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Abstract
For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one
another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information
from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to
convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research
often separates these two directions of information transfer, and focuses primarily on either learning algorithms or
communication interfaces. By contrast, in this review we take an interdisciplinary approach to identify common themes
and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art
methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction.
This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback
systems and measures of human-robot interaction. We find that — when learning and communication are developed
together — the resulting closed-loop system can lead to improved human teaching, increased human trust, and
human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and
open questions that could advance how future robots communicate their learning to everyday operators. Finally, we
implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm.
This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying
this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior.
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1 Introduction

The robots we develop to interact with humans are becoming
more intelligent, autonomous, and adaptable. With these
increases in complexity robots are no longer expected to just
execute a programmed motion; instead, today’s robots learn
and extrapolate behaviors from human users. For example,
consider a human teaching a robot arm to assemble a chair
(see Figure 1). In the past, the robot arm acted as a tool
that recorded the human’s demonstration, and then replayed
that motion with at most slight modifications (Brock and
Khatib 2002). But decades of advances in learning and
control now enable more complex responses: we expect
robots to extract the desired task (e.g. chair assembly), and
then autonomously carry out that task in new contexts (Osa
et al. 2018; Ravichandar et al. 2020). With these modern
tools, our example intelligent robot is expected to learn to
add the remaining legs and complete the chair assembly after
collecting demonstrations on how to insert a single leg.

Although this increased intelligence improves robot
capabilities, it also obscures the robot’s intent from everyday
humans. Consider our example of teaching a robot how
to assemble a chair: as the human teacher provides
demonstrations, they do not know what the robot has learned
(i.e., has the robot learned to correctly insert chair legs?) or
how the robot will behave (i.e., will the robot accidentally
break chair legs when deployed?). Learning robots are no

longer predictable tools that always react to humans in the
same way. Instead, as contexts and inputs change, learning
robots must output a variety of different behaviors that they
were never explicitly shown. This leaves a significant gap
between (a) what the robot has learned and (b) what the
human thinks the robot has learned. Repeatedly deploying
the robot and observing its behavior can show parts of the
robot’s learning. But for holistic, real-time understanding,
we seek systems that directly close the gap between robot
learners and human teachers.

In this review paper we survey works that attempt to
close the loop and communicate robot learning back to
the human teacher during human-robot interaction. There
have been recent advances in learning from humans —
including learning from demonstrations, human-in-the-loop
reinforcement learning, and interactive imitation learning —
that extract autonomous robot behaviors through human-
robot interaction. Parallel research in haptics, soft robotics,
augmented reality, and auditory interfaces has progressed
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Figure 1. Closing the loop with learning and communication during human-robot interaction. (Left) Example problem setting where
a human teaches the robot arm to assemble chairs. (Right) Outline of our review paper. In Section 2 we first survey how robots can
learn from humans in ways that can be communicated. As the robot uses these methods to determine what to communicate, it
must then decide how to convey that information. In Section 3 we explore haptic, visual, and auditory interfaces for conveying a
robot’s latent state. The resulting communication closes the loop, and helps the human teacher understand what the robot has and
has not learned. In Section 4 we study how this feedback impacts the human teacher and the overall human-robot team.

fundamental knowledge of how robots can communicate
latent information. Importantly, these two branches of prior
work are often separated. Work that seeks to explain
robot learning primarily focuses on converting a robot’s
black-box models into interpretable feedback, and does not
typically consider the physical interfaces used to convey
that feedback to the human. On the other hand, work
on communication paradigms and multimodal interfaces
improves our understanding of what types of signals a human
can interpret, but these interfaces are not often designed with
communicating robot learning in mind. Instead of treating
interpretable robot learning and communication interfaces as
separate topics, this review paper seeks to connect learning
and communication into an interdisciplinary framework.

Organization. Our overarching motivation is to connect
recent trends at the intersection of robot learning and
communication interfaces (see Figure 1). In Section 2 we
review robot learning algorithms that implicitly or explicitly
provide feedback to the human. Next, in Section 3 we
explain how the community has developed communication
interfaces to convey information known by the robot back to
human users. Finally, in Section 4 we explore the impact of
closing the loop by surveying approaches that measure the
resulting human-robot interaction and assess the outcomes
in human understanding and robot learning.

As we discuss each area of research we will identify its
relevant themes and directions. In Section 5 we then unify
those trends to propose a set of open questions that should
be answered to reach robots that seamlessly and intuitively
reveal their learning back to human partners. We conclude
our review with a case study in Section 6. In this case study
we test one integrated approach that learns from physical
demonstrations in ways that can be communicated, leverages
multimodal signals to convey the robot’s learning in real-
time, and then measures the changes in the human teaching
and robot learning that are caused by the system’s feedback*.

Contributions. The primary contributions of our review
article are as follows:

Closing the Learning and Communication Loop. In Sec-
tions 2, 3, and 4 we survey recent literature within human-
robot interaction. We summarize learning architectures that
bring the human into the learning process and implicitly
or explicitly communicate what the robot has learned. We

then overview communication interfaces that use visual,
haptic, and/or auditory signals to intuitively and immersively
convey a robot’s latent information. Throughout this survey
we connect works focused on learning and communication.
Finally, we review the outcomes of closing the loop, and
summarize the measurement tools that can be used to assess
how the human and robot perform and how the human builds
a mental model of the robot learner.

Identifying Research Trends. We organize Sections 2, 3,
and 4 to highlight the key themes that progress towards
seamless communication of robot learning. These themes
include i) actively involving the human in the learning
process, ii) converting learning models into interpretable
signals through pre- or post-processing, iii) moving from
visual to immersive, non-visual feedback, iv) incorporating
multi-modal signals into interfaces to capture different
aspects of the robot’s learning, and v) measuring the human’s
understanding of the robot learner. We group related works
into each of these trends to illustrate the broader research
directions that are currently being explored.

Introducing Open Questions. We build on recent trends to
identify a set of questions that must be addressed before
we reach robots that seamlessly convey their learning to
human partners. In Section 5 we introduce what we believe
are the leading challenge areas: i) identifying representations
of robot learning that are intuitive, interpretable, and
comprehensive, ii) designing interfaces specifically for
communicating robot learning, and iii) measuring the
human’s functional understanding of the robot learner in real
time. We explain how addressing each of these challenges
will advance the community towards closing the loop
between learning and communication.

Conducting a Case Study. To demonstrate the core
concepts of this review article, in Section 6 we perform a
user study where participants kinesthetically teach a robot
arm. We implement example algorithms and hardware to
learn from the human’s demonstrations, render the robot’s
learning on communication interfaces, and then measure the

∗See user study videos here: https://youtu.be/EXfQctqFzWs
and our code repository here: https://github.com/VT-Collab/
communicating-robot-learning

https://youtu.be/EXfQctqFzWs
https://github.com/VT-Collab/communicating-robot-learning
https://github.com/VT-Collab/communicating-robot-learning
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Figure 2. Learning from humans in ways that can be
communicated. (Top, Section 2.1) Human-in-the-loop
frameworks involve the human within an iterative learning
process. At each iteration the robot shows behaviors that it has
learned, and the human teacher provides labels. The robot
implicitly communicates its learning through the shown
behaviors: here the robot’s two trajectories suggest that the
robot is uncertain about where to place the chair leg. (Bottom,
Section 2.2) Explainable learning frameworks are designed to
intentionally communicate the robot’s learning. The robot pre- or
post-processes its learning architecture to extract an intuitive
and human-friendly signal. The robot then explicitly
communicates its learning through this signal: here the robot
highlights two regions on the screen it has learned to reach.

resulting effects on human-robot coordination. The methods
from this case study are disseminated online so that other
researchers can replicate and build upon our procedure.
Our results support the underlying hypothesis that closing
the loop and communicating robot learning back to human
teachers improves the overall interaction from both human
and robot perspectives.

2 Learning from Humans in Ways
that can be Communicated

Human-robot interaction provides robots with an opportunity
to learn tasks from a human teacher. This includes robots
that ask the human questions, robots that imitate the human’s
behaviors, and robots that infer the human’s objective. But
while the robot learns, this learning process is often a black
box from the human’s perspective (Hellström and Bensch
2018). In the worst case, the human cannot predict how the
robot will behave — or what the robot has learned to do —
until after the system is deployed and extensively tested.

In this section we survey works that learn tasks from
humans in ways that facilitate communication back to the
human teacher. We identify two key trends across these

methods (see Figure 2). First, one set of learning approaches
enables implicit communication through the structure of their
human-in-the-loop learning protocols (Section 2.1). These
methods follow an interactive procedure where the robot
shows behaviors and trajectories it has learned to the human
at each iteration. For example, here a robot arm might
collect human demonstrations of how to carry a chair leg,
start to execute its learned behavior in the environment, and
then stop and ask the human for additional guidance when
it is unsure. By observing snippets of the robot’s learned
behavior throughout the learning process the human teacher
continually develops an understanding of what the robot does
and does not know.

Second, another set of learning approaches enables
explicit communication by designing their learning networks
to extract interpretable and intuitive representations (Sec-
tion 2.2). These methods learn from human data, and then
pre- or post-process their learned models to recover a user-
friendly signal that captures what the robot has learned. For
example, here a robot arm might collect human demon-
strations of how to carry a chair leg, extract the system
states that have the largest impact on task performance, and
then highlight those critical states on a visual interface for
the human. Within this group of works the human infers
what the robot has and has not learned by reasoning over
the robot’s explicit feedback signals. Our review of these
explicit methods is intended to be complementary to existing
surveys on explainable artificial intelligence (Silva et al.
2023). However, here we specifically focus on algorithms
which extract learning signals that can be displayed on
communication interfaces during human-robot interaction.

We note that these implicit and explicit trends are not
mutually exclusive. Robots can follow interactive learning
protocols that show learned behaviors at each iteration, and
then process their results to obtain explicit feedback signals
that summarize their learned models.

2.1 Implicitly Communicating Learning:
Human-in-the-Loop Frameworks

We start with interactive learning frameworks that involve
the human in the learning process. This includes human-
in-the-loop reinforcement learning, active reward learning,
interactive imitation learning, and learning from corrections.
These approaches incorporate the human teacher within
an iterative protocol that alternates between the human
teaching the robot and the robot showing the behaviors it
has learned. The important theme here is that — because
the human is in the learning loop — implicit communication
occurs when the human observes how the robot learns and
improves over time. We recognize that communicating robot
learning may not be the primary intent of these methods;
indeed, the surveyed papers often focus on efficient learning
from the robot’s perspective. However, we will review how
communicating the robot’s learning emerges as a side-effect
of these interacting learning frameworks, and how different
learning approaches have augmented this communication.

Reinforcement Learning. In reinforcement learning (RL)
the robot uses trial and error to find a policy that maximizes
its reward function. Traditionally this reward function is a
mathematical expression given to the robot (Kober et al.
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2013). For example, the reward for an autonomous car
could be inversely proportional to the time it takes for that
car to reach its destination. But often it is challenging to
mathematically formulate the right reward function — e.g.,
how do we write equations for safe driving? — especially
when different users may want the robot to optimize for
different rewards — e.g., an aggressive driver vs. a defensive
driver. Human-in-the-loop RL brings a human teacher into
the learning process to address these concerns. Specifically,
in human-in-the-loop RL the robot relies on the human to
provide the reward signal: during each iteration the robot
shows its learned behaviors to the human, and the human
expert assigns rewards to these behaviors.

For example, in Warnell et al. (2018) the robot alternates
between training on its own and showing its learned policy
to the human. After each round of training the robot
demonstrates its behavior in a simulated environment, and
the human teacher assigns a scalar reward value to indicate
the quality of the robot’s motion. For instance, the user might
assign 0 reward if the robot collides with an obstacle and 1
reward if the robot successfully completes its task. From this
human feedback the robot iteratively extrapolates a model of
the human’s reward function and then retrains to optimize
that estimated reward. The human’s inputs guide the RL
process (Celemin et al. 2019). Reddy et al. (2018) apply a
similar approach to shared autonomy settings where both the
human and the robot have control over the robot’s actions
(e.g., a human teleoperating an autonomous drone). Here the
human works with the robot throughout the task and then
provides reward feedback at the end of each interaction to
indicate if the human-robot team has completed that task
successfully. Meng et al. (2020) learn behaviors that enhance
interaction by using the human’s occupancy (i.e., the time the
human spends near the robot) as the human-provided reward
signal. The resulting robot behavior increases engagement
across multiple human users in a public setting.

These RL approaches bring the human into an interactive
learning process: the robot learns from the reward labels
the human assigns, and the human gets a sense of what
the robot has learned by observing the behaviors they are
asked to label. However, there are still two challenges from
the human’s perspective. First, it is difficult for users to
consistently rate robot behaviors on an absolute spectrum
(e.g., scoring the robot’s motions between 0 and 1). Works
such as Lee et al. (2021a) and Hejna III and Sadigh (2023)
address this problem by showing the human pairs of robot
behaviors, and then asking the human to select the one that
better matches their own reward function. Second, if the
human needs to provide a reward signal at every learning
loop, the overall RL process quickly becomes too time
consuming for practical use. Methods including Hejna III
and Sadigh (2023), Xie et al. (2022), and Warnell et al.
(2018) purposefully reduce the amount of human interaction
by intelligently selecting the pairs of robot behaviors or only
asking the human to provide a reward label when the robot
is uncertain. While they are focused on the learning, both
of these human-centered innovations augment the implicit
communication during human-in-the-loop RL. Showing the
human pairs of robot behaviors can make it easier for humans
to assess the robot’s learning progress, and curating these

behaviors to focus on regions of uncertainty can better align
the robot’s implicit communication with its learning.
Active Learning. Another class of learning methods that
show behaviors and then ask for feedback is active
preference-based reward learning. Within active learning the
robot asks the human multiple choice questions — e.g., a
robot arm demonstrates different ways to carry a chair leg
— and the human responds by picking their favorite option
(i.e., the behavior that best aligns with their preferences). A
naı̈ve robot might ask questions completely at random. But in
active learning the robot intentionally selects questions that
will efficiently gather information from the human (Cakmak
and Thomaz 2012; Sadigh et al. 2017; Bıyık et al. 2022b;
Quintero-Peña et al. 2022). Specifically, in active preference-
based reward learning the robot designs queries to rapidly
infer the human’s reward function, which it can then optimize
to complete the desired task. The robot must be particularly
careful with the questions it asks to avoid learning — and
optimizing for — the wrong reward (Tien et al. 2022).

During active learning the human teacher gets implicit
feedback about what the robot has learned based on the
multiple-choice questions that the robot asks. Consider
the example at the top of Figure 2. If the robot shows
one trajectory that carries the chair leg away from the
table, ξ1, and another trajectory that moves towards the
table, ξ2, the human might infer that the robot arm is
uncertain about where to place the chair leg. Related works
have augmented this implicit communication within active
learning by accounting for the human teacher. For instance,
Bıyık et al. (2020) and Bullard et al. (2019) purposely
ask questions that are easy for the human to answer. To
accomplish this, these works encourage the robot to display
trajectories with distinct, intuitive differences — making it
easier for the human to spot the differences and select their
preference. Habibian et al. (2022) take this one step further
by selecting questions that align with what the robot does and
does not know. Returning to our chair example in Figure 2,
imagine that the robot has learned to grasp the leg but is not
sure where to place it. Under Habibian et al. (2022) the robot
might select a question with two trajectories, where both
trajectories reach the leg (conveying what the robot knows)
and then move towards different locations (conveying what
the robot is uncertain about).

Tucker et al. (2020) demonstrate a practical application
of this implicit communication for assistive lower-limb
exoskeletons. Lower-limb exoskeletons need to identify their
user’s preferred walking gait, and the correct gait can vary
from one user to another. Within Tucker et al. (2020) the
authors take an active learning approach: the robot selects a
set of gait parameters, the participants try walking with each
chosen gait, and then the robot updates the gait options based
on the participant’s feedback. Unlike the prior works we have
reviewed — where the robot’s behaviors are watched by the
human — here the human can physically feel how the robot
is learning and adapting to their preferences over time.
Imitation Learning. In human-in-the-loop RL and active
learning the robot attempts to infer the human’s reward
function. By contrast, during imitation learning the robot
directly learns a control policy (i.e., a mapping from states
to actions) based on demonstrations provided by the human
teacher. In accordance with our trend on the implicit
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communication that results from putting a human in the
learning loop, here we specifically focus on interactive
imitation learning (Celemin et al. 2022). Imagine a user
teaching a robot arm to pick up objects and place them
on a table (Mandlekar et al. 2020). At first the robot does
not know the desired task, and the user must kinesthetically
guide the robot through a complete demonstration of
reaching for objects, grasping them, and then sorting them
on the table. As the robot learns from these demonstrations
it begins to imitate the human and perform parts of the task
autonomously. But what happens when the robot makes a
mistake or encounters a new object it has never seen before?
Interactive imitation learning enables the human to intervene
online — as the robot performs the task — and provide
additional guidance that the robot can learn from to improve
its future iterations. Each time the human intervenes they
label robot states with the correct actions (e.g., the human
demonstrates snippets of the ideal policy).

Here implicit communication occurs when the human
watches the robot and intervenes to correct its actions. For
example, if the human notices that the robot arm has sorted
an object incorrectly, the human might infer the robot still
needs to learn that part of its policy. A key challenge for
interactive imitation learning is determining when the human
should intervene: at a given state, should the robot try to
act autonomously or ask the human for guidance? Increased
human involvement is an opportunity for additional implicit
feedback about the robot’s learning, but at the cost of
requiring more human attention and effort. Under human-
gated approaches such as Kelly et al. (2019) and Mandlekar
et al. (2020) the robot relies on the human to determine
when to intervene. By default the robot executes its current
learned policy; when the human chooses to intervene and
provides new state-action pairs, the robot retrains its policy
to match the human’s demonstrations. The robot then follows
this updated policy during future iterations. Alternatively, in
robot-gated interactive imitation learning the robot decides
when to prompt the human for additional guidance (Hoque
et al. 2022). This reduces the human’s burden — because the
human does not need to always monitor the robot’s behavior
— but also means that the robot must keep track of what
it does not know. For instance, in Hoque et al. (2022) the
robot maintains an ensemble of learned policies, and queries
the human when these models diverge (i.e., when the robot
is uncertain about the correct action). Regardless of whether
we leverage human- or robot-gated approaches, interactive
imitation learning provides implicit feedback when the robot
makes a mistake and needs human guidance.

Interestingly, the human can also gather implicit feedback
from their own interventions. Once the human demonstrates
how the robot should behave in a specific scenario, the
human naturally expects the intelligent robot to understand
that scenario moving forward. Put another way, the human
might assume the robot will not make the same mistake
twice. Methods like Spencer et al. (2022) and Chisari et al.
(2022) support this assumption by updating the robot’s
policy in the entire region around each intervention to better
align with the human’s desired behavior. This results in
robots that are less likely to make the same mistake again —
and thus the human can infer the robot knows how to behave
in regions where they have previously provided guidance.

Corrections. Building on interactive imitation learning, a
final paradigm that implicitly communicates with the human
is corrections. Corrections are different from interactive
imitation learning in two ways: i) corrections are often
physical, where the user kinethetically modifies the motion
of their robot, and ii) instead of directly updating a policy,
the robot uses corrections to learn the reward function
that it should optimize. Imagine a robot arm carrying a
chair leg. During corrections the robot starts to execute its
planned motion, and the human can kinesthetically push,
pull, and guide the robot to correct its motion (Haddadin
and Croft 2016). The robot incorporates these corrections
to learn a reward function in real-time: the robot changes
its autonomous behavior to finish the task correctly during
the current iteration, and also remembers that correction for
future iterations. In practice, corrections provide the human
an opportunity to refine and fine-tune the robot’s behavior.

Physical corrections open a tactile communication
channel between the human teacher and robot learner
(Kronander and Billard 2013; Rozo et al. 2016). When a
human physically teaches the robot arm, they can perceive
the forces and torques that the robot uses to resist or align
with their corrections. For example, if the human is trying
to guide the robot arm closer to the table — and they feel
the robot continually pushing back against their correction
— the human might infer that the robot does not understand
the desired task. Works such as Losey et al. (2022), Jin
et al. (2022), and Jain et al. (2015) consider the human’s
perspective during physical corrections. These methods
recognize that it is difficult to provide perfect corrections:
robot arms are high-dimensional, and it is hard for humans
to precisely orchestrate all the joints of these arms to indicate
an exact motion. As a result, Losey et al. (2022), Jin et al.
(2022), and Jain et al. (2015) treat the human’s correction
as an incremental improvement over the robot’s current
behavior. Multi-modal implicit communication occurs as the
human iteratively makes these corrections. When the human
sees that the robot is making a mistake (visual feedback),
the human starts to kinesthetically guide the robot back
towards their desired behavior. As the robot learns it updates
its trajectory in real-time: the human can feel the changing
forces and torques applied by the arm during the correction
(kinesthetic feedback), and then see the change in the robot’s
autonomous motion after they let go of the arm.

The frequency of robot learning can also affect this
implicit communication. In some approaches the robot
collects a set of multiple corrections, and then learns
once from this entire batch (Cui and Niekum 2018; Jain
et al. 2015). In other approaches the robot performs online
gradient descent, and updates its estimate in in real-time
after each individual correction (Losey et al. 2022). Shared
autonomy paradigms similarly place the human in the loop
at every timestep, where each robot action is a combination
of the human’s input and the robot’s autonomous assistance
(Jain and Argall 2019; Javdani et al. 2018; Hagenow et al.
2021). When the robot updates its behavior in batches the
human gets fewer points of feedback about the robot’s
learning: it may not be clear to the user which correction(s)
caused the robot to learn the task. By contrast, when the
human receives immediate feedback after each correction,
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they can observe how the robot interpreted their correction
and altered its behavior.
Summary. Interactive learning frameworks place the human
within the robot’s learning loop. These methods do not
use a physical communication interface (i.e., there is not a
visual, auditory, or haptic interface for conveying the robot’s
learning). Instead, the human gets implicit feedback about
what the robot has learned by observing the changes in robot
behavior over time. By providing reward signals, answering
queries, demonstrating trajectory snippets, and physically
correcting the robot’s behavior, the human implicitly gathers
information about what parts of the task the robot has learned
and which parts it is still confused about.

2.2 Explicitly Communicating Learning:
Pre-Hoc and Post-Hoc Frameworks

In Section 2.1 we reviewed human-in-the-loop paradigms
that provide implicit feedback about the robot’s learning.
Communication is often an auxiliary outcome of these
methods: when the robot displays behaviors to the human
teacher, the human has a chance to observe snippets of
what the robot has and has not learned. By contrast, in this
section we will survey learning frameworks that are explicitly
designed to communicate the robot’s learning. These
methods extract human-friendly signals that summarize what
the robot has learned; e.g., a sentence explaining the robot’s
decision making or an image showing where the robot is
confused. Consistent with related surveys, we will divide
explicit methods into two groups: pre-hoc and post-hoc
(Milani et al. 2023). Pre-hoc approaches design the robot’s
learning architecture so that this architecture itself is easy
for humans to parse and explain. Post-hoc approaches learn
using existing methods, and then convert the learned models
back into feedback signals for the human.

2.2.1 Pre-Hoc Frameworks Pre-hoc approaches assemble
the robot’s learning models out of intuitive building blocks.
By looking at these building blocks, the human can directly
grasp what the robot has learned. For example, imagine a
robot arm learning how to open a door. Instead of learning
a single model of the overall task, the robot might learn a
sequence of waypoints: reaching for the door, turning the
handle, and pulling the door open. By observing each learned
waypoint — and seeing the errors in those waypoints —
the human can identify what parts of the task the robot
knows and where the robot is likely to fail. More generally,
explicit pre-hoc approaches take advantage of behavior trees,
hierarchies, and wrapper models.
Behavior and Decision Trees. Tree-based approaches
organize the robot’s learning into a flowchart-like structure.
The nodes of the tree capture subtasks or key decisions, and
the edges show how one decision might lead to another.
For instance, when an autonomous car approaches a light,
its decision tree could include a node that chooses to go if
the light is green, and its edges might lead to other nodes
that decide which way the autonomous car will turn. Human
users can read through these tree structures to explain the
robot’s behavior; e.g., to understand why the autonomous
car stops or turns right. Han et al. (2021a) build upon these
ideas to create behavior trees that explain the robot’s decision
making in terms of goals, subgoals, steps, and actions. Users

can query this robot to get explicit communication about the
robot’s learning (i.e., the robot can answer questions like
“Why are you doing this?”). In French et al. (2019) the
authors use imitation learning to extract a behavior tree from
human demonstrations. After humans demonstrate the task
for the robot, they can then refer to the decision tree to see
how the robot interpreted their demonstrations — if any of
the nodes or edges are incorrect, the human can directly fix
those components. Tree-based models have similarly been
used within reinforcement learning (Paleja et al. 2022; Li
et al. 2019) to structure the robot’s policy in a way that
human users can parse and understand.

Hierarchies. Other pre-hoc approaches split the agent’s
behavior into low-level waypoints (or subtasks) that are
individually interpretable. The human can check the robot’s
overall learning process by monitoring each of the subtasks.
Here we refer back to our example of a robot arm learning
how to open the door: instead of reasoning over the robot’s
mapping from states to actions, it can help users to think
in terms of subtasks like reaching for the door, turning the
handle, and pulling the door open. Beyret et al. (2019) learn
this hierarchy by combining two reinforcement learning
agents: a high-level agent that determines the subtasks the
robot arm should complete, and a low-level agent that
learns how to move the robot’s joints to complete each
subtask. The robot displays its learned subtasks to the human
in a simulated graphical environment so the human can
monitor the robot’s progress. Similarly, Liu et al. (2018)
learn a hierarchical policy from human demonstrations, and
then visualize that hierarchy in augmented reality. Human
teachers wearing augmented reality displays can directly
interact with the rendered hierarchy to check and modify
the subtasks. In practice, hierarchical approaches help human
teachers focus on the robot’s high-level steps instead of the
low-level processes the robot uses to move between steps.

Wrappers. Wrapper models bridge the gap between pre-
hoc structures and post-hoc representations. In wrapping
approaches the robot first learns a policy using traditional
neural networks (e.g., methods from Section 2.1). The robot
then applies a wrapping algorithm to convert that complex,
nonlinear function into a policy with an explainable, human-
friendly structure that has been pre-defined. For example,
in Bastani et al. (2018) the authors take a neural network
learned with interactive imitation learning, and then search
for a decision tree that best matches the behaviors of the
neural network. The resulting decision tree is a simplified
version of the learned policy: although the original neural
network may have captured more complex behaviors, the
decision tree provides a human-friendly version that users
can interpret. Along the same lines, Kenny et al. (2023)
convert the original policy that the robot learns into a set of
human-defined prototypes. Each prototype is understandable
to the human — e.g., an autonomous car turning right or
going straight — and the wrapper forces the robot’s learned
behavior to be a combination of these known prototypes.
The user studies performed in Kenny et al. (2023) suggest
that this approach helps humans better predict the robot’s
behavior. In Kenny et al. (2023) the robot displayed its
learned performance for each of the prototypes on a graphical
user interface: after observing these short videos, participants
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were more accurately able to guess how the robot would
behave at its current state.

2.2.2 Post-Hoc Frameworks Pre-hoc methods structure
their learning so that the models themselves are intuitive
and easy to interpret. By contrast, post-hoc approaches do
not change the learning algorithm. Instead, they apply post-
processing techniques to extract an understandable feedback
signal from the robot’s learned models. Consider our chair
example in Figure 2. Here the robot might first collect human
demonstrations, then learn a policy to match the human, and
finally apply post-hoc methods to identify critical task states
(e.g., goal locations). The robot can visualize these critical
states on a monitor for the human teacher; by observing
this explicit feedback, the human infers what the robot has
learned. Post-hoc frameworks include saliency methods that
highlight critical states, machine teaching approaches that
convey the robot’s objective, and natural language templates
that articulate the robot’s policy.

Saliency Methods. Saliency algorithms communicate the
policy that a robot has learned by highlighting the robot’s
actions in specific states. Consider Figure 2 where a human
teacher is trying to determine whether their robot arm has
learned to autonomously insert chair legs. It would be too
time consuming for the human to watch how the robot arm
reaches for and carries the leg at every single state of the
environment. Instead, Watkins et al. (2021) and Olson et al.
(2021) summarize the robot’s policy by finding the critical
states where — if the robot were to deviate from its learned
policy — the robot predicts it would achieve significantly
lower long-term reward. Returning to our chair example,
critical states could occur when the robot arm is placing the
leg: here deviating from the robot’s policy (e.g., dropping
the leg on the table instead of placing it in the chair base)
could cause the task to fail and incur a large reward penalty.
The robot renders each of these critical states on a graphical
user interface for the human to inspect. By observing this
small set of state-action pairs, the human gets a sense of
whether the robot has learned correctly overall and is ready
to be deployed (Watkins et al. 2021; Olson et al. 2021). In
practice, just seeing disconnected states and the actions in
those states can make it challenging for humans to picture
the robot’s holistic behavior. Accordingly, methods such as
Amir and Amir (2018) and Du et al. (2023) reveal trajectories
that pass through as many of these critical states as possible,
placing the robot’s behavior at these states within a larger
task context. Related works have also projected lights or
images onto real-world environments to focus the human’s
attention on critical states during human-robot interaction
(Andersen et al. 2016). We note a trade-off between — on
the one hand — showing as many critical states as possible,
and perhaps overloading the human with information, and
— on the other hand — restricting the robot’s feedback to a
few critical states, which may not be sufficient to capture the
robot’s learned policy.

Machine Teaching in Robotics. Another post-hoc frame-
work leverages machine teaching to communicate the objec-
tive (e.g., the reward function) that the robot has learned.
Machine teaching — also known as algorithmic teaching
— applies to settings where the robot has access to some
hidden information, and the robot needs to select its own

actions or demonstrations to convey this information to the
human (Cakmak and Lopes 2012; Brown and Niekum 2019).
For example, in Huang et al. (2019a) the authors apply
machine teaching to communicate the driving preferences
an autonomous car has learned. The autonomous car selects
environments and trajectories to exhibit whether it is an
aggressive or defensive driver; e.g., the autonomous car
might play videos of it merging directly in front of another
car to indicate that it is optimizing for aggressive behaviors.
A key challenge within machine teaching is determining
how humans will interpret the robot’s demonstrations. One
user might see videos of the autonomous car merging and
infer that it is aggressive; another human might think that
the autonomous car just likes to change lanes. Lee et al.
(2021b) try to make it easier for humans to interpret the
robot’s demonstrations by gradually increasing their com-
plexity. At first the robot shows simple behaviors (e.g.,
driving rapidly), and over repeated videos the robot reveals
more complex trajectories (e.g., weaving through traffic). As
the community continues to develop more accurate models
and measurements of how humans interpret robot behavior
(Section 4.1), machine teaching approaches can better tune
the robot’s demonstrations to align with those human models
and communicate the robot’s learned objective.
Explaining Policies with Natural Language. One final type
of post-hoc frameworks uses post-processing to translate
the robot’s learning into natural language utterances. For
example, Hayes and Shah (2017) give the robot a set
of sentence templates, and then the robot automatically
completes these templates based on its learned policy. The
human first asks the robot arm why it is taking an action
(e.g., “when do you inspect a part?”), and the robot fits
that query to a pre-defined template (e.g., “when do you
{action}”). The robot then searches for states that meet the
query criteria, and finally determines logical combinations
of communicable predicates to match its control policy
(e.g., “I inspect a part when that part is the wrong size
or shape”). Related work by Brawer et al. (2023) extends
this communication into a bidirectional exchange. Similar
to Hayes and Shah (2017), the robot can output sentences
to explain the logic behind its decision making, but now
the human can also respond to the robot and refine its
run-time behavior. When applied to the previous example,
under Brawer et al. (2023) the human might tell the robot
“do not inspect parts based on size,” and the robot will
temporarily modify its policy to match the human’s directive.
In Section 3.1.2 we expand on how auditory interfaces can be
used to convey natural language between human and robot.
Summary. Both pre-hoc and post-hoc frameworks offer
a way for robots to explicitly communicate their learning
to nearby humans. These methods convert nonlinear, high-
dimensional, and unintuitive neural networks into human-
friendly signals: e.g., a sequence of waypoints, a video of
critical states, or a sentence explaining the robot’s policy. We
emphasize that these explicit methods are complementary to
the implicit communication frameworks from Section 2.1.
For instance, a robot can first apply human-in-the-loop
algorithms to iteratively gather data from the human while
showing its learned behaviors; the robot can then leverage
post-hoc frameworks to convert the learned models into an
explicit signal that summarizes what the robot has learned.
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Figure 3. Interfaces for communicating robot learning. The
human previously provided demonstrations and is now
observing feedback about what the robot has learned. (Top,
Section 3.1.1) Rather than presenting information on a
computer monitor, recent works seek to provide more
immersive and user-friendly visual feedback. Here the robot
uses augmented reality to render virtual waypoints within its
physical workspace. These waypoints indicate where the robot
has learned to go. (Middle, Section 3.1.2) Visual feedback can
be intrusive or ineffective if the human is distracted. Other works
leverage auditory and haptic interfaces to convey alternate
representations of the robot’s learning. For instance, a haptic
wristband vibrates to notify the human that the robot is confident
about the next waypoint. (Bottom, Section 3.2) Different
interface modalities are able to convey different types of
information. By combining multiple interfaces, the robot can
provide more holistic feedback about what it has learned. In this
scenario, the robot uses augmented reality to visualize its
learned trajectory, while haptic cues indicate the parts of the
trajectory where the robot is confident or confused.

But while these implicit and explicit learning methods output
signals to capture robot learning, it is still not clear how
the robot should effectively convey these signals back to the
human operator. Accordingly, in the next section we survey
visual, haptic, and auditory interfaces that enable robots to
communicate their latent information.

3 Interfaces for Communicating
Robot Learning

In Section 2 we summarized how learning frameworks can
be designed to produce implicit or explicit representations of
robot learning. This addresses the question of what the robot
should communicate; answering the question of how the
robot should communicate this data is a different problem.
To answer the how, we need to understand how interfaces
can convert abstract learned information into tangible and
intuitive feedback for human users. Interfaces provide a
channel for communicating information from the robot to
the human, determining what the human can perceive,
identify, and ultimately comprehend about the robot’s state.
In this section we review the literature on interface design
and development for human-robot interaction. Within our
analysis we highlight two research trends: first, a trend
from traditional visual displays towards more immersive
interfaces using augmented reality, audio, or haptics, and
second, a trend from single modality to multi-modality
interfaces (e.g., from visual alone to visual plus auditory).

3.1 Moving From Visual
to Non-Visual Feedback

Traditionally, human-robot systems have been developed
with the assumption that humans are interacting with a
screen. Screens are a convenient interface: they are readily
available, easy to configure, and provide flexibility on the
type of materials that are presented (e.g. text, images, videos,
animations, and symbols). Given a problem setting that can
be flattened to a 2D plane — such as an inverted pendulum
or some autonomous driving environments — a screen can
provide almost complete information about the simulated
motion. This suffices for testing the transparency of learned
behaviors (Paleja et al. 2022; Beyret et al. 2019). However,
screens have difficulty accurately conveying the 3D world
(Walker et al. 2023), and the limited field of view, lack of
depth perception, and fixed orientation may further confuse
users (Chen et al. 2007). This mismatch can lead to errors
when humans use screens to interpret feedback from robot
learners (Diehl et al. 2020). To improve the accurate transfer
of information, work on conveying robot learning has begun
to investigate communication methods which are immersed
in the physical space of the interaction (Reardon et al. 2018;
Luria et al. 2017; Bolano et al. 2021; Chu et al. 2022). For
immersive visual feedback, researchers are exploiting the
flexibility of virtual reality (VR) and augmented reality (AR)
(Walker et al. 2023). In parallel, to better communicate non-
visual information such as force, researchers are leveraging
other sensing modalities like auditory and haptic feedback
(Kassem et al. 2022). Here we will explore how the field
of communication for robot learning is broadening its scope
beyond screens and into these immersive interfaces.

3.1.1 Towards More Immersive Visual Feedback Recent
works on human-robot interaction often use screens to
provide information to humans (Rossi et al. 2021; Shah
et al. 2022; Pascher et al. 2023; Cleaver et al. 2021; Aubert
et al. 2018). Looking specifically at communicating robot
learning, several of the algorithms described in Section 2
visualize the robot’s learning on a computer screen (Paleja
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et al. 2022; Beyret et al. 2019; Huang et al. 2019a; Das
et al. 2021). However, screens that are not part of the robotic
system tend to pull focus away from the interaction and act
as a middleman between the robot and human, leading to less
immersion, less connection, and more distraction (Suzuki
et al. 2022; Alvarez Valdivia et al. 2023). These screens also
tend to poorly communicate information involving spatial
components (Walker et al. 2023). Imagine a person teaching
a robot arm to attach chair legs; the screen displays a
simulated movement that the robot has learned from a single
angle projected into a 2D representation. This flat visual
representation potentially hides errors in the depth direction,
and does not capture important non-visual features such as
the force required to attach the leg. As such, options for
information-rich feedback that allow users to stay focused
on the task have been a major area of interface design.

Augmented and Virtual Reality. AR and VR are the closest
alternatives to traditional visual interfaces. These options
offer many of the same features as screens, but in a more
immersive format. AR enables interface designers to embed
virtual elements into the real interaction space, adding a
spatial component to the information (Wang et al. 2023;
Zolotas et al. 2018), while VR allows wearers to interact
within a completely virtual version of the environment
(Reardon et al. 2018; Ye et al. 2023). In the context of
robot learning, researchers have utilized both augmented and
virtual reality interfaces, enabling humans to observe robot
motions either during training or in-between demonstrations
(Coronado et al. 2020; Diehl et al. 2020; Liu et al.
2018; Wang et al. 2023). Diehl et al. (2020) compare
AR to traditional visual displays by showing simulated
trajectories in both interfaces and asking if the trajectories
represent correct or erroneous examples. Both approaches
(augmented reality and the screen) had the same error
rates for users identifying erroneous behaviors. However,
participants preferred AR because it seemed “more natural”
and usable. Liu et al. (2018) apply augmented reality to
display the robot’s learned decision tree and to allow users
to modify that tree. Here AR provides a teaching method in
addition to the communication mechanism, so that users are
able to seamlessly transition between viewing the learned
policy and selecting portions of that policy to update with
new demonstrations. Another example where augmented
reality serves as both interface and input device is Wang
et al. (2023), which focuses on the reactions of novice
users to feedback. This results in some unique applications
of augmented reality as a communication interface; for
instance, objects within the space are rendered with AR
labels so that the user knows what the robot observes.
These findings suggest that AR can provide equivalent
communication to screens, and that users perceive the
interfaces as less obtrusive and more natural since the
information is overlaid onto the world.

Other recent examples of AR and VR in human-robot
interaction attempt more broadly to communicate spatially
grounded 3D information. A wide range of AR/VR interfaces
have been created to convey motion intent for robot arms
(Rosen et al. 2019) and drones (Walker et al. 2018). Reardon
et al. (2018) developed an AR interface that allows the
robot to share its latent information with a human teammate
using a machine teaching approach. Similarly, Tabrez et al.

(2022) demonstrated that AR can be used to simultaneously
communicate concrete information — such as planned
motions — alongside abstract visualizations — such as icons
representing decision making. Overall, these results show
AR and VR’s evolving capabilities for revealing the robot’s
latent state in more general human-robot interaction settings.
Lights and Projections. While not as capable of the
rich visual detail found in AR and VR, some researchers
have sought to streamline visual information into binary
or discretized options. Lights — and other visual additions
to the robot itself — minimize the potential for confusion
when communicating robot status and intent (DeMarco et al.
2014). Within robot learning, communicating the robot’s
motions in a given situation (i.e., its intent) and recognizing
the robot’s need for help (i.e., its status) are important to
understand the current learning state. Tang et al. (2019)
develop a skin of LED lights wrapped around the robot
arm. By observing this skin, human teachers can quickly and
easily monitor the robot’s intention and status. This minimal,
yet easy-to-interpret, communication allows a single user to
monitor and teach multiple robots. Lights have also been
modulated in their rhythm (DeMarco et al. 2014) and color
(Song and Yamada 2019; Koay et al. 2014) to communicate
the robot’s status and intent.

One step in complexity above basic lights are projections.
Here the robot projects simple images onto itself or nearby
surfaces. Concrete information, such as heading direction,
can be symbolically displayed using arrows and pointers
(Shrestha et al. 2018; Watanabe et al. 2015). Projections
have also been used to communicate less concrete concepts,
such as robot intention, by projecting object-aware task
information onto the environment (Andersen et al. 2016).
These works show that even low-dimensional visual
feedback that is grounded in the environment may result in
seamless communication. Robot learners can apply lights or
projections to indicate when they need more human teaching,
to mark their learned behavior, and to indicate how they plan
to interact with the environment.
Robot Motion and Gestures. While the previous interfaces
add something to the robot or human to act as the visual
feedback channel, robots can also use their own motion to
convey latent information. For example, work by Dragan
et al. (2013) exaggerates the robot’s motion towards its goal
and away from the other options to more clearly indicate
where the robot arm is reaching. We see this work on legible
robot behavior as similar to the implicit communication
discussed in Section 2.1. The distinction lies in the fact
that the robot now intentionally exaggerates or emphasizes
its motions to better facilitate communication. For instance,
Kwon et al. (2018) propose a framework in which the robot
optimizes its behavior to show when it cannot complete a
task (e.g., the robot repeatedly starts to lift an object to
indicate it is too heavy). The timing of the motion is also
useful for communication: Zhou et al. (2017) modulate speed
to express the robot’s internal state along a trajectory.

When the robot has humanoid characteristics, gestures
provide another means to visually convey the robot’s intent.
Humans are adept at recognizing and interpreting nonverbal
cues from robots (Venture and Kulić 2019; Cha et al.
2018b). For instance, robots in industrial settings can give
a thumbs up to nearby human workers (Sheikholeslami et al.
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2017). Within a learning context, Huang et al. (2019b) use
the robot’s gaze direction to communicate the preferences
the robot has learned from a human teacher. In social
robotics, researchers have similarly investigated methods
to generate emotional movements or gestures that transmit
behavioral intentions (Matsumaru 2022; Rossi et al. 2021).
While gestures and other non-verbal communication carry
significant social information, they can be difficult to apply to
non-humanoid systems, and may not be sufficient to convey
complex concepts.

Summary. Works on AR, VR, lights, projections, motions,
and gestures offer an array of visual interfaces that extend
beyond screens and into immersive systems. Each of
these methods can embed visual feedback into the robot’s
environment (e.g., AR rendering the robot’s next waypoint,
or a projection showing that the robot is stuck). User
studies and experiments from the surveyed works show that
embedding feedback into the environment is more resilient to
human motion and changing human perspectives, providing
a more natural and interpretable signal for the human.
Additionally, when the feedback is co-located with the task,
the human does not need to look in different directions (e.g.,
turning their head to see a computer screen).

3.1.2 Towards Non-Visual Feedback Modalities Immer-
sive visual interfaces render visual data on the spatial context
of robot learning scenarios. But for non-visual information,
such as forces, and for information that is not spatially
embedded, such as alerts, non-visual interfaces provide
additional benefits (Kassem et al. 2022). Here we focus on
auditory and haptic feedback interfaces for communicating
robot learning. Consider our chair assembly example from
Figure 1: an auditory sound could alert users when the robot
is confused. Alternatively, a haptic band wrapped around the
human’s wrist could squeeze to indicate how much force the
robot has learned to apply when inserting the chair legs.

Auditory Feedback. The primary benefit of auditory
interfaces for communicating robot learning is their ability
to provide feedback that users can sense from many vantage
points. Humans do not need to be looking in a specific
direction or wearing additional equipment to perceive
an auditory signal. Additionally, auditory signals can be
intuitive for users to interpret, especially if natural language
is used. We will separate auditory signals into two categories:
verbal, which uses human language to embed meaning in the
auditory signal, and non-verbal, which uses artificial sounds
(such a “beeps” or “buzzing”) to convey information.

Verbal interfaces have been used to communicate natural
language explanations of robot policies (Tellex et al. 2020;
Hayes and Shah 2017). Instead of interacting with a text-
based system, humans can ask questions and hear the
robot explain its decision-making process. Schött et al.
(2023) found that verbal explanations — whether delivered
before or after the robot executes an action — enable the
robot to communicate its intent with greater transparency.
However, the choice of words significantly impacts efficacy.
For instance, Struckmeier et al. (2019) show that short,
focused verbal communication aids participants in more
accurately identifying errors in the robot’s policy when
compared to more extensive explanations. Unchecked use of
communication overloads the human’s attention; Unhelkar

et al. (2020) provide a framework for optimally choosing
when to speak to the human. Similarly, the tone of verbal
feedback can intentionally or unintentionally communicate
emotion (e.g., causing the human to think the robot is
upset), and humans often reinforce their speech with non-
verbal gestures (Prado et al. 2012). Hence, there are subtle
differences between providing verbal feedback or using
written language, and simply “speaking” a natural language
explanation may not always convey the same meaning as a
written version of that same text.

Non-verbal auditory feedback has many of the same
benefits as verbal feedback, such as transmitting the message
regardless of where the human is looking, but it does not
require robot learning to be translated into natural language
expressions Cha et al. (2018a). On/off alerts can offer a
binary feedback cue (Pourmehr et al. 2013), or auditory
feedback can modulate in tone to provide one-dimensional
feedback along a continuous spectrum. One important aspect
of non-verbal interfaces is the way they replicate and rely
on social expectations for human-like communication. For
example, Pourmehr et al. (2013) use societal conventions
to generate complex non-verbal sounds that participants
naturally interpreted to mean that the robot needs help. If
the robot’s sounds are aligned with human conventions, they
can rapidly communicate with the user. Indeed, some work
has shown that well designed non-verbal cues outpace verbal
communication in helping humans understand a robot’s
internal state (Yamada and Komatsu 2006).

Haptic Feedback. Touch encompasses a high-dimensional
input for humans, combining often overlapping aspects
of pressure, texture, force, and compliance (Culbertson
et al. 2018; Pacchierotti et al. 2017). Recent works on
communicating robot learning have started to delve into the
use of haptics, ranging from human-worn (i.e., wearable)
devices to robot-centered (i.e., touchable) interfaces.
Wearable haptic interfaces can provide similar benefits to
auditory and AR interfaces, and do not require the human’s
constant attention because the haptic signal is always in
contact with the person (Battaglia et al. 2017; Báez et al.
2023). For example, in Mullen et al. (2021) participants wore
a haptic wristband while teaching the robot how to perform
a task. Each time the robot was unsure about its next action,
the haptic wristband vibrated to cue the human teacher and
prompt them to provide expert inputs. Touchable haptic
interfaces have the advantage of localizing feedback at a
point of interaction, and can therefore associate some spatial
meaning with the signal. For instance, in Alvarez Valdivia
et al. (2023) the researchers wrapped haptic displays around
multiple joints of the robot arm. When humans physically
interacted with the robot arm to teach it a task, they naturally
touched these different displays along the robot. If the robot
was confused about how to move a specific joint, the robot
inflated the haptic displays at that specific joint, conveying
both overall uncertainty and spatial location.

Haptic interfaces can be used to communicate multiple
types of information, including intent, alerts, and forces.
Che et al. (2020) created a hand-held haptic device to
communicate a mobile robot’s intended path (e.g., what
direction the robot planned to move), and Cutlip et al. (2021);
Báez et al. (2023) studied the benefits of haptic feedback
for facilitating transfer of driving control between humans
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and autonomous vehicles. Similarly, Casalino et al. (2018)
show that a vibrotactile haptic device can convey when the
robot has understood the user’s command and intends to
follow it, speeding up the completion of collaborative tasks.
Moving beyond alerts, Salvato et al. (2021) demonstrate that
wearable haptic devices can also be programmed to convey
social touch, with each touch type having a distinguishable
meaning to the wearer. Finally, out of the all interfaces
we have surveyed for communicating robot learning, haptic
interfaces have had the best success at displaying forces
(Huang et al. 2021; Gong et al. 2023; Khurshid et al.
2016). For example, Peternel and Babič (2013) developed
a full body haptic interface that users wear while teaching
a teleoperated robot arm. This haptic interface replicates
and renders the forces experienced by the remote arm,
enabling the human teacher to sense the robot’s physical state
throughout the task. The human can then use this feedback
to adjust their demonstrations; e.g., not pushing too hard on
the chair legs when inserting them into the base.

Summary. Overall, the move from screens to alternative
visual and non-visual interfaces is motivated by two features:
i) the need to render information in a spatial context, and
ii) the need to communicate information when the user is
distracted or otherwise focused. These immersive interfaces
also bring new capabilities that are suited for communicating
different aspects of robot learning. This includes verbal
feedback to explain robot decisions, projections to convey
the robot’s intent, or haptic notifications to alert the user. The
surveyed works suggest that there are some representations
of robot learning that align well with visual interfaces (e.g.,
showing the robot’s learned trajectory), and there are other
representations that align well with non-visual interfaces
(e.g., notifying the human when the robot is uncertain).

3.2 Moving From Single to Multi-Modality
So far we have surveyed how robots can leverage immersive
and non-visual modalities to communicate their learning.
However, given the diverse representations of robot learning
and amount of information the robot learner needs to convey,
relying on just a single type of communication interface may
not be sufficient. Different interface modalities (e.g., visual,
auditory, haptic) are best able to convey different types
of information. Decades of research in the field of human
factors have outlined the information transfer capabilities
of each human sensor modality, and human factors experts
highlight the importance of not overstimulating any one
sensory channel (Sarter 2006; Mortimer and Elliott 2017;
Kaber et al. 2006). This suggests the promise of multi-
modal feedback; to harness these benefits, researchers
have developed several different multi-modal interfaces for
conveying the robot’s latent state and — more specifically
— for communicating robot learning. Multi-modal interfaces
combine multiple types of feedback working in concert to
optimize information transfer back to the human.

Recent research explores how to distribute the information
the robot wants to convey among multiple feedback modes.
Perrin et al. (2008) and Sanders et al. (2014) find that
multi-modal interfaces should separate signals based on
the timescale (e.g., intermittent vs. real time) and the data
type (e.g., discrete vs. continuous). Consider the example

in Figure 3. As the human teaches the robot, the robot
learns both a trajectory to follow and its confidence regarding
the waypoints along that trajectory. The real time and
continuous signal (i.e., the planned trajectory) aligns with
the capabilities of visual feedback, while the intermittent
and discrete signal (i.e., the uncertainty over each waypoint)
is suited to the strengths of auditory or haptic feedback.
Mullen et al. (2021) implement a similar division between
augmented reality and haptics when a human is teaching a
robot arm. Here AR passively visualizes what the robot has
learned, while attention-grabbing haptic wristbands actively
prompt and direct human teaching. The combination of
both augmented reality and haptics lead to better team
performance than either AR or haptics alone. Looking
specifically at communicating robot learning, other works
such as Hayes and Shah (2017), Edmonds et al. (2019) and
Mota et al. (2021) use visual feedback in the form of robot
motion demonstrations and verbal feedback in the form of
explanations to enhance the transparency of robot behavior.

Multiple works have supported the benefits of multi-
modal feedback for communicating the robot’s latent state.
Bolano et al. (2018) show that a mix of visual and auditory
feedback allows for a more intuitive interface, immediate
understanding of robot actions, and less unpredictability.
Similarly, Bolano et al. (2021) demonstrate that humans trust
robot partners more when those robots leverage AR and
verbal speech. As a result, multi-modal feedback is often
subjectively preferred by users Han et al. (2021b). However,
just adding more feedback channels does not guarantee a
better interaction — if not correctly harnessed, multi-modal
feedback can become confusing and even negatively impact
the user’s trust (Diethelm et al. 2021). In what follows will
review three paradigms for successfully implementing multi-
modal feedback in human-robot interaction.

The first successful paradigm leverages different interface
modalities for conveying implicit feedback or explicit
signals. This paradigm builds upon the implicit and explicit
methods for communicating robot learning discussed in
Section 2. For example, Che et al. (2020) and Hagenow et al.
(2021) mix implicit feedback (robot motion) and explicit
signals (audio signals or haptic interfaces) to enhance the
robot’s transparency and efficiency. Han et al. (2021b) and
Mirnig et al. (2012) apply non-verbal cues such as arm
movement, head shake, eye gaze, and facial expression
to transfer implicit information related to robot’s behavior
or intent. Concurrently, they use verbal explanations to
explicitly communicate the robot’s decisions and policy. In
each of these studies participants preferred the combination
of both feedback types over only implicit feedback.

Another effective paradigm for designing multi-modal
communication interfaces focuses on ways to simultaneously
convey two distinct information streams without increasing
the user’s mental workload. Chu et al. (2022) use visual and
haptic feedback, where visual feedback conveys the robot’s
actions and haptic feedback transmits the robot’s contact
forces. Along the same lines, Yoon et al. (2017), Pacchierotti
et al. (2015), and Khurshid et al. (2016) implement
complementary haptic feedback during teleoperation tasks.
In Khurshid et al. (2016) visual feedback was used to
highlight important details of the environment, and tactile
feedback was utilized to provide guiding forces to the
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human operator. Qualitative measures show that users are
not subjected to significantly greater mental or physical
fatigue when receiving multiple channels, in part because
the interfaces are designed to convey completely distinct
information with each different modality.

One final paradigm for designing multi-modal interfaces
is to separate the robot’s feedback into a primary modality
(which provides the most important signals) and a secondary
modality (which acts in support of the primary modality).
For instance, the secondary modality can provide feedback
that reinforces or expands on the information the primary
modality is trying to convey. Diethelm et al. (2021),
Bolano et al. (2021), and Shrestha et al. (2016) use a
main channel to communicate the intended robot motion
(through speech, AR, or robot motion) supplemented by
additional feedback in the secondary channel (gaze, speech,
or other auditory cues). Kassem et al. (2022) created an
interface for environment navigation that communicates the
exact same information through three distinct modalities:
VR, auditory and haptics. When taken individually, visual
feedback performed the best; but the combination of all three
modalities outperformed just visual feedback alone.

Summary. Multi-modal communication interfaces — when
designed correctly — increase the clarity of information
transfer, diversify the information stream, and convey more
dense data without overloading any one sensory channel.
These benefits have been applied to communicate robot
learning through combinations of visual, auditory, and haptic
signals. There are several effective paradigms for dividing
the robot’s information into each separate modality. Recent
works have used multiple interfaces to i) convey implicit and
explicit signals, ii) limit the human’s mental workload, and
iii) reinforce information through multiple channels. Overall,
research on communication interfaces provides an array of
effective devices and procedures for seamlessly conveying
information to a human. But just because the human
receives the robot’s feedback does not mean the human
correctly interprets that feedback to build an understanding
of the robot learner. Accordingly, in the next section we
survey the the measurement tools used to assess how the
human responds to the robot’s communication, and how this
communication affects the human-robot team.

4 Effects of Closing-the-Loop
on Robot Learning

In Section 2 we surveyed algorithms that intentionally learn
in ways that can be communicated, and in Section 3 we
reviewed interfaces that convey that learning back to the
human. Viewed together, learning and communication seek
to close the loop so that the human teacher understands what
their robot has learned (see Figure 4). We now return to the
human’s perspective, and focus on how the human responds
to this closed-loop system. We explore two related research
trends: i) how systems measure if the robot’s feedback
successfully conveys the robot’s learning, and ii) how closing
the loop impacts human-robot interaction.

We start in Section 4.1 with state-of-the-art approaches for
measuring both the interaction performance and the human’s
perception of and response to the robot learner. This includes
measures of the human’s situational awareness, subjective

human task robot taskhuman task robot task

Increased Trust

Closing-the-Loop

Improved Teaching

I see what is
missing...

Iʹll teach it
the leg pose

Co-Adaptation

Figure 4. Outcomes of closing the loop and communicating the
robot’s learning to the human teacher. (Top) Human teacher
gets feedback that the robot learner is unsure about how to
orient the chair leg. (Improved Teaching) Based on the robot’s
feedback, the human improves their teaching to focus
specifically on what the robot is missing. (Increased Trust) This
feedback also helps the human align their trust with the robot’s
learned capabilities. (Co-Adaptation) In multi-agent tasks where
the human and robot are working together to assemble the
chair, the robot learns from the human’s demonstrations, and
the human updates their understating of the robot based on the
robot’s feedback. This can lead to changing roles.

response, and objective performance. Related works use one
or more of these tools to indirectly probe the human’s mental
model of the robot; e.g., what the human thinks the robot has
learned and how the human predicts the robot will behave.
When robots close the loop — and provide feedback about
their learning — the human teacher is able to form a more
accurate mental model of their robot partner.

Next, in Section 4.2 we survey some common outcomes
of closing the loop on robot learning. These outcomes
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often stem from the human’s improved mental model of
the robot learner. For instance, as the human gets a better
sense of what the robot does and does not know, they can
focus their teaching on regions where the robot is unsure.
Experimental results also suggest that — because humans
better understand the robot — they are more willing to trust
the robot when appropriate. Finally, as the robot learns from
the human and the human models the robot learner, both
agents can co-adapt to one another. This co-adaption has led
to changing roles and emergent behaviors.

4.1 Measures of Human-Robot Interaction
4.1.1 Interaction Performance To measure how commu-
nicating robot learning affects human-robot interaction,
researchers often consider the performance of the closed-
loop system (Coronado et al. 2022). What is meant by “per-
formance” may be task and method specific. For instance,
when a factory worker is teaching their robot arm to assemble
a part, a high performance robot may minimize the human’s
interaction time. By contrast, high performance for an assis-
tive robot could correlate to increased usage and longer
interactions between the human and robot. Despite these
differences, we have identified some common measurements
often used across the literature. We break these performance
metrics down into two categories: measures focused on the
human and measures focused on the robot.

Human-centered metrics seek to quantify when and how
the human interacts with the robot. Common metrics include
i) the amount of time the human teaches the robot, ii) the
number of inputs the human provides to the robot learner,
and iii) the effort associated with the human’s inputs (e.g.,
a minor correction vs. an entirely new demonstration) (Sena
and Howard 2020; Pearce et al. 2018). If the human and robot
are collaborating during the learning process, additional
measures of team fluency could include the human’s idle
time or the delay between when the human expects to interact
with the robot and when the robot is ready for interaction
(Hoffman 2019). Questionnaires such as Likert scale surveys
(Schrum et al. 2023) are also relevant here: questions may
ask the human about their teaching experience and their
perception of the robot’s performance.

Robot-centered metrics assess the performance of the
robot learner. If we let θ be the parameters that the robot has
learned, and θ∗ be the desired parameters the robot should
have learned, one straightforward assessment of learning
accuracy is the error between actual and desired: ∥θ∗ − θ∥2.
However, just because the model weights are close to the
desired weights does not mean the robot will perform the
task correctly. Hence, robot learning often measures regret,
which captures the difference between the best possible robot
behavior and the robot’s learned behavior (Osa et al. 2018).
Regret compares the reward for the optimal trajectory under
θ∗ and the reward for the optimal trajectory under θ, where a
higher regret indicates more suboptimal behavior. Outside of
error and regret, another common metric is task success. This
metric could be binary (e.g., did the robot assemble the chair
correctly?) or measured along a spectrum (e.g., how many
legs did the robot autonomously add to the chair?). When
algorithmic efficiency is relevant, metrics may also include
the amount of training time, the necessary computational
resources, or the number of training iterations.

4.1.2 Measures of Human’s Mental Model As the human
receives information through the communication interface,
they process this data to form a model of the robot. We refer
to this as the human’s mental model: this model includes
the human’s estimate of what the robot has learned and the
human’s expectations for how the robot will behave when
deployed. Directly measuring the mental model requires
probing human thought, which is difficult if not impossible.
Instead, current works aim to indirectly measure the human’s
understanding of the robot learner by defining standardized
and measurable features of the human response (Hu et al.
2020). Often in scenarios where the robot is conveying its
learning these features are measured through offline post-
experiment surveys and not online physiological measures.
Accordingly, in this subsection we will first discuss the
offline measurement tools commonly used in robot learning
research, and then introduce how those measurements are
being expanded into reliable online metrics.

Situational Awareness. One way to assess the human’s
mental model is the human’s awareness of the robot’s learned
behaviors. This is an instance of situational awareness, i.e.,
“a measure of an individual’s knowledge and understanding
of the current and expected future states of a situation”
(Moore and Gugerty 2010). Situational awareness combines
a broad set of features, from attention to understanding to
synthesis, and when properly applied these measures can
give insight into the user’s model of the robot. Methods
for measuring situational awareness are classified as direct
or indirect (Endsley 2021), with direct measures, generally
self-reported by users through questionnaires, representing
the standard measurement approach. In many human-robot
learning experiments users will be asked to quantify their
agreement with statements that probe their awareness of
specific parts of the learning task. For example, the statement
“I think the robot needs my help” (Watkins et al. 2021) or “I
could tell what the robot had learned” (Mullen et al. 2021)
can give a sense of how the human’s perception changes as
the robot provides feedback.

While these surveys are often task or experiment specific,
researchers within the field of human factors have developed
standardized survey techniques for direct measurement of
situational awareness, such as the Situational Awareness
Global Assessment Technique (Endsley and Garland 2000),
the Situational Awareness Rating Technique (Taylor 2017),
and the Situation Presence Assessment Method (Durso
et al. 2004). These methods differ in when they query
the user (i.e., during or after the task) and whether they
query awareness of task details or the user’s perception
of their own awareness. In a human-robot interaction task
involving teleoperation, Schuster et al. (2012) find that the
Situation Presence Assessment Method correlated more with
spatial and visual attention than with task performance,
while the Situational Awareness Rating Technique correlated
best with teleoperation performance. Overall, these survey-
based tools offer an established method to compare the
effects of different learning algorithms and communication
interfaces. But completely relying on offline surveys can
be inefficient within rapidly changing closed-loop systems.
Hence, physiological real-time measurements of situational
awareness may be a future measurement tool for robot
learning applications, as we will discuss in Section 5.
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Trust. The user’s perception of the robot also shapes their
trust in that intelligent system. Trust is a step past merely
understanding the communication, and explores how humans
develop confidence in the reliability of a robot’s behavior
(Kok and Soh 2020). Like situational awareness, many of
the works related to communicating robot learning measure
the effects on trust after the interaction (e.g., using survey
questions), or they indirectly measure trust from the human’s
behavior in specific situations (e.g., whether the human
follows the robot’s suggested trajectory) (Chen et al. 2020;
Xu and Dudek 2015; Pippin and Christensen 2014). Recent
research efforts have begun to look at psychophysiological
measures as a way to measure trust online and in general
applications, including neural signals and physiological
reactions. Simple physiological human features — such as
facial expressions and voice analysis — have been shown
to reliably correlate with trust (Khalid et al. 2016). These
psychophysiological measures are often used in combination
with neurological measures to paint a better picture of the
human’s trust in robots. For example, Hu et al. (2016) and
Akash et al. (2018) combine Galvanic Skin Response and
an electroencephalogram to monitor trust levels in real time
and develop trust sensor models for intelligent machines that
build and maintain human trust during interactions.
Mental Workload. The user’s perception of the robot only
measures part of the feedback’s effects; another aspect is
the amount of human mental effort required to sense and
interpret the robot’s signals. Ideally, when robots close the
loop and communicate their learning, the human will not
need much time or thought to parse these signals and infer
what the robot knows. In practice, mental workload is often
inversely related to situational awareness. For example, Dini
et al. (2017) show that more information-dense feedback
can improve the human’s situational awareness, but at the
expense of increased mental workload when processing the
dense feedback. Offline measures of the human’s workload
once again take the form of surveys, with the NASA-TLX
Hart and Staveland (1988) forming a standard approach
to measuring different features of physical and mental
workload (Memar and Esfahani 2019). Indirect measures
like heart rate have also been shown to be good assessments
of mental workload (Mach et al. 2022), but may require
significantly higher levels of human effort than typically
exist during human-in-the-loop robot learning to identify
measurable effects. For robot learning, online measures with
clear correlation and large effect size are more applicable to
measure workload; these include eye-tracking (Devlin et al.
2022) and electroencephalograms (Novak et al. 2015; Memar
and Esfahani 2019; Hogervorst et al. 2014).
Summary. We can measure the effects of closing the loop
and communicating robot learning by looking at interaction
performance and probing the human’s mental model. Within
interaction performance, common metrics include the error
and regret in the robot’s learned behavior. To measure
the human’s perception of the robot learner, researchers
often account for situational awareness, trust, and workload.
Each of these aspects can be quantified offline through the
standardized use of survey techniques. There is a recent
thrust towards online measurements tools (such as tracking
gaze or heart rate), but these methods have not been widely
incorporated within current robot learning systems.

4.2 Outcomes for Human-Robot Interaction

Once we close the loop by communicating the robot’s
learning back to the human teacher, how does this change the
team’s behavior and the human’s experience? The measures
outlined in Section 4.1 provide an array of tools to estimate
the subjective and objective effects of communicating robot
learning. In what follows, we survey some of the common
outcomes these measurements have identified. We find three
research themes across recent studies: these works suggest
that closing the loop can improve human teaching, increase
human trust, and facilitate co-adaptation (see Figure 4).

Improved Teaching. Communicating the robot’s learning
reveals what the robot has and has not learned. As the
human teacher processes this feedback, they can adjust their
teaching to focus specifically on the parts of the task where
the robot is still confused. For instance, consider a human
teaching an autonomous car how to drive on highways.
Without any feedback, the human might provide unfocused,
random demonstrations that show how to pass other cars,
change lanes, and merge on and off the road. But after the
robot implicitly or explicitly communicates that it is most
uncertain about merging, the human can now focus on giving
multiple examples of merging trajectories (Spencer et al.
2022; Tian et al. 2023). In this way, communication can help
focus teaching directly on what the robot is trying to learn.

From the human’s perspective, there are multiple axes
along which users can adjust their teaching. These include
when to provide guidance, what type(s) of inputs to provide,
and which parts of the task to teach. Different methods
for communicating the robot’s learning align with different
teaching axes. For example, saliency methods such as
Watkins et al. (2021) and Olson et al. (2021) use visual
interfaces to highlight where the human should provide
additional demonstrations; by contrast, the haptic wristband
used by Mullen et al. (2021) notifies the human when the
robot is confused and needs guidance. There are benefits
to each axes. Recent experiments by Sena and Howard
(2020) indicate that communicating when, where, and how to
provide demonstrations reduces the human’s mental burden
and leads to more focused human teaching.

From the robot’s perspective, focusing the human’s inputs
on areas of uncertainty can accelerate robot learning (i.e.,
the robot can learn the task from fewer demonstrations).
Approaches from Section 2 such as human-in-the-loop
reinforcement learning (Lee et al. 2021a) and active
preference-based learning (Sadigh et al. 2017) display
behaviors or trajectories where the robot is unsure, and
ask for the human’s inputs specifically in these regions.
When compared to baselines in which the human selects
their preference from a set of randomly sampled trajectories,
proactive methods infer the human’s task more accurately
and efficiently (Lee et al. 2021a; Sadigh et al. 2017; Tucker
et al. 2020). Bıyık et al. (2022a) provide theoretical support
for these results: to optimize learning the robot should first
collect any unstructured, open-ended human demonstrations,
and then elicit specific human feedback about the remaining
areas of uncertainty. Overall, when the human’s inputs
focus on what the robot does not know, existing learning
frameworks more accurately infer the desired task.
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Increased Trust. A second potential benefit of closing-the-
loop on robot learning is increased user trust in the system.
Trust can be described as a psychological condition in which
the person’s inclination is to rely on a robot to complete the
task (Madsen and Gregor 2000). In human-robot interaction,
prior works have explored how robots build and maintain
trust with humans (Khavas et al. 2020), and how robots
can rebuild trust over time after that trust is violated
(De Visser et al. 2020; Baker et al. 2018). Hancock et al.
(2011) identify several factors that affect trust: i) human-
related (e.g., ability), ii) robot-related (e.g., performance), iii)
environmental (e.g., team collaboration), and iv) task-related
(e.g., type or complexity). Communicating robot learning
falls within the robot-related category. More specifically, the
robot’s feedback helps the human anticipate how the robot
will perform, where it will succeed, and when it might fail.
This increased transparency and predictability may promote
the human’s trust in the robot learner.

However, as we described in Section 4.1, trust remains
difficult to measure or quantify. Works such as Freedy
et al. (2007) and Gao et al. (2013) formulate trust based
on performance; i.e., trust is correlated with the outcomes
of human-robot collaboration, and the more frequently the
human intervenes the less they trust the robot (Xu and
Dudek 2016). Other approaches treat the human’s trust as
a latent variable, and infer that variable from the human’s
actions throughout the task (Chen et al. 2020; Xu and Dudek
2015). For example, if the human delegates a more difficult
role to the robot learner (i.e., asking the robot to carry a
glass jar), the human may trust the robot more (Pippin and
Christensen 2014). With these different measures in mind,
we do not claim that communicating robot learning always
increases one specific definition of trust. Instead, we find
trends across related studies to suggest that communication
generally enhances trust or trust-adjacent metrics. Studies
in Zhu and Williams (2020) show that intelligent robots
who proactively explain their decision-making before taking
actions can build trust with humans. Similarly, displaying
a confidence signal (Desai et al. 2013), rendering real-time
information on a GUI (Boyce et al. 2015), providing multi-
modal feedback (Ciocirlan et al. 2019) and using mixed
reality interfaces (Rosen et al. 2020) have all been shown to
increase different measures of human trust in an intelligent
robot. Overall, these experimental findings indicate that
robots which reveal their learning to humans will better align
the human’s expectations with the robot’s capabilities, and
increase the human’s trust in how the system will behave.

Human-Robot Co-Adaptation. One final outcome that has
been measured in systems that communicate robot learning
back to the human teacher is co-adaptation. This especially
applies to collaborative or competitive robots that learn while
interacting with the human in multi-agent tasks. Consider an
extension of our example from Figure 1 where the human
and robot are now working together to assemble chairs.
Perhaps for the first few chairs the robot holds the base, and
the human demonstrates how to add legs to that base (see
Figure 4). But as the robot learns from the human — i.e.,
as the robot learns how to add the chair legs — the robot
can adapt its behavior to better collaborate with the human.
Similarly, as the human observes the robot’s implicit and
explicit feedback and understands the robot’s capabilities,

the human can also co-adapt alongside the robot (Mörtl
et al. 2012; Van Zoelen et al. 2021). Over time the human
and robot might switch roles, so that the human holds the
base and the robot adds the legs. Co-adaptation occurs here
because the robot learns from the human, the human gets
feedback about what the robot has learned, and both agents
adjust to more seamlessly complete the interactive task.

Related works study how robots can communicate their
learning — or take other types of actions — to encourage co-
adaptation during multi-agent tasks. These approaches often
frame co-adaptation as an optimization problem (Nikolaidis
et al. 2017; Pellegrinelli et al. 2016; Parekh and Losey 2023).
Under this framework the robot learns a predictive model of
how the human will behave during the task. The robot then
selects its own feedback signals or actions so that, when these
actions are paired with the learned human model, the robot
optimizes its cumulative reward. For example, in Nikolaidis
et al. (2017) the robot models the human’s willingness to
adapt as a latent parameter, and solves a partially observable
Markov decision process to find the policy that both infers
this latent parameter and coordinates with the human. If the
human is not willing to adapt the robot follows the human’s
lead; but if the human does adapt, the robot intentionally
causes the human to adapt in such a way that the human-
robot team completes the task more quickly and efficiently.
Xie et al. (2021) and Parekh and Losey (2023) extend this
approach to construct more general latent representations of
the human. Within Parekh and Losey (2023) the robot plays
tag with human users: as the robot learns where the human
will “hide,” the participants also get a better sense of where
the robot will “seek.” This results in co-adaptive behaviors
where the learning robot continually updates its model of the
human, and the human reactively changes their behaviors to
avoid the robot opponent.

Co-adaptation can also occur at the communication level.
Different users respond to the same feedback signals in
different ways, and as the robot learns from the human it
should adapt its signals to better coordinate with the user. In
Zhao et al. (2022) the robot recognizes that the human may
not correctly understand every communicated signal, and so
the robot modifies its feedback to account for the human’s
interpretation. Chen et al. (2022) learn a model of the human
operator, and then use that model to determine what, when,
and how to communicate with that user by simulating the
human’s potential future actions. Similarly, both Reddy et al.
(2022) and Christie and Losey (2023) seek to adapt the
robot’s communication interface to align the robot’s signals
with the human’s response. Here the robot does not know
exactly how the human will interpret its haptic, visual, or
audio cues; hence, the robot continually adjusts the way it
selects these cues based on its learned model of the human.
From the user’s perspective, as the human gets experience
working with the robot they better understand what each
robot signals means. From the robot’s perspective, as the
robot sees the human react to its signals, it can adjust its
future signals to more accurately convey its learning.

Summary. In this section we surveyed how closing the loop
with learning and communication can affect the human and
overall system. Measurement tools and user study results
suggest that i) we can monitor the human’s mental model
of the robot learner and ii) communicating robot learning
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significantly impacts human-robot interaction. Benefits of
conveying the robot’s learning include improved human
teaching, aligning trust with the system’s capabilities, and
co-adaptation to more seamlessly complete collaborative
tasks. To measure these benefits — and probe the human’s
underlying interpretation of the robot’s signals — we turn
to measures of situational awareness, post-hoc surveys, and
objective performance metrics.

5 Open Questions and Future Directions
In Sections 2–4 we reviewed trends in human-robot inter-
action at the intersection of learning and communication.
When viewed together, this body of research offers a set of
tools to close the loop, communicate robot learning to human
teachers, and assess the outcomes of this feedback. However,
there remains a significant knowledge gap between what the
robot has learned and what the human thinks the robot has
learned. State-of-the-art robot learners can be confusing or
misleading, even when they follow the surveyed methods
(Habibian et al. 2022; Kessler Faulkner and Thomaz 2021).
The ongoing and diverse research in this area suggests that
there remain open questions that must be addressed before
we reach human-robot systems where the human completely
understands what their robot is learning.

In this section we propose and discuss a set of open
questions for communicating robot learning (see Figure 5).
We emphasize that these challenges are interdisciplinary, and
will not be solved by just improving the learning algorithm
or communication interface in isolation. Instead, solutions
likely lie at the intersection: research on robot learning that
is aware of the capabilities of communication interfaces, and
research on interfaces that understands the types of data
robot learners need to convey. For example, a ubiquitous
challenge is the trade-off between low- and high-dimensional
feedback. On the one hand, low-dimensional feedback
provides a simplified representation of the robot’s learning
that is easy for humans to quickly interpret. On the other
hand, high-dimensional feedback enables the robot to convey
a more comprehensive and accurate view of its learned
models. Determining the right balance between low- and
high-dimensional representations requires perspectives on
learning (e.g., how can we succinctly and intuitively capture
the robot’s learning?) and perspectives on communication
(e.g., how can we create signals that rapidly and clearly
convey complex information to the human?).

5.1 How Should Robots Convert their
Learning into Feedback Signals?

When robots learn from humans, they often build neural
network models that include thousands of parameters.
The learning approaches surveyed in Section 2 recognize
that robots cannot communicate all of these parameters.
Instead, robots must identify compact representations of
their high-dimensional learning that can be intuitively
conveyed to the human teacher (Bobu et al. 2023). These
learning representations should be designed to harness
communication interfaces, and provide clear, interpretable,
and real-time signals to the human.
Reasoning about Implicit Communication. Before the
robot selects feedback signals to summarize its learning, we

Interfaces to
Convey Learning

Representations
for Communication

Measuring Human
Understanding

Figure 5. Open questions for communicating robot learning. To
advance the state-of-the-art, we seek (Section 5.1) robots that
design their learning representations to align with mutli-modal
communication interfaces, (Section 5.2) standardized
communication interfaces that are capable of conveying robot
learning, and (Section 5.3) online measurement and modeling
tools to estimate how the human interprets the robot’s feedback.

first consider the information the robot implicitly commu-
nicates during its learning process. Implicit communication
occurs within human-in-the-loop learning frameworks: we
have surveyed examples from reinforcement learning, active
learning, and imitation learning (see Section 2.1). Each of
these frameworks follow an iterative process. During an iter-
ation the human observes the robot’s behaviors and provides
their expert labels: the robot learns from these labels, while
the human obtains implicit feedback by watching how the
robot’s behavior changes over time.

We propose two related questions for advancing implicit
feedback. Many recent works that incorporate a human
teacher focus on robot learning, and do not directly
consider how the human teacher might interpret the
robot’s behaviors during the learning process (Lee et al.
2021a; Kelly et al. 2019; Losey et al. 2022). This leaves
implicit communication as an unintended and uncontrolled
consequence. Accordingly, our first question is how can
we best account for implicit feedback within interactive
learning algorithms? As we start to answer this question,
we recognize a potential trade-off between efficient learning
and implicit communication. Learning methods often seek
to reduce the amount of human involvement so that the
human does not need to spend as much time teaching
the system — i.e., the human provides fewer labels,
demonstrations, or corrections Hejna III and Sadigh (2023);
Hoque et al. (2022); Spencer et al. (2022); Jin et al. (2022).
An advantage of these works is that the robot learns rapidly
from less human guidance. But from a communication
perspective, decreasing the human’s involvement means less
opportunities for the human to implicitly observe what
the robot has learned and what the robot is still confused
about. This suggests that future algorithms which account for
implicit communication should balance human involvement.
For instance, the robot could intentionally choose behaviors
that both gather information from the human and reveal what
the robot has learned so far (Habibian et al. 2022).
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Designing Representations for Interfaces. Moving beyond
implicit communication, we next consider explicit frame-
works that intentionally pre- or post-process their learning to
extract feedback signals. By rendering these feedback signals
to the human the robot can directly explain its learning (e.g.,
reveal why it is taking an action or where it is uncertain). The
state-of-the-art methods we reviewed in Section 2.2 extract
signals such as a sequence of waypoints, an image of critical
states, or a graph of robot decisions. To actually convey these
signals current robots primarily rely on visual interfaces
and computer monitors (Watkins et al. 2021; Huang et al.
2019a; Kenny et al. 2023; Liu et al. 2018; Olson et al.
2021). But separate research on communication has shown
the benefits of more immersive and multi-modal interfaces
(see Section 3). This leads to our next open question: how can
we design explicit learning frameworks to take advantage of
diverse interface capabilities?

Answering this question may require multiple perspec-
tives. Instead of first selecting a way to represent robot
learning, and then looking for interfaces that can convey
that representation, designers may need to first identify the
communication interfaces that are available to the robot,
and then identify the learning representations that align with
those interface capabilities. For instance, the dimensionality
of the pre- or post-processed learning signal could depend on
the interface modality. In scenarios where the robot is given
a graphical user interface to communicate its learning, high-
dimensional and continuous signals are possible: e.g., the
robot could render visual waypoints to indicate the locations
it has learned to reach. In settings where the communication
interface uses haptic or auditory cues, low-dimensional and
discrete signals are suitable: e.g., a wearable haptic device
could vibrate when the robot enters regions of uncertainty.
But this is just one possible solution. Future works will need
to determine how best to extract learning representations that
multi-modal interfaces can clearly convey.

5.2 How Should We Design Interfaces to
Communicate Robot Learning?

In the same way that we want the learning representation
to align with the communication interface, we also want to
develop physical interfaces that can seamlessly communicate
robot learning signals. In Section 3 we surveyed a variety
of existing interfaces. Examples include augmented reality
headsets to display a drone’s trajectory (Walker et al. 2018),
tactile haptic arrays to indicate the direction of a mobile
robot (Che et al. 2020), or natural language sentences to
explain a robot arm’s failure modes (Tabrez et al. 2019).
Many of the interfaces that we identified were designed to
convey specific latent states (e.g., goals, directions, or failure
modes). Moving forward, the community will need multi-
modal interfaces that are purposely created to communicate
a spectrum of robot learning representations.

Establishing Standardized Interfaces. Overall, our vision
here is for future work to establish a standardized set of
interfaces that the community uses to communicate robot
learning. These standardized interfaces could consist of
multiple building blocks (e.g., visual, haptic, and audio
modules), as well as guidelines for the types of information
that each building block best conveys to the human. Other

robotics applications have already established standards for
interface design: for instance, there are interface standards
for semi-autonomous vehicles (Bergasa et al. 2018). Creating
similar standards here would be particularly helpful for robot
learning researchers. Knowing what types of information the
interfaces can convey — and the recommended protocol for
conveying that information — will help designers select the
right robot learning representations. In addition, having a
standardized set of interfaces will better enable comparisons
between the different methods in Section 2.2 for converting
the robot’s learning into explicit feedback signals.

To achieve this vision there are multiple open questions.
First, we need to ensure that the standardized interfaces
are capable of communicating the information that captures
robot learning. Our surveyed works suggest that conveying
the robot’s learning goes beyond simply indicating the
robot’s goal or next action (Mullen et al. 2021; Hayes
and Shah 2017; Alvarez Valdivia et al. 2023; Huang et al.
2019a; Watkins et al. 2021; French et al. 2019). Instead,
the interface must communicate more abstract and complex
concepts such as uncertainty over an action, reasons behind
a decision, or features of a policy. Based on the trends
from Section 3, we anticipate that effectively communicating
data like uncertainty, reasons, or features will require multi-
modal visual and non-visual systems. Additional interface
testing, user studies, and psychometric analysis will be
needed to determine whether each individual or combined
interface modality can convey these signals. For example, is
a haptic notification sufficient to convey the robot’s level of
uncertainty? Follow up questions include the timing of the
signals (e.g., how often should the robot attempt to convey its
learning to the human?) and the dimensionality of the signals
(e.g., should the robot provide binary feedback or feedback
along a continuous spectrum?). Answering these questions
will likely include perspectives on i) what the robot learner
needs to convey, ii) how we can design interfaces to convey
that information, and iii) how we perform and analyze user
studies to quantify whether the interfaces were successful.

5.3 How Should We Measure the Human’s
Understanding of Robot Learning?

One goal of communicating robot learning is to reach mutual
understanding between the human teacher and robot learner.
As the robot learns from the human, the robot updates a
model of the task the human wants it to complete. As the
robot communicates back to the human, the human forms
a model of what the robot will do when it is deployed.
The research reviewed in Section 4 suggests that we are
moving towards this goal: current approaches that close the
learning loop have accelerated robot learning, augmented
human trust, and increased co-adaptation (Sena and Howard
2020; Mullen et al. 2021; Chen et al. 2020; Parekh and Losey
2023; Nikolaidis et al. 2017; Watkins et al. 2021; Kenny et al.
2023). However, it is still not clear if and when a human
teacher and robot learner reach mutual understanding. To
better assess the outcomes of communicating robot learning,
we need measurement tools and human models that capture
how users interpret the robot’s feedback signals and form
mental models of the robot learner.
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Measuring Human Understanding in Real Time. The
human teacher forms a mental model of what the robot has
learned based on the robot’s implicit and explicit feedback.
For example, by reasoning over augmented reality displays,
haptic notifications, or natural language explanations, the
human might estimate that the robot arm in Figure 1 knows
how to carry and insert chair legs. One open question here
is how we best measure the human’s understanding of the
robot’s learning in order to improve communication. In
Section 4 we surveyed existing metrics such as situational
awareness, trust, and workload (Endsley 2021; Chen et al.
2020; Memar and Esfahani 2019). However, there are
two issues with these metrics. First, current measurement
approaches often rely on offline data, such as questionnaires
administered after the interaction is over. Second, it is not
fully understood how online measurement tools correlate
with the underlying mental model: e.g., if the human’s eye
gaze is aligned with the robot’s goal, does that mean the
human understands what the robot has learned?

Future research can address these questions by identifying
real-time variables that are connected with the human’s
underlying model of the robot learner. Recent work in
human factors suggests that we can measure the human’s
understanding of a situation through neurological measures
like electroencephalograms (EEG) (Akash et al. 2018;
Jung et al. 2019) and functional near-infrared spectroscopy
(fNIRS) (Goodyear et al. 2016). For example, Kohn et al.
(2021) provide experimental evidence that EEG and fNRI
are a reliable real-time measure of trust in automation-related
applications. Similarly, Heard et al. (2018) show that a
variety of online metrics for measuring the human operator’s
workload are available, but in their current form they may
not generalize to different tasks or users. Determining which
— if any — of these measures correlate to the human’s
mental model during robot learning will help us assess which
explicit feedback signals clearly convey the robot’s learning,
and which signals are less interpretable by the human.

Updating Human Models. The tools described above have
the potential to measure the human’s current understanding
of the robot learner. But how will the human’s understanding
change over time as they receive new feedback signals?
Put another way: if the communication interface renders a
given signal, can the robot predict how the human teacher
will interpret and react to that signal? Here we seek human
models that relate robot communication to the human’s
understanding of the robot learner.

These human models may build upon ongoing research on
machine teaching (see Section 2). Within machine teaching
the robot intentionally selects behaviors or signals to convey
information to a human observer (Huang et al. 2019a;
Lee et al. 2021b; Brown and Niekum 2019; Cakmak and
Lopes 2012). For example, in Huang et al. (2019a) an
autonomous car generates a sequence of videos that —
when watched by the human — convey how aggressively
the autonomous car drives. Recent works hypothesize that
the way the human updates their understanding in response
to these videos can be modeled using Bayesian inference
(Tenenbaum et al. 2011) or gradient descent (Liu et al.
2017). But communicating robot learning adds additional
complexity to this problem: because the robot is learning,
the information the robot is trying to convey continually

changes. Future works will also need to extend these models
beyond visual feedback (e.g., videos) to incorporate the non-
visual and multi-modal signals that might be provided by
feedback interfaces. If successful, improved human models
could offer a predictive tool that researchers in learning and
communication leverage to compare different signals and
develop standardized feedback interfaces.
Summary. In some ways conveying the robot’s learning
back to the human teacher is as challenging as learning the
human’s desired task in the first place. Humans are inherently
variable: signals, modalities, and information densities that
convey the robot’s learning to one user could be confusing to
another user. As such, there may be no single answer to the
open questions we have listed above. Instead, we encourage
researchers to explore interdisciplinary approaches that
cross-over between learning representations, communication
interfaces, and human measurements.

6 Case Study
In Sections 2, 3, and 4 we identified recent research trends in
work on communicating robot learning to human operators.
To demonstrate some of these trends in practice, we will
conclude our review article with a new case study. In this
case study 12 in-person participants kinesthetically taught
a 7 degree-of-freedom Franka Emika robot arm how to
assemble a simple chair (see Figure 1 and Figure 6). The
robot arm did not initially know where to pick up the
chair legs or how to insert them into the chair base. Users
physically intervened to correct the robot’s motion, and the
robot learned from these corrections to improve its task
performance. We implemented example learning algorithms
that provided implicit feedback to the human teacher
(Section 2.1) and converted the learned models into explicit
signals (Section 2.2). To convey the explicit feedback to the
human, we tested interfaces that offered immersive visual
displays (Section 3.1), as well as multi-modal interfaces for
communicating the robot’s learning (Section 3.2). Finally, to
assess the outcomes of this case study, we used objective
measures of task performance and subjective measures of
the human’s response (Section 4.1). Our measurements were
designed to quantify changes in human teaching, trust, and
co-adaptation (Section 4.2). Videos of the case study can
be found here: https://youtu.be/EXfQctqFzWs.
In addition, the code we used to conduct this study
is available at: https://github.com/VT-Collab/
communicating-robot-learning

6.1 Experimental Setup
Users taught the robot arm under three different conditions
(see Figure 6). In the first condition the robot applied a
human-in-the-loop learning framework to implicitly convey
what it was learning to the human teacher (Implicit). For
the next two conditions the robot structured its learning
algorithm to extract explicit feedback signals. In GUI the
robot displayed a visual representation of the key waypoints
it had learned on a computer monitor. In AR+Haptic the
robot displayed the same information as in GUI, but now
using an augmented reality headset and wearable haptic
wristband. Viewed together, Implicit, GUI, and AR+Haptic
are examples of implicitly and explicitly conveying robot

https://youtu.be/EXfQctqFzWs
https://github.com/VT-Collab/communicating-robot-learning
https://github.com/VT-Collab/communicating-robot-learning
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Figure 6. Experimental setup for the Case Study in Section 6. Participants taught the robot arm to assemble a chair by placing
wooden legs into the base. The robot learned using an interactive imitation learning algorithm. In Implicit the robot communicated
what it had learned only through its behavior. For GUI and AR+Haptic the robot leveraged a saliency method to extract a
representation of its learning; the robot then explicitly conveyed this representation through a GUI or augmented reality and haptic
interfaces (highlighted in green). In the first column the robot starts to perform the task given its incomplete initial learning, choosing
wrong actions and grasping far from the intended chair legs. In the second column the participant notices the mistake (using either
the implicit or explicit feedback) and shows the robot the correct waypoint. Finally, the third column visualizes the robot’s resulting
behavior after learning from the human’s input. Ideally, the robot should place the leg in the spot marked by the purple arrow. Notice
that with Implicit the robot has not learned the correct orientation and insertion point for the leg.

learning, and of using visual, immersive, and multi-modal
interfaces for communicating the explicit signals.

Learning Algorithms. The robot arm learned the human’s
desired policy using interactive imitation learning. Specifi-
cally, we applied human-gated DAgger (Kelly et al. 2019).
Under this approach the robot’s policy ar = πθ(s) is instanti-
ated as a multi-layer perceptron with weights θ. This network
inputs the measured system state s (i.e., the pose of the
chair legs and base) and outputs robot actions ar (i.e.,
waypoints in joint space for the robot to reach). Let D =
{(s1, a1), . . . , (sn, an)} be a dataset of state-action pairs
provided by the human expert. The robot trains its policy
πθ so that the robot’s actions ar match the actions of the
human expert a. More formally, the robot learns weights θ to
minimize the loss function:

L(θ) =
∑

(s,a)∈D

∥πθ(s)− a∥2 (1)

Within human-gated DAgger the human can intervene at
any time to teach the robot. For instance, if the participant
notices that the robot is reaching for the wrong chair leg,
they can stop the robot’s motion and show it the correct
waypoint at the current state. The robot adds this new
(s, a) pair to dataset D and retrains its policy to minimize
Equation 1. As the robot collects new data points, its policy
should converge to the human’s desired behavior. The robot

Implicitly conveys what it is learning through its actions: if
the robot makes a mistake, the human teacher can infer that
the robot is still uncertain about that part of the task, or that
the robot has learned to do that part of the task incorrectly.

Next, we extended this human-in-the-loop approach to
extract explicit signals about the robot’s learning (GUI
and AR+Haptic). More specifically, we applied a saliency
method from Section 2.2 that highlighted regions of the
task where the robot was unsure about the correct action
(Watkins et al. 2021). Under this post-hoc framework the
robot maintained an ensemble of N models:

E = {πθ1 , πθ2 , . . . , πθN } (2)

Each individual model was trained using human-gated
DAgger: the models were initialized with randomly sampled
weights, and each separate model updated its own weights
to minimize the loss function from Equation 1. The saliency
method then post-processed the ensemble of trained models
E to extract feedback signals. At a given state s, the robot
queried each of its N models to determine their actions
ar,1, ar,2, . . . arN . If each model agreed on the action (i.e.,
if the standard deviation over actions was below a threshold
η) then the robot was confident. By contrast, in states where
the models diverged, the standard deviation over actions
increased to indicate that the robot was unsure. In our
experiment we set the threshold η = 0.45.
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Table 1. Questions on our Likert scale survey. The questions were grouped into six scales: Learned, Trust, Adapt, Intuitive, Easy,
and Prefer. On the right we report the reliability of each multi-item scale (Cronbach’s α) and the results of a repeated measures
ANOVA. Here a p < .05 indicates that the differences in the users’ scores across methods were statistically significant.

Questionnaire Item Reliability F (2, 22) p-value

– It felt like I had to repeatedly teach the same thing before the robot understood.
.83 6.53 < .05– The robot quickly learned what I wanted it to do.

– By the end of the interactions, I could trust the robot to do the task correctly.
.94 3.55 < .05– At the end of the experiment I still did not trust the robot.

– I adjusted how I worked with the robot over time.
.64 0.37 .70– I did not adapt to the robot.

– I could tell what the robot was learning and what it was still confused about.
.76 14.74 < .001– It was not intuitive at all what the robot was learning.

– I could easily interpret the robot’s feedback and figure out what it wanted to say.
.85 16.45 < .001– I had to think carefully about the robot’s feedback to determine what it meant.

– Overall, I prefer this condition − 7.98 < .01

The overall output of this learning algorithm for explicit
communication was i) a prediction of the robot’s next
waypoint ar obtained by averaging over the ensemble of
actions, and ii) a binary value representing whether or
not the robot was confused obtained from the standard
deviation over the ensemble of actions. We provided these
two explicit feedback signals to the GUI and AR+Haptic
communication interfaces in real time.

Communication Interfaces. To convey signals that repre-
sented the robot’s learning back to the human participants
we tested two different interfaces (in addition to the implicit
communication given by the robot’s movement). Each of
these explicit feedback interfaces communicated the same
information; however, the interfaces were in different loca-
tions and leveraged different modalities.

Under GUI we displayed representations of the robot’s
learning on a computer monitor placed next to the participant
and robot arm (see Figure 6 and our video). This computer
interface showed a physics rendering of the Franka Emika
robot. The rendering was updated in real time to align the
simulated robot’s state with the state of the real system.
To convey the explicit signals extracted from the learning
algorithm, the interface used colored spheres. The location
of these spheres changed during the task to mark the robot’s
learned waypoints (i.e., where the robot had learned to
reach). The color of these spheres also changed to reflect
the robot’s confidence: when the robot was confident about
a waypoint, the sphere was green, and when the robot was
uncertain about a waypoint, the sphere was red. By looking
at the GUI, participants could see both i) the waypoints the
robot had learned along the task and ii) how certain the
robot was about each waypoint. Overall, GUI represented a
conventional screen-based interface, typical in human-robot
interaction (Section 3.1.1). This type of interface offered
participants a familiar and accessible channel for receiving
the robot’s feedback.

With AR+Haptic we conveyed the same information as in
GUI, but we communicated that information in a different
way. AR+Haptic represented a shift from the computer
monitor to more immersive and accurate projections in the
task space (Section 3.1), while also exploring the benefits of
multi-modal feedback (Section 3.2). Similar to Mullen et al.

(2021), this immersive and multi-modal approach combined
both a wearable augmented reality headset (Microsoft
HoloLens 1) and a wearable haptic wristband. The wristband
was developed by the authors based on our prior work
(Alvarez Valdivia et al. 2023). The band was composed of a
row of thin-walled inflatable plastic pouches: increasing the
pneumatic pressure caused the pouches to inflate and apply
normal forces to the participant’s wrist. We used this haptic
wristband to notify the human when the robot approached
a waypoint that it was confused about. Normally the band
was kept uninflated (0 psi), but when the robot moved close
to a waypoint where it was uncertain, the band inflated
(3 psi) to squeeze the human’s wrist and alert them about
the robot’s confusion. In parallel to the haptic wristband, a
wearable augmented reality headset overlaid visual markers
on the robot’s environment. Users could see these markers
as they interacted with the robot. The markers corresponded
to the robot’s waypoints (also shown in GUI), but now
contextualized those waypoints within the robot’s physical
environment. Our combined AR+Haptic interface is shown
in Figure 6. By looking through the AR headset participants
could identify i) the waypoints the robot had learned, and
by wearing the haptic wristband participants were notified ii)
when the robot learner was confident or confused.

Dependent Measures. We used two objective metrics to
analyze the outcomes of closing the loop on robot learning
(Section 4.2). We first measured Correct Prediction, which
records how frequently users were able to correctly predict
which chair leg the robot was assembling. A higher Correct
Prediction percentage indicates that the human understood
the robot’s behavior and provided corrections for the same
subtask the robot was trying to perform. Hence, Correct
Prediction was a measure of the human’s teaching quality.
To assess the improvement in robot learning, we also
measured the robot’s Error in assembling the chair legs after
receiving corrections from the human. We calculated Error
by measuring the total distance between the robot’s end-
effector and the actual locations of the chair parts before and
after interacting with the participant. A lower Error reveals
that the participant’s teaching more accurately conveyed how
the robot should assemble the chair.

https://youtu.be/EXfQctqFzWs
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Figure 7. Objective and subjective results from our case study in Section 6. Participants physically taught a robot arm by correcting
its waypoints. The system closed the loop on robot learning in three different ways: i) including the human in the learning process
without any additional signals (Implicit), ii) displaying the robot’s learning on a computer monitor (GUI), or iii) rending the robot’s
learning across a wearable augmented reality headset and haptic wristband (AR+Haptic). (Left) When using GUI and AR+Haptic
users could always tell which chair leg the robot was trying to assemble and align their teaching with this intended subtask. (Middle)
As a result, during GUI and AR+Haptic the robot learned to assemble the chair legs with less error. (Right) When surveyed, users
perceived the robots that explicitly communicated their learning (GUI and AR+Haptic) as better learners, more trustworthy, more
intuitive to work with, and easier to understand. The participants preferred GUI and AR+Haptic overall as compared to Implicit
feedback. Error bars show SEM and an ∗ denotes statistical significance (p < 0.05).

In addition to these two objective metrics, we also applied
subjective questionnaires to probe the human’s mental model
of the robot learner (Section 4.1). Participants responded
to the 7-point Likert scale survey shown in Table 1 after
interacting with Implicit, GUI, and AR+Haptic. This
survey was composed using the practices recommended by
Schrum et al. (2023). We included five multi-item scales and
one single-item scale. Our survey asked participants whether
it seemed like the robot learned from their inputs, if they
trusted the robot, whether they adapted their teaching over
time, how intuitive it was for them to teach the robot, how
easy it was to understand the robot’s feedback, and to what
extent they preferred that communication method.

Hypothesis. We had two hypotheses for this case study:

H1. Explicit feedback (GUI and AR+Haptic)
will cause the robot to learn to perform the
desired task more accurately.

H2. Participants will prefer teaching a robot
with explicit GUI or AR+Haptic feedback as
compared to Implicit feedback.

Participants and Procedure. We recruited 12 participants
(5 female, 7 male, average age 25, age range 21 – 35
years) from the Virginia Tech community. All participants
provided informed written consent consistent with university
guidelines (IRB #20-755). Eight of the participants reported
that they had interacted with a robot before.

The experiment started with a familiarization procedure.
Participants practiced physically interacting with the
robot arm and using each communication interface. This
familiarization phase lasted for a maximum of 15 minutes.
Prior to the experiment the robot was pre-trained with an
initial understanding of the chair assembly task; we provided
a few expert datapoints offline, and then used this small
dataset to train the robot’s initial policy. However, because
the initial dataset was insufficient to convey the entire
task, participants needed to intervene and continue teaching

the robot during the experiment. We followed a within-
subjects design: each user completed the chair assembling
task with Implicit, GUI, and AR+Haptic. The order of these
conditions was counterbalanced, where four users started
with Implicit, four users started with GUI, and the final four
users started with AR+Haptic. During each trial participants
observed the robot’s behaviors and feedback and were free
to intervene and correct the robot whenever they chose. The
robot recorded the user’s expert inputs, re-trained its policy,
and updated the feedback throughout the task. Between each
method the robot reset its learning so that it always started
with an incomplete understanding of the task.

6.2 Results and Discussion

Objective Measures. The results for Correct Prediction and
Error are displayed in Figure 7.

When participants received explicit feedback about
the robot’s learning they were able to more accurately
predict what chair leg the robot was trying to assemble
(Correct Prediction). With both GUI and AR+Haptic users
intervened and provided expert datapoints for the subtask the
robot was actually performing in 100% of trials. By contrast,
when users had only Implicit feedback, they misinterpreted
the robot’s intended behavior 35% of the time, resulting in
participants teaching the robot about a subtask it was not
trying to perform. For example, in Figure 6 the Implicit robot
was originally trying reach for the left-most chair leg, but the
user instead “corrected” this motion by moving the robot to
the right-most chair leg.

This misaligned human teaching caused the robot learner
to have larger Errors between where it should have reached
for and placed the chair legs and where it actually moved.
A repeated measures ANOVA showed that different methods
for communicating learning had a significant effect on Error
(p < .001). Post hoc tests indicated that both GUI (p <
.05) and AR+Haptic (p < .001) interfaces outperformed the
Implicit condition. Comparing these two explicit methods,
we found that AR+Haptic led to lower Error than GUI
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(p < .001). These results suggest that explicitly closing the
loop and communicating the robot’s learning to the human
operator improves both the human’s teaching (Correct
Prediction) and the robot’s learning (Error).
Subjective Measures. The results of the Likert scale survey
are displayed in Table 1 and Figure 7.

We first checked the reliability of our five multi-item
scales using Cronbach’s α (where α > 0.7 was considered
reliable). Learned, Trust, Intuitive, and Easy were all found
to be reliable scales, while Adapt was not. The reliability
of Prefer was not tested since only one item (i.e., one
question) was included on this scale. We next grouped each
of the reliable multi-item scales into combined scores, and
performed measures ANOVAs on each score. The robot’s
method for communicating its learning had a significant
main effect for Learned, Trust, Intuitive, Easy, and Prefer.
To interpret these results and understand how Implicit, GUI,
and AR+Haptic compared to one another, we finally applied
the post hoc tests described below.

Starting with the Learned results, participants thought that
the robot learned what they wanted it to do more seamlessly
with GUI than with Implicit (p < .05). Similarly, users
indicated that they Trusted a robot with GUI feedback
more than a robot with Implicit feedback (p < .05). For
both Learned and Trust the differences between AR+Haptic
and Implicit were not statistically significant, although the
average scores with AR+Haptic were higher.

The visual feedback from GUI and the immersive, multi-
modal feedback from AR+Haptic made it clear to users what
the robot had learned and what the robot was confused about.
Participants indicated that explicit feedback communicated
the robot’s learning more Intuitively, with both AR+Haptic
and GUI getting higher scores than Implicit (p < .01). Users
also found this explicit feedback easier to interpret. Our post
hoc tests showed that GUI and AR+Haptic were Easier for
participants to parse than Implicit (p < .01). Overall, the
users expressed a preference for explicit feedback interfaces
over the Implicit condition. When asked which method they
preferred, the scores for GUI and AR+Haptic were both
higher than Implicit (p < .05).

The only subjective result that did not follow this general
trend focused on how humans Adapt to the robot. When
surveyed, users did not indicate that they adapted their
teaching behavior in one condition any more than in another
condition (p = .70). We note that this scale was also not
reliable, and so participants may not have interpreted our
survey questions about Adapt in a consistent manner.
Discussion. In this case study we tested some of the trends
across recent work on robot learning and communication.
We implemented a human-in-the-loop learning algorithm,
which implicitly communicated what the robot had learned
through its interactions with the human teacher. We extended
that algorithm to extract explicit signals about the robot’s
learning, and then communicated those explicit signals via
feedback interfaces. These included a GUI that displayed
learned waypoints on a 2D computer monitor, as well as a
multi-modal AR and haptic interface that rendered icons in
the task environment and provided tactile alerts. To assess
the outcomes of closing the loop and communicating robot
learning, we applied both objective performance metrics and
subjective questionnaires about the human’s experience.

Our results suggest that — when the robot explicitly
communicated what it was learning — the human was better
able to teach the desired task. We found support for improved
human teaching in Correct Prediction, which measured how
frequently the human’s teaching was aligned with the subtask
the robot was attempting to perform. This improved human
teaching likely led to more accurate robot learning. From
Error, we observed that robots which rendered explicit
feedback learned to pick up and place the chair legs more
precisely than robots which only provided implicit feedback.
Participants also perceived robots with explicit feedback as
better learners: when asked if the robot Learned what the
human wanted, subjective scores were significantly higher
for GUI as compared to implicit feedback. These results
support hypothesis H1 and are in line with the “Improved
Teaching” outcome from Section 4.2.

Our results also suggest that communicating robot
learning improves the human’s perception of the interaction.
We found that the participants Trusted the robot learner
more when it provided explicit feedback about its learning.
This could be because users felt they understood what the
robot had learned and what the robot was confused about
(Intuitive), or because the explicit feedback was Easier to
interpret than the implicit human-in-the-loop approach. One
user wrote that AR+Haptic “communicated to me what the
robot was trying to do and where it wanted to be.” Another
stated that ‘‘GUI helped me see exactly when to correct the
robot.” By comparison, participants “did not like Implicit
because it was not clear what was the robot’s intention.”
Overall, robots that conveyed what they had learned via
explicit signals were subjectively Preferred to the implicit
approach. These findings support H2 and are in line with the
“Increased Trust” outcome from Section 4.2.

Our objective and subjective results suggest that explicit
GUI or AR+Haptic feedback benefits the human-robot team.
But when comparing the visual GUI to the multi-modal
AR+Haptic interface, the results were less clear cut. On
the one hand we found that AR+Haptic resulted in the
least Error in the robot learner, while on the other hand
subjects perceived GUI as their most Preferred method. One
advantage that the participants listed for AR+Haptic was
their ability to focus on the task. For instance, one user wrote:
“GUI was distracting because I had to take my eyes off of
the robot to watch the screen,” and another said that “AR is
better because I could see the robot’s feedback from multiple
perspectives.” Despite this issue, several users indicated that
they still preferred GUI because the AR headset was heavy
and uncomfortable to wear. This highlights the importance of
developing interfaces specifically for communicating robot
learning, and making sure that these interfaces are user-
friendly (see Section 5.2)

7 Conclusion
We have presented a cross-cutting review of communicating
robot learning during human-robot interaction. We surveyed
three interdisciplinary branches of research: i) learning algo-
rithms that determine what will be communicated, ii) com-
munication interfaces that determine how communication
will occur, and iii) closed-loop measurements and outcomes
that determine what constitutes effective communication.
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When viewed together, this body of work covers how robots
can close the loop between learning and communication.

Within each research area we identified underlying trends.
First, we found that robot learners can facilitate commu-
nication implicitly and explicitly. Implicit communication
naturally arises when the human is involved throughout the
learning process; in explicit frameworks the robot learner
goes one step further to intentionally extract human-friendly
signals that summarize what it has learned. Second, we found
that interfaces designed to communicate the robot’s explicit
signals are increasingly moving from computer screens to
immersive systems. This includes a transition from visual
to non-visual feedback, as well as the emergence of multi-
modal interfaces. Finally, we found the tools applied to mea-
sure the effects of closing the loop, as well as the commonly
measured outcomes. A combination of objective metrics
and subjective questionnaires are used to probe the human’s
model of the robot learner. When robots communicate their
learning, outcomes often include improved human teaching,
increased trust, and co-adaptation.

These trends in research are driven in part by the still
unsolved challenge of communicating robot learning back
to human teachers. To address this knowledge gap between
what the robot has learned and what the human thinks the
robot has learned, we proposed a series of open questions
and interdisciplinary recommendations for future research.
Our paper also included a new case study to illustrate how
current robots can communicate their learning. This case
study showed the positive interactions of the observed trends:
our results indicated that explicit communication improves
reported measures of learning, trust, and intuitiveness,
and that immersive multi-modal interfaces allow better
situational awareness for the human, leading to robots that
more accurately learn the desired task.
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Schött SY, Amin RM and Butz A (2023) A literature survey of how
to convey transparency in co-located human–robot interaction.
Multimodal Technologies and Interaction 7(3): 25.

Schrum M, Ghuy M, Hedlund-Botti E, Natarajan M, Johnson M and
Gombolay M (2023) Concerning trends in Likert scale usage
in human-robot interaction: Towards improving best practices.
ACM Transactions on Human-Robot Interaction 12(3): 1–32.

Schuster D, Keebler JR, Zuniga J and Jentsch F (2012) Individual
differences in sa measurement and performance in human-
robot teaming. In: IEEE International Multi-Disciplinary



28

Conference on Cognitive Methods in Situation Awareness and
Decision Support. pp. 187–190.

Sena A and Howard M (2020) Quantifying teaching behavior in
robot learning from demonstration. The International Journal
of Robotics Research 39(1): 54–72.

Shah N, Verma P, Angle T and Srivastava S (2022) JEDAI:
A system for skill-aligned explainable robot planning.
In: International Conference on Autonomous Agents and
MultiAgent Systems. p. 1917–1919.

Sheikholeslami S, Moon A and Croft EA (2017) Cooperative
gestures for industry: Exploring the efficacy of robot hand
configurations in expression of instructional gestures for
human–robot interaction. The International Journal of
Robotics Research 36: 699–720.

Shrestha MC, Kobayashi A, Onishi T, Yanagawa H, Yokoyama
Y, Uno E, Schmitz A, Kamezaki M and Sugano S (2016)
Exploring the use of light and display indicators for
communicating directional intent. In: International Conference
on Advanced Intelligent Mechatronics. pp. 1651–1656.

Shrestha MC, Onishi T, Kobayashi A, Kamezaki M and Sugano S
(2018) Communicating directional intent in robot navigation
using projection indicators. In: IEEE International Symposium
on Robot and Human Interactive Communication. pp. 746–
751.

Silva A, Schrum M, Hedlund-Botti E, Gopalan N and Gombolay
M (2023) Explainable artificial intelligence: Evaluating the
objective and subjective impacts of XAI on human-agent
interaction. International Journal of Human-Computer
Interaction 39(7): 1390–1404.

Song S and Yamada S (2019) Designing LED lights for a robot to
communicate gaze. Advanced Robotics 33(7-8): 360–368.

Spencer J, Choudhury S, Barnes M, Schmittle M, Chiang M,
Ramadge P and Srinivasa S (2022) Expert intervention
learning: An online framework for robot learning from explicit
and implicit human feedback. Autonomous Robots : 1–15.

Struckmeier O, Racca M and Kyrki V (2019) Autonomous
generation of robust and focused explanations for robot
policies. In: IEEE International Conference on Robot and
Human Interactive Communication.

Suzuki R, Karim A, Xia T, Hedayati H and Marquardt N (2022)
Augmented reality and robotics: A survey and taxonomy for
ar-enhanced human-robot interaction and robotic interfaces. In:
CHI Conference on Human Factors in Computing Systems. pp.
1–33.

Tabrez A, Agrawal S and Hayes B (2019) Explanation-based reward
coaching to improve human performance via reinforcement
learning. In: ACM/IEEE International Conference on Human-
Robot Interaction. pp. 249–257.

Tabrez A, Luebbers MB and Hayes B (2022) Descriptive and
prescriptive visual guidance to improve shared situational
awareness in human-robot teaming. In: International
Conference on Autonomous Agents and MultiAgent Systems.
pp. 1256–1264.

Tang G, Webb P and Thrower J (2019) The development and
evaluation of robot light skin: A novel robot signalling
system to improve communication in industrial human–
robot collaboration. Robotics and Computer-Integrated
Manufacturing 56: 85–94.

Taylor RM (2017) Situational awareness rating technique (SART):
The development of a tool for aircrew systems design. In:

Situational Awareness. pp. 111–128.
Tellex S, Gopalan N, Kress-Gazit H and Matuszek C (2020) Robots

that use language. Annual Review of Control, Robotics, and
Autonomous Systems 3: 25–55.

Tenenbaum JB, Kemp C, Griffiths TL and Goodman ND (2011)
How to grow a mind: Statistics, structure, and abstraction.
Science 331(6022): 1279–1285.

Tian R, Tomizuka M, Dragan AD and Bajcsy A (2023) Towards
modeling and influencing the dynamics of human learning.
In: ACM/IEEE International Conference on Human-Robot
Interaction. pp. 350–358.

Tien J, He JZY, Erickson Z, Dragan A and Brown DS (2022) Causal
confusion and reward misidentification in preference-based
reward learning. In: International Conference on Learning
Representations.

Tucker M, Novoseller E, Kann C, Sui Y, Yue Y, Burdick JW and
Ames AD (2020) Preference-based learning for exoskeleton
gait optimization. In: IEEE International Conference on
Robotics and Automation. pp. 2351–2357.

Unhelkar VV, Li S and Shah JA (2020) Decision-making
for bidirectional communication in sequential human-robot
collaborative tasks. In: ACM/IEEE International Conference
on Human-Robot Interaction. pp. 329–341.

Van Zoelen EM, Van Den Bosch K and Neerincx M (2021)
Becoming team members: Identifying interaction patterns of
mutual adaptation for human-robot co-learning. Frontiers in
Robotics and AI 8: 692811.
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