2.5–3.5 cm range. This is the acceptable range given our specifications of making 3× 3 cm squares and the 
accepted industry error of ±0.5  cm35,36.

From these results we see that cubing suffers from the same drawbacks as slicing—the meat slices have highly 
irregular shape and our method simply cuts along a grid of uniformly-spaced lines. We did not explicitly consider 
the shape of the meat or the desired dimensions of the final product when planning the cuts. In future works, 

Figure 8.  Examples showing the robot’s performance in removing fat from the meat. We chose these examples 
based on the expert rating from our external survey. The lines in red show the trajectories the robot executed 
to cut away the fat. On the left we show the cuts that had the lowest expert rating. In these cuts the robot 
unintentionally removed a significant amount of meat along with the fat. The cuts in the middle were rated as 
fair (i.e., average) in the survey. In these the robot managed to remove all the fat along with a small quantity of 
meat. On the right we show the examples with the highest expert ratings. Here the robot removed all the fat 
while keeping the amount of meat lost to a minimum.
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the variability can be reduced by an informed planning process with multiple camera angles which takes into 
account the desired dimensions as well as the shape of the meat being cut. However, our current framework was 
successfully and autonomously able to produce 158 cubes of meat, and the dimensions of these cubes fell within 
the industry accepted standards.

Conclusion
In this work we developed and tested a framework that enables multi-purpose robot arms to perform multiple 
meat processing tasks in collaboration with human operators. Our framework included two parts: ensuring the 
system was safe, and enabling the robot to autonomously identify and cut meat. To ensure safety we first con-
strained the robot’s motion into a designated region around the cutting board. We then developed a mechatronic 
knife that used IMU and proximity sensors to detect knife contact with meat. We trained algorithms to accurately 
perceive contact during representative meat processing tasks, and explored how data structured influenced the 
generalizability of these contact detection algorithms. Our results suggest that the instrumented knife is a prom-
ising strategy to identify knife contacts with meat products, but that future data collection efforts to improve 
generalizability of this framework are needed before it can be incorporated into a more comprehensive safety 
management system. These data collection efforts should focus on large numbers of replicated cuts and diverse 
cutting tasks. To ensure that contacts with objects other than meat can be identified, future data collection should 
also include replicated collisions with numerous and diverse non-meat objects.

The second part of our framework combined vision and control to autonomously perform multiple meat 
processing tasks. We attached a camera to the robot arm, and calibrated the camera so that its measurements 
corresponded to the robot’s workspace. We then developed a meat detection algorithm that used the camera to 
observe the location of the meat as well as the outline of any excess fat. Ultimately, the vision module output a 
trajectory of cuts that the robot should perform. We then developed a controller to make sure that the robot safely 
and accurately tracked these cuts. We specifically focused on processing pork loins by slicing them into chops, 
removing the fat from those chops, and then cubing the chops. During our experiments we enabled humans to 
collaborate with the robot by placing markers to guide the robot’s cuts. Our results suggest that this vision and 
control approach leads to meat products that satisfy the industry standards in terms of size, weight, and removed 
fat, although considerable opportunity exists to improve system performance beyond this baseline. Industry 
experts rated around 70% of the autonomous fat-removing cuts as either fair or good, and the dimensions of the 
meat products met the industry allowable margin of error. Overall, our results suggest that this novel framework 
can assist human workers in meat processing industries while meeting the industry’s standards for safety and 
precision. Moving forward, our framework and results are a step towards technologies that help improve job 
satisfaction, supply chain consistency, and product availability within the meat industry.

Data availability
Data will be made available on request. Please contact either Ryan Wright (ryanw22@vt.edu) or Sagar Parekh 
(sagarp@vt.edu) to request this data.
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