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Abstract

We often assume that robots which collaborate with humans should behave in ways that are trans-
parent (e.g., legible, explainable). These transparent robots intentionally choose actions that convey
their internal state to nearby humans: for instance, a transparent robot might exaggerate its trajec-
tory to indicate its goal. But while transparent behavior seems beneficial for human-robot interaction,
is it actually optimal? In this paper we consider collaborative settings where the human and robot
have the same objective, and the human is uncertain about the robot’s type (i.e., the robot’s internal
state). We extend a recursive combination of Bayesian Nash equilibrium and the Bellman equation to
solve for optimal robot policies. Interestingly, we discover that it is not always optimal for collabora-
tive robots to be transparent; instead, human and robot teams can sometimes achieve higher rewards
when the robot is opaque. In contrast to transparent robots, opaque robots select actions that with-
hold information from the human. Our analysis suggests that opaque behavior becomes optimal when
either (a) human-robot interactions have a short time horizon or (b) users are slow to learn from
the robot’s actions. We extend this theoretical analysis to user studies across 43 total participants in
both online and in-person settings. We find that — during short interactions — users reach higher
rewards when working with opaque partners, and subjectively rate opaque robots as about equal to
transparent robots. See videos of our experiments here: https://youtu.be/u8q1Z7WHUuI
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1 Introduction

Optimal robots select actions to maximize
their objective function. When robots collabo-
rate alongside humans, maximizing this objective
requires teamwork: the robot must reason about
how the human interprets and reacts to the robot’s
behavior in order to seamlessly complete the over-
all task [37, 13, 6, 15]. In this paper we focus on
settings where the robot and the human share the
same objective function (i.e., the robot and human
are working together to perform a task), but the
human does not know exactly how the robot will

behave. This applies to factory floors, manufac-
turing, and assembly contexts where everyday
human workers must collaborate with robot part-
ners [33, 27, 26, 23]. For example, imagine a person
teaming up with a robot arm to build a block
tower (see Figure 1). Both the human and robot
share the same objective: they are trying to maxi-
mize the tower’s height without it falling over. But
the human is not sure about the robot’s capabil-
ities. If the robot is capable it can reach for any
block and add it to the tower; on the other hand,
if the robot is confused it will only be able to
add the closer, smaller blocks. Whether the robot
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Fig. 1 Collaborative block-stacking task where the human
is uncertain about the robot’s internal state θ. Transpar-
ent robot actions help the human learn θ and decide what
blocks to add to the tower. However, we find that the costs
of this transparent behavior may outweigh its benefits

is capable or confused affects the human’s opti-
mal decisions: when working with a capable robot
the human should add larger blocks, but for a
confused robot the human needs to add smaller
blocks to keep the tower from becoming unstable
and falling over. Given this uncertainty, it seems
intuitive that the robot’s optimal behavior is to
pick up blocks that reveal whether it is capable or
confused.

In line with this intuition, today’s approaches
to human-robot interaction often assume that
robot behavior should be transparent (e.g., legi-
ble, explainable, understandable) [16, 34, 17, 36].
Transparent robots take actions that purposely
reveal their internal state. For instance, when
reaching for a block on a cluttered table, a trans-
parent robot will exaggerate its trajectory so that
nearby humans can predict which block the robot
is going to grab [11, 10, 7]. Transparent motions
are beneficial because they convey information
to the human, and the human can then lever-
age this information to better coordinate with the
robot [14, 39, 29, 18]. But transparent behavior
also comes at a cost. Consider our example of
reaching for a block: by exaggerating its trajec-
tory the robot takes longer to get to the block
and complete the task. Going one step further,
the human teammate may require multiple inter-
actions before they correctly interpret what the
robot is trying to convey and update their own
behavior in response.

In this paper we explore the situations where
transparent behavior is optimal for human-robot
teams. We build on related works to introduce
opacity as the opposite of transparency: opaque
robots select actions that withhold information
from the human. To determine whether it is opti-
mal for robots to withhold information and select
opaque behaviors, or to convey information and
select transparent behaviors, our insight is that:

We can formulate collaborative interactions where
the human is uncertain about the robot internal
state as a two-player stochastic Bayesian game.

We develop an algorithmic framework to solve
these games and obtain optimal robot policies for
each internal state (i.e., for each type of robot).
Interestingly, we find that — under some condi-
tions — the optimal policy is the same for every
robot type and the robot’s resulting behavior is
opaque to the human. Return to our motivating
example in Figure 1. Although we might have
expected the capable robot to stack large blocks
and the confused robot to stack small blocks, we
will prove that under some conditions the human-
robot team actually has a higher expected reward
if both robots always build the smaller tower.
Put another way, when the human and robot act
optimally the robot is opaque, and does not take
actions to convey to its capabilities to the human.

Overall, we make the following contributions:

Formalizing Opacity. We capture settings
where the human and robot have the same pay-
off and the human is uncertain about the robot’s
type as stochastic Bayesian games. Within this
context we build on prior works to define fully and
rationally opaque behavior.

Proving when Opacity is Optimal.We extend
a recursive combination of Bayesian Nash Equi-
librium and the Bellman equation to find optimal
robot policies. We then show that these optimal
policies can be opaque. Our analysis and simu-
lations suggests that it is more likely for opaque
behavior to be optimal when (a) interactions have
a short time horizon and (b) humans are slow to
learn from robot actions.

Measuring User Responses to Opaque
Robots. We conduct online and in-person user
studies where we compare opaque and transpar-
ent robots. Across 43 total participants we support
our theoretical analysis and show that opaque

2



behavior does lead to higher human rewards
during shorter interactions. Users prefer opaque
robots about equally to transparent partners.

2 Related Work

Transparent Robots. Prior work on human-
robot interaction often assumes that robots should
be transparent (e.g., legible or explainable) [16, 34,
17, 11]. Transparent robots actively and intention-
ally reveal their internal state to nearby humans
so that these humans have a more accurate esti-
mate of the robot’s intent. Here we specifically
focus on transparent robot actions (e.g., motions).
Recent research demonstrates that robots can
exaggerate their actions to communicate their
goal [10], indicate their intended trajectory [7],
and express whether or not they are capable of
performing a task [19]. When applied to collabo-
rative human-robot teams where both agents are
working together to complete a shared task, exper-
iments suggest that transparent robot motion
improves overall team performance [14, 39, 29].

Although transparency is often perceived as a
benefit to human-robot interaction, we explore the
opposite perspective: is it ever optimal for robots
to hide their internal state and intentionally with-
hold information from the human?

Deceptive Robots. Robot actions can be decep-
tive or misleading. For instance, by initially mov-
ing towards the wrong goal a robot can convince
the human that this goal is what the robot actu-
ally wants — even if the robot has another target
in mind [35, 9]. We are not interested in explicitly
encouraging deceptive actions; instead, we study
situations where this behavior emerges naturally
as part of the robot’s optimal policy. Towards this
end we will formulate human-robot interaction as
a two-player collaborative game [25, 5, 28, 1]. By
solving this game we seek to identify whether opti-
mal robot behavior reveals or withholds informa-
tion about the robot’s latent state. When solving
similar games, recent research has found that it
can be optimal for robots to take actions that
influence humans [32, 31, 38] or mislead users [20].

In these prior works the human and robot
are competitors: the robot has a different objec-
tive than the human. For instance, in [32] an
autonomous car and human driver are com-
peting to cross the intersection first, and the

autonomous car takes misleading actions to influ-
ence the human driver to yield. By contrast, in
our paper the human and robot are collaborative:
both agents share the exact same reward function
and have no incentive to mislead one another.

3 Problem Formulation

We consider industrial applications where a robot
is working alongside a human partner. More
specifically, we focus on collaborative interactions
where both the human and robot share the same
reward function (i.e., both agents get the exact
same payoff at every timestep). While we assume
that the human and robot know this reward func-
tion (i.e., both agents know the task), the human
is uncertain about the robot’s type. Here type θ
captures latent information observed only by the
robot. For instance, consider our running example
where a human is building a block tower with a
robot arm: the robot can either reach any block
(type capable) or the robot can only reach for
nearby blocks (type confused). The human does
not initially know the robot’s type θ and the robot
must decide whether to take actions that reveal
its type during interaction.

Interaction. Let s ∈ S be the system state, let
aR ∈ AR be the robot action, and let aH ∈ AH
be the human action. The system state transitions
using deterministic dynamics:

st+1 = f(st, atH, atR) (1)

where both human and robot actions affect the
system state. At each timestep the human and
robot act simultaneously. Neither agent goes first:
both select their actions atR and atH without know-
ing what action the other agent is taking. The
interaction ends after a total of T timesteps.

Robot Type. Throughout the interaction the
robot has a fixed type θ. Within our experiments
type refers to the robot’s level of capability (e.g.,
how quickly the robot can move or how effectively
the robot can grasp objects). More generally, θ is
latent information known only by the robot. Let
there be N possible types of robots. In our user
studies we focus on cases where N = 2 and there
two possible types of robots (to better measure
opacity and transparency), but the formulation we
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present extends to settings with an arbitrary num-
ber of robot types. At the start of each interaction
θ is sampled from the prior P (θ). The human
knows this prior distribution P (θ) but not the
robot’s current type θ.

Belief. The human updates their estimate of the
robot’s type during the interaction based on the
robot’s behavior. Let bt+1(θ) = P (θ | s0:t, a0:tR ) be
the probability that the robot is type θ given that
we have visited states s0:t and the robot has taken
actions a0:tR up to the current timesetp t. Simi-
lar to prior work [40], we assume that the human
updates this belief using Bayesian inference:

bt+1(θ) ∝ bt(θ) · P (atR | st, θ) (2)

where b0(θ) = P (θ) is the known prior over the
robot’s type. The likelihood function P (aR | s, θ)
expresses — from the human’s perspective — how
likely the robot is to take action aR at state s given
that the robot is type θ. Our approach is not tied
to a specific choice of this likelihood function. In
our simulations (Section 5) we will test different
models for P (aR | s, θ).
Reward. At each timestep the collaborative
human and robot receive the same reward r(s).
This reward function captures the task that the
agents are trying to complete (e.g., the height of
the tower the human and robot are building). Both
agents know this reward function and know that
the other agent shares the same reward. Summing
reward at each timestep gives the total reward
across the entire interaction:

∑T
t=0 r(s

t).

Stochastic Bayesian Game. The human and
robot want to complete the task and maximize
their reward across the interaction. If we model
the human as a rational agent, this problem is an
instance of a two-player stochastic Bayesian game
where the human is uncertain about the robot’s
type [1]. We highlight two non-standard aspects
of our game-theoretic formulation. First, the game
is entirely collaborative: the agents always receive
the same payoffs. Second, the human updates
their belief according to Equation (2), and dif-
ferent humans may leverage different likelihood
functions when updating this belief.

Policies. Within a stochastic Bayesian game the
human and robot each have policies. The human’s
policy aH = πH(s, b) maps the current state and
belief to actions, and the robot’s policy aR =

πR(s, b, θ) maps the state, belief, and type θ to
robot actions. Remember that the robot knows its
type θ. In practice, robots of different types may
take different actions given the same state and
belief. Returning to our running example of build-
ing a tower: at a given (s, b) a capable robot could
reach for the larger block while the confused robot
might move for the closer, smaller block.

In Section 4 we will solve for the optimal robot
policy. This policy πR(s, b, θ) will maximize the
human’s and robot’s expected reward across an
interaction.

4 Should Collaborative
Robots be Opaque?

In this section we develop a solution to our
stochastic Bayesian game to identify the robot’s
optimal policy. Because the human and robot
share the same reward function (and are therefore
collaborating on a common task), it may seem rea-
sonable to expect that the optimal robot behavior
is transparent. Recall that transparent motions
intentionally improve the human’s estimate of the
robot’s latent state [11, 16]. Returning to our
motivating example in Figure 1, we might expect
the capable robot to take actions that reveal it can
reach for larger blocks, and the confused robot to
take actions that demonstrate it is limited to the
nearby, smaller blocks. However, in this section we
theoretically prove that transparency is not always
optimal. We start by introducing formal defini-
tions for opacity when the robot is interacting
with rational and irrational humans (Section 4.1).
Next, we derive a game-theoretic approach for
finding optimal robot behavior in collaborative
games (Section 4.2). Finally, we provide an exam-
ple to prove that — within our problem setting —
there exist cases where it is optimal for robots to
be opaque and hide their capabilities (Section 4.3).

4.1 Formalizing Robot Opacity

We start by introducing two definitions for opac-
ity within stochastic Bayesian games where the
human is uncertain about the robot’s type θ.
These definitions are consistent with prior work on
robot legibility and transparency [8]. Our first def-
inition makes no assumptions about the human’s
policy, and applies when the robot is interacting
with any human partner. Our second definition
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assumes that the human acts rationally : i.e., the
human chooses actions to maximize the expected
cumulative reward. For both definitions we rea-
son about opacity in terms of the human’s belief
at the end of the interaction, bT . Recall that b(θ)
from Equation (2) is the human’s belief over the
robot’s type θ, and the interaction has a total
of T timesteps. Intuitively, a transparent system
causes the human to reach different beliefs when
interacting with different types of robots, so that
bT (θ1) ̸= bT (θ2) [22]. By contrast, an opaque sys-
tem causes humans to converge to the same final
belief regardless of the robot’s actual type, so that
bT (θ1) = bT (θ2). More formally, we define Fully
Opaque and Rationally Opaque robot’s below:

Fully Opaque. Let (s0, b0) be the initial system
state and prior over the robot type. Define (s0, b0)
as fully opaque if — no matter which type θ ∈ Θ
the robot actually is — the human’s final belief
bT (θ) is equivalent.

As a example, consider a robot where aR =
πR(s, b, θ) is always zero; i.e., a robot that always
takes action aR = 0. The human cannot distin-
guish what type of robot they are working with
regardless of what policy πH the human chooses.
Accordingly, the human’s final belief bT (θi) =
bT (θj) for any choice of i and j. We define this
robot as fully opaque because, no matter what the
human does, they always converge to the same
final understanding of the robot’s type.

Rationally Opaque. Let (s0, b0) be the initial
system state and prior, and assume the human
takes actions to maximize their expected total
reward in the stochastic Bayesian game (i.e., the
human acts optimally). Define (s0, b0) as ratio-
nally opaque if — no matter which type θ ∈ Θ
the robot actually is — the rational human’s final
belief bT (θ) is identical.

The difference between fully opaque and ratio-
nally opaque is our assumption about the human’s
policy. In both cases the robot does not reveal
any information about its type over the course of
interaction. But for rationally opaque the human
is constrained to always take optimal actions,
while for fully opaque the human can take random
actions to perturb the system. As we will show, a
robot starting at (s0, b0) may be rationally opaque
but not fully opaque (i.e., an irrational human
could take random actions that cause the robot to
reveal its underlying type).

4.2 Identifying Optimal Behavior

Now that we have defined opacity, we will next
determine if it is ever optimal for robots to be
opaque. In Section 3 we formulated the human and
robot as agents in a two-player stochastic Bayesian
game. In this subsection we present an algorithm
for finding optimal human and robot policies πH
and πR under this game-theoretic setting. Next, in
Section 4.3 we will apply this algorithm to exam-
ple scenarios and demonstrate that the robot’s
optimal behavior in these settings can be fully
opaque or rationally opaque.

Augmented State. The human’s policy πH(s, b)
and robot’s policy πR(s, b, θ) depend on the sys-
tem state s and the human’s belief b. The state
transitions according to Equation (1) and the
belief transitions according to Equation (2). With-
out loss of generality, we combine these two
equations into a single dynamics:(

st+1, bt+1
)
= F

(
st, bt, atH, atR

)
(3)

where (s, b) is the augmented state and F is the
augmented dynamics under which the state and
belief evolve. Note that F is not a new equation:
we are evaluating Equation (1) and Equation (2)
to find the next state-belief pair (st+1, bt+1) given
that the human takes action aH and the robot
takes action aR.

Harsanyi-Bellman Ad Hoc Coordination.
Recent research finds optimal policies for stochas-
tic Bayesian games through a recursive combi-
nation of Bayesian Nash equilibrium and the
Bellman equation. This method is referred to as
Harsanyi-Bellman Ad Hoc Coordination (HBA)
[2]. Define V (s, b) as the value of the augmented
state (s, b), i.e., the total reward of starting in
(s, b) and acting optimally thereafter. Because
both of the agents in our setting have common
payoffs, and because there is only uncertainty
about the robot’s type, HBA applied to our
context reduces to:

V
(
s, b

)
= r

(
s
)
+

max
a

N∑
i=1

b(θi) · V
(
F (s, b, aH, aR,i)

)
︸ ︷︷ ︸

Bayesian Nash Equilibrium at (s,b)

(4)
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where aR,i is the action assigned to the i-th type of
robot, and a = (aH, aR,1, aR,2, . . . , aR,N ) includes
the human’s action and an action for each of theN
types of robots. We will denote the action a that
maximizes the underlined portion of Equation (4)
as a∗ = (a∗H, a∗R,1, a

∗
R,2, . . . , a

∗
R,N ).

Overall, Equation (4) is an instance of the
Bellman equation [30]. The value V (s, b) is equal
to the immediate reward at s plus the max-
imum expected value of the next augmented
state. This expectation is taken over the human’s
belief in the robot’s type: recall that b(θi) is
the probability — from the human’s perspec-
tive — that the robot is type i. Within the
underlined portion of Equation (4) we find the
Bayesian Nash Equilibrium at the current aug-
mented state (s, b). Specifically, we find an action
a∗ = (a∗H, a∗R,1, a

∗
R,2, . . . , a

∗
R,N ) for the human and

each type of robot such that a∗ maximizes the
next value given the human’s current belief b. Intu-
itively, the human is not sure which robot type
they are dealing with: each type may take a differ-
ent action aR, and the rational human identifies
an action aH that will maximize the expected
value across robot types. In practice we can solve
Equation (4) by either (a) discretizing the states
and actions and applying classical value iteration
approaches [30], or by (b) leveraging recent algo-
rithms that approximate the value function in
continuous spaces [21]. In either case our output
is the value V at each augmented state (s, b).

Now that we have V (s, b) from Equation (4)
we will use this value to find optimal human and
robot policies πH and πR. Let a∗ be the Bayesian
Nash Equilibrium at (s, b):

a∗ = argmax
a

N∑
i=1

b(θi) · V
(
F (s, b, aH, aR,i)

)
(5)

where a∗ = (a∗H, a∗R,1, . . . , a
∗
R,N ) assigns an action

to each type of robot, so that robot type θi takes
action a∗R,i. The optimal human and robot take
their respective actions within this Bayesian Nash
Equilibrium, such that:

πH(s, b) = a∗H, πR(s, b, θi) = a∗R,i (6)

Overall, Equations (4)–(6) solve the stochastic
two-player Bayesian game to find the optimal pair
of policies for the human and robot. In practice,

we recognize that actual human users may devi-
ate from their optimal policy πH. Humans that
exactly follow πH are rational humans: in our
definition of rationally opaque we assume that
the human executes πH. We also emphasize that,
when solving Equations (4)–(6) for the robot’s
optimal policy πR, we have assumed the human
partner acts rationally.

4.3 Proving Opaque Behavior can
be Optimal

By leveraging our modified HBA algorithm from
Section 4.2 we can find the robot’s optimal pol-
icy and determine whether it is ever optimal for
robots to be opaque. Here we apply Equations (4)–
(6) to a simulated 1-DoF human-robot team1. We
first empirically demonstrate that it can be opti-
mal for collaborative robots to be fully opaque.
Next, we explore the distinction between fully and
rationally opaque, and prove that robots which are
rationally opaque may not be fully opaque.

Example Problem. Consider a 1-DoF version
of our motivating example where the human and
robot are trying to reach for a block (see Figure 2).
The state s is the position of the human-robot
team. This state is bounded between [0, 2], where
s = 0 is the position of the block closer to the
robot and s = 2 is the position of the farther block.
At each timestep the human can take actions
AH = {−0.2, 0,+0.2} to reach left or right. There
are two types of robots: a capable robot (θ1) which
can reach for either block, and a confused robot
(θ2) that can only move for the block at s = 0. The
capable robot’s action set is AR,1 = {−0.1,+0.1}
and the confused robot’s action set is AR,2 =
{−0.1}. The human increases their belief b that
the robot is capable if they observe aR = +0.1.
The game ends after a total of T = 5 timesteps.
The human and robot receive reward r = +1 if
they end the game at state s = 0 (the closer block)
r = +2 if they end the game at s = 2 (the farther
block). At all other states the reward is r = 0.

Known Type. Imagine that the robot’s type θ is
public knowledge. If the human interacts with a
capable robot, both the human and robot should
move right at every timestep (aH = +0.2 and
aR = +0.1) to reach the farther block (reward

1See the complete implementation of this example here:
https://github.com/VT-Collab/opaque-example

6

https://github.com/VT-Collab/opaque-example


rational

0 1 20.5 1.5r = +1 r = +2

random

0 1 20.5 1.5r = +1 r = +2

confused robot

capable robot

confused robot

capable robot

(a)

(b)

Fig. 2 Example of an optimal, fully opaque robot. The
system starts at position s = 0.6 and prior b0 = 0.2. The
robot has two types θ: confused and capable. The confused
robot can only move towards the left block. (a) Optimal
human and robot solve this stochastic Bayesian game. (b)
Optimal robot is paired with a human that takes random
actions. Regardless of the human’s actions, both capable
and confused robots always move towards the left block.
Hence, the robot is fully opaque, and the human cannot
infer θ from the optimal robot’s actions

r = +2). Alternatively, if the human knows they
are interacting with the confused robot and they
start at a state s < 1.5, then they cannot reach the
farther block and should move left for the closer
block (aH = −0.2 and aR = −0.1). The human’s
optimal actions depend on the robot’s type θ. It
may therefore seem optimal for the robot to reveal
its type so that the human can determine which
block to aim for. As we will show, however, this is
not always the case.

Optimal Robots can be Fully Opaque. Let
initial system state be s0 = 0.6 and let the prior be
b0(θ1) = 0.2 (i.e., the human is 20% sure the robot
is capable). We solve Equations (4)–(6) to find the
optimal robot policy πR. We then pair this opti-
mal robot with two different humans: a rational
human that follows the optimal human policy πH,
and a random human that can take any action (see
Figure 2). We find that — no matter what action
the human takes — the optimal action for both
types of robots is to move left and reach for the
closer goal. Put another way, when starting at this
(s0, b0) both robot types always take action −0.1.
Rational or random humans cannot distinguish
the robot’s type: at the end of the interaction
the human’s belief is bT (θ1) = 0 after working
with both capable and confused robots. Accord-
ingly, given the initial augmented state s0 = 0.6
and b0(θ1) = 0.2 the robot’s optimal behavior is

fully opaque. Moving for the closer block results
in higher team reward, even though it does not
convey information to the human.

Optimal Robots can be Rationally Opaque.
We next prove that an optimal robot may be ratio-
nally opaque but not fully opaque. Let the initial
state be s0 = 1.0 with prior b0(θ1) = 0.2 (i.e.,
the 1-DoF system starts farther to the right than
before). When the optimal robot interacts with a
rational human the system again reaches for the
closer block; both capable and confused robots
always take action aR = −0.1, and the rational
human’s final belief is identical across both types
of robots. But this changes when the human is free
to take any action. If the random human takes
action aH = 0.2 the capable robot switches direc-
tion to go towards the farther goal and obtain
reward r = +2. The random human’s final belief
is b(θ1) = 0.4 when interacting with the capa-
ble robot and b(θ1) = 0 with the confused robot.
Hence, for this initial state the robot’s optimal
behavior is only rationally opaque.

5 What Conditions Lead to
Opaque Robots?

In Section 4 we developed a method for solving
our stochastic Bayesian game and identifying opti-
mal robot behavior. We also showed that opaque
robot behavior can be optimal in certain problem
settings. In this section we analyze what types of
problem settings lead to optimal, opaque robots.
We conduct controlled experiments with simu-
lated humans. We hypothesize that the duration
of the interaction and the speed of the human’s
learning will determine whether it is optimal for
robots to be transparent or opaque. Accordingly,
we vary the time horizon of the interaction, the
human’s learning rate, and the way the human
learns from the robot’s behavior. Across two simu-
lated environments, we observe that shorter inter-
action times and lower learning rates result in a
higher number of optimally opaque states.

Environments. Our simulated environments are
shown in Figure 3 and Figure 4. All code for
replicating these environments and reproducing
our simulations is available online2. The 1-DoF
human-robot team matches the example from

2See https://github.com/VT-Collab/opaque-example
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Fig. 3 Simulation results from our 1-DoF Environment. (a) The human and robot collaborated to reach a goal; the confused
robot could only go left while the capable robot could help reach right or left. For each plot we sampled all start states
and priors and then calculated the percentage of those augmented states which were opaque; e.g., 50% opaque means that
for half of the initial augmented states it was optimal for the robot to withhold its type θ from the human. (b) We varied
the human’s learning rate and the total number of timesteps in each interaction. A higher learning rate indicated that the
human uncovered θ more quickly when the actions for each robot type diverged. (c) We also tested a human that used
Bayesian inference to update their belief and two bounded memory humans (with learning rates of 0.3 and 0.7) that forgot
what they had learned after each timestep
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Fig. 4 Simulation results from our robot arm environment. (a) Humans shared control with a robot arm to reach for goals
on the table; the capable robot could go towards any goal while the confused robot could only move down and left. The
format of our results follows Figure 3. (b) The number of opaque states decreases as the interaction time increases. (c)
The number of opaque states also decreases as the human learns more quickly. Note that the Bayesian human is an ideal
user that can infer the robot’s type from a single timestep; i.e., this human model learns θ as efficiently as possible. When
compared to this ideal human, it is more likely for opaque behavior to be optimal when the robot is collaborating with a
forgetful user that follows the bounded memory model. Overall, our results show that opaque behavior is more likely to be
optimal during short interactions with suboptimal humans

Section 4.3 with one slight difference: now the
human actions AH = {−0.1, 0,+0.1} have the
same magnitude as the robot actions. As a
reminder, in this 1-DoF setting the human and
robot are collaborating to reach one of the goals.
One type of robot can reach either goal, and the
other type of robot can only move left.

We extend this environment to create a robot
arm simulation (see Figure 4). In accordance with
our motivating example of assembling a tower,
the human and robot must collaborate to reach
blocks (e.g., goals) around the table. There are
three different goals on the table; the confused
robot (θ1) can only move down or to the left, while
the capable robot (θ2) can autonomously move in
any direction. Goals that are farther away from
the robot’s base have a higher reward. However,
the confused robot may not be able to coordinate
with the human to reach these goals, and thus

the human needs to determine the robot’s type to
figure out which goal to aim for.

Procedure. For each environment, time horizon,
and simulated human we first solve Equations (4)–
(6) to find the optimal robot policies. We then
sample all the discrete states and priors, and test
whether the augmented start states (s0, b0) are
fully opaque, rationally opaque, or transparent. In
what follows we report (a) the percentage of ratio-
nally opaque start states and (b) the percentage
of fully opaque start states. Our overall results are
summarized in Figure 3 and Figure 4.

5.1 Varying Interaction Time

The human-robot interaction ends after T total
timesteps. To understand how the duration of
the interaction affected the optimality of opaque
behaviors, we held the simulated human constant
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and varied the interaction time T . When inter-
actions are short (i.e., as T → 0) we find that
the robot’s optimal behavior is opaque for an
increasing number of initial conditions. Consider
the x-axes of Figure 3 and Figure 4: the percent-
age of rationally opaque and fully opaque states
increases as T decreases. Conversely, when inter-
actions are long (i.e., as T → ∞) the robot’s opti-
mal behavior becomes transparent. Again looking
at the x-axes of Figure 3 and Figure 4, the percent-
age of rationally opaque and fully opaque states
decreases as T increases.

To explain this result we highlight a trade-off
between completing the task and communicat-
ing hidden information. Using the robot’s actions
to convey the robot’s type θ requires additional
timesteps: the robot must exaggerate its motion
(and potentially move away from goals) to indi-
cate θ to the human teammate. But when the
interactions are short, this time is not available
— the robot must leverage all of its actions
to directly complete the task and maximize the
team’s reward. Hence, we suggest that transpar-
ent behavior is more suitable for settings where
the human and robot will work together for long
periods of time, while opaque behavior is more
likely to be optimal when the human and robot
are collaborating across a single-shot task.

5.2 Varying Human Learning Rate

The human updates their estimate b(θ) of the
robot’s type θ as they observe the robot’s behav-
iors. For example, if the robot reaches for a block
(i.e., a goal) that is farther away, the human
should become more confident that the robot is
capable of reaching these distant goals. During
our controlled simulations we adjusted how slowly
or rapidly the simulated human’s belief changed
during a single timestep — i.e., we adjusted the
human’s learning rate. For a learning rate of 0.1
the next belief bt+1(θ) = bt(θ) ± 0.1, and for a
learning rate of 0.9 the belief similarly updates
in increments of 0.9. Increasing the learning rate
corresponds to a human that is more sensitive to
differences in robot behavior; by contrast, low-
ering the learning rate towards zero corresponds
to a human that does not update their esti-
mate regardless of the robot’s actions. Looking
at Figures 3 and 4, we find that the percent-
age of rationally opaque and fully opaque states

decreases as the learning rate increases. When the
simulated human learns more rapidly, transpar-
ent behavior becomes optimal. On the other hand,
when the simulated human learns more gradually,
it is optimal for robots to remain opaque.

We explain this result in connection with the
interaction length T from Section 5.1. When the
learning rate increases the robot can more rapidly
convey information to the human, and thus the
robot does not need to devote as many actions
and timesteps to communicate its type θ. At the
other end of the spectrum, when the human learns
gradually the robot must commit multiple actions
to convey θ, and during these actions the human’s
response is not necessarily aligned with the robot’s
capabilities. At the extreme the human does not
learn at all from the robot’s actions: in this case,
there is no advantage to transparency. Our simu-
lation results suggest that transparent robots are
more likely to be optimal when the human is sensi-
tive to the robot’s behavior, and opaque behavior
is more likely to be optimal when the human learns
slowly or ignores the robot’s actions.

5.3 Varying How the Human Learns

We finally test two alternative human models.
First, we simulate an ideal human that leverages
Bayesian inference to update their belief [4]. Here
the human knows the robot’s policy and treats πR
as the likelihood function in Equation (2). This
ideal human learns as quickly as possible: at aug-
mented states where πR(s, b, θi) and πR(s, b, θj)
output different actions, the Bayesian human
immediately distinguishes types θi and θj . Second,
we apply the bounded memory model [24, 3] to
simulate a human that only remembers the robot’s
most recent behavior (i.e., the robot’s last action).
This human updates their belief b during each
timestep at a fixed learning rate, and then resets
b to the prior between timesteps (i.e., this simu-
lated human forgets what they have learned). Our
results for ideal and forgetful humans are shown
on the right side of Figures 3 and 4. When the
interaction lasts only a few timesteps T , even for
an ideal human learner it is still optimal for the
robot to select opaque behaviors. As the dura-
tion of the interaction increases we again find that
the percentage of opaque states decreases for both
the ideal and forgetful humans. We also find that
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bounded memory humans with a lower learning
rate lead to an increased number of opaque states.

These results demonstrate that opaque robot
behavior is not tied to a specific model of human
learning: we find that opaque behavior can be
optimal when the human learns as quickly as pos-
sible (Bayesian Human) or when the human for-
gets previous actions (Bounded Memory Human).
In line with the results from Section 5.1 and
Section 5.2, we again observe the connection
between interaction time T and the speed of
the human’s learning. Transparent behavior is
more likely to be optimal as T increases and the
human learns more efficiently, while opaque behav-
ior is suitable during short interactions where the
human is less sensitive to the robot’s behavior.
In Section 6 we will move beyond these simu-
lated, controlled environments and test whether
these optimization procedures and design princi-
ples apply with real-world users.

6 User Studies

In this section we test how humans collaborate
with opaque or transparent robot partners. Our
analysis from Section 4 and simulations from
Section 5 suggest that there are situations where
opaque robot behaviors lead to better team per-
formance. In the following experiments we use
Equations (4)–(6) to solve the stochastic two-
player Bayesian game and find optimal robot
policies. We consider single-shot driving environ-
ments and the tower-building task from Figure 1.
Here the short interaction time T results in opti-
mal opaque behaviors — i.e., when solving the
system of equations the robot finds that opaque
behaviors will lead to higher rewards. But it is not
clear whether actual humans will follow this game-
theoretic model, and if the behaviors that the
robot predicts will result in higher rewards actu-
ally improve the team’s performance. In addition
to the shared reward, we also monitor the human’s
subjective response. Even if the human does
receive higher rewards with an opaque robot, they
may prefer working with transparent partners that
take actions to convey their latent state. To test
both the team’s performance and the human’s
perception we performed two separate user stud-
ies: an online user study with autonomous driving
(Section 6.1), and an in-person experiment with
collaborative block stacking (Section 6.1). Below

we first introduce our independent and dependent
variables shared across both user studies, and then
describe the protocol, results, and discussion for
each specific experiment.

Independent Variables. During each trial one
human interacted with one robot. There were two
types of robots (N = 2) that the human could
interact with: these robots were not visually differ-
ent, and the human had to infer the robot’s type
based on its actions. For ease of reference we will
refer to these types as the confused and capable
robots. During each interaction the robot’s actual
type was randomized: in half of the trials partic-
ipants worked with the confused robot, and the
other interactions were with the capable robot. As
such, participants were unsure about the robot’s
current type θ at the start of each interaction.

We varied the robot’s algorithm to compare
Opaque and Transparent robot policies. To find
the Opaque policy we applied Equations (4)–(6)
from Section 4.2 and solved for the robot’s opti-
mal behavior πR. We then confirmed that this
optimal policy πR was fully opaque at the environ-
ments’ start states according to the definition from
Section 4.1. To find Transparent robot behav-
ior we leveraged a baseline from related works
[11, 10]. The Transparent algorithm modified
the robot’s reward to incentivize revealing actions;
more formally, in [11, 10] the robot assigns a bonus
reward to actions that convey θ to the user. We
incorporated this bonus reward into our stochas-
tic Bayesian game, and then solved for the optimal
(and transparent) robot behaviors. We confirmed
that the Transparent robot took actions to com-
municate its intent and was not either fully or
rationally opaque.

Dependent Measures. During each interac-
tion we measured the human-robot team’s final
Reward. Here reward corresponded to the score in
each environment: e.g., the distance the shared car
traveled in the online study, or the height of the
block tower in the in-person study. We normal-
ized these rewards between 0 and 1 for consistent
reporting. We also displayed the human’s reward
in real-time so that participants could track their
own performance.

Next, we measured the human’s subjective
Preference for each robot algorithm. Preference
was measured on a 1-7 Likert scale, where higher
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Fig. 5 Task results from our online user study. Participants collaborated with a virtual agent to drive a car in Passing,
Turning, and Parking environments. Error bars show standard error and an ∗ denotes statistical significance (p < .05)

scores indicated the human had a stronger prefer-
ence for working with that robot algorithm.

Hypotheses. Throughout our user studies we
had two main hypotheses:

H1. Humans will obtain more reward with Opaque
partners than with Transparent partners.

H2. Humans will prefer Opaque robots, even
though these robots withhold information.

6.1 Online: Sharing Control of an
Autonomous Car

We first conducted an online survey where partic-
ipants collaborated with a virtual robot to share
control over a car. At each timestep the human
clicked their input aH, the robot selected its action
aR, and then the autonomous car moved using the
combined action a = aH + aR.

Experimental Setup. Participants teamed up
with the robot to drive in three settings: passing,
turning, and parking (see Figure 5). In Passing the
team received rewards for making lane progress,
staying on the road, and avoiding a collision. In
Turning the reward was the car’s velocity plus
the total angle the car turned. Finally, in Parking
the team obtained a reward for either (a) paral-
lel parking directly above the start position or (b)
driving straight ahead to an open parking place.
Each reward was normalized into a 0-1 range.

Participants completed every scenario with
Opaque and Transparent robots. The robot’s
type θ was randomized and counterbalanced — in
half of the interactions the robot was type con-
fused, and in the other half the robot was type
capable. Accordingly, there were four equally bal-
anced experimental conditions: Opaque policies
with confused and capable robots, and Transpar-
ent policies with confused and capable robots.

Interactions lasted three timesteps (T = 3).
During each timestep we first showed the par-
ticipant an image of the current state st and
prompted the user to select their action from a
multiple choice menu (e.g., turning left, accelerat-
ing forward). After the user selected their action
atH, the robot acted simultaneously with atR and
we showed an image of the next state st+1. We
displayed the user’s reward throughout the game,
and then at the end asked if the user “preferred
sharing control with this car.”

Participants. We recruited 44 anonymous par-
ticipants. All participants read the instructions
prior to starting the study; we then asked quali-
fying questions to test their understanding. Below
we report the results for the 30 participants who
passed these qualifying questions and completed
the survey. Each participant performed 12 driv-
ing interactions (3 scenarios, twice with Opaque
and twice with Transparent). The order of pre-
sentation was randomized and counterbalanced so
that half of the users started each scenario with
the Opaque robot and the other half started with
Transparent. Participants received a $5 USD gift
card after completing the survey.

Results. Our results are summarized in Figures 5
and 6. Taken across all tasks and both robot
types, paired t-tests reveal that the team’s over-
all reward was significantly higher when humans
collaborated with Opaque partners than when
humans collaborated with Transparent partners
(t(179) = 2.62, p < .05). Looking more specifically
at the individual driving tasks, in both Passing
(t(59) = 2.37, p < .05) and Turning (t(59) = 3.33,
p < .05) users reached higher rewards when paired
with Opaque partners. These results support
hypothesis H1 and suggest that real participants
can reach higher rewards when collaborating with
optimal but opaque robots.
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Fig. 6 Overall results from our online user study. (a)
The average reward across all three tasks. (b) 30 partici-
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On the other hand, the users’ perceptions of
the robots were divided. Across all three tasks,
paired t-tests showed that the differences in pref-
erence scores were not statistically significant
(t(179) = 1.06, p = .29). We initially hypothesized
that there might be a bi-modal split in partici-
pants: if half strongly preferred Opaque robots
and the other half strongly preferred Transpar-
ent, then these two halves would cancel out when
computing the average scores. But calculating
each individual’s preferences in Figure 6 we find
that most users are roughly on the fence, and
the overall distribution is unimodal. Hence, in
response to hypothesis H2 we find that online
users did not clearly prefer either Opaque or
Transparent robots.

Discussion. When sharing control of the
autonomous car, users needed to quickly coor-
dinate with their robot partner to successfully
complete the task (i.e., to pass, turn, or park).
If the human and robot attempted to complete
the task in different ways, their conflicting inputs
resulted in lower rewards. Hence, our findings
here are aligned with our simulation results from
Section 5.1, and suggest that transparent actions
are not desirable when the human and robot must
quickly collaborate.

One limitation of this online study is that
the participants may not have been invested in

the outcomes. There were no consequences if the
human-robot failed the task outside of a lower user
score. For example, if humans were driving actual
vehicles, we anticipate that their behavior may
have been more conservative. To help address this
limitation we next performed an in-person user
study where participants worked directly with a
physical robot arm.

6.2 In-Person: Stacking Blocks with
a Robot Arm

In our second user study in-person participants
collaborated with a robot arm to build a tower
(see Figure 1). This experiment was motivated by
our larger application of industrial settings where
human workers must collaborate with robot part-
ners. At each timestep the human picked up and
added one block to the tower, aH, and then the
robot stacked its block on top, aR. The state
s was the sequence of blocks in the tower. See
videos of this user study here: https://youtu.be/
u8q1Z7WHUuI

Experimental Setup. We placed blocks of two
different sizes and four different colors near the
human and robot (see Figure 1). The capable
robot could pick up any of the blocks, while the
confused robot was only able to stack the smaller
blocks. At each timestep the human-robot team
obtained a reward of +0.5 if they picked the same
block, and −0.5 if they picked different blocks.
Each taller block that was stacked on the tower
added a reward of +0.1. In Figure 7 we normalize
the interaction reward between 0 and 1 for ease of
comparison with online user study results. To pre-
vent the human from cheating (i.e., changing their
block in response to the robot) the robot waited to
move until after the human. To familiarize partic-
ipants with the robot and alleviate any hesitation
in interacting with it, we asked the participants
to engage in an unrecorded practice run which did
not include any algorithms from the study.

Each participant built towers with confused
and capable Opaque robots, and with confused
and capable Transparent robots. In total partic-
ipants built 8 towers where each tower contained
6 blocks. We displayed the user’s current score in
real-time on a monitor next to the towers.

Participants and Procedure. We recruited 13
participants from the Virginia Tech community (5
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female, ages 24.31±3.45 years). These participants
provided informed consent under IRB#20-755 and
did not take part in the online study. We used
a performance-based compensation model. Every
user received a $10 gift card for taking part in
the study; for each tower they built with a reward
higher than 10 points, they received a performance
bonus of ¢50 (USD). We informed the participa-
tion about the performance based compensation
before the study began. This compensation was
designed to motivate participants to try and max-
imize their reward while working with the robot
(i.e., to assemble the best tower possible).

After completing each tower we asked users if
they could determine which type of robot they had
worked with (i.e., if they could determin whether
θ was capable or confused). We grouped the tow-
ers into pairs of two, where each pair contained
one Opaque robot and one Transparent robot.
After every pair we asked if the user preferred
the first robot or the second robot. We emphasize
that users were never told which algorithm they
were working with, or what the current θ was.
The algorithms and robot types were presented in
a randomized and counterbalanced order. Partici-
pants were never told which robots were confused
and which robots were capable.

Results. See our video and Figure 7. To confirm
that the Opaque algorithm withheld the robot’s
type — and the Transparent robot revealed its
type — we first recorded the percentage of tri-
als where participants correctly inferred whether
the robot was confused or capable. For reference,
users that guessed the robot’s type θ completely
at random would be right 50% of the time. Our
results in Figure 7 show that with Opaque user
were not able able to determine robot’s type: their
responses were on par with this random baseline
(48% correct). As expected, with the Transpar-
ent partner users identified θ correctly 75% of the
time. This supports our experimental design and
suggests that the Opaque robot did indeed with-
hold the robot’s type θ, while the Transparent
robot communicated this type to the participants.

We next proceeded to evaluate hypotheses
H1 and H2. Our results from Figure 7 are in
line with the online user study: users reached
higher rewards when working with Opaque part-
ners (p < .001), and participants rated Opaque
robots about the same as Transparent partners
(t(51) = .48, p = .63). In practice, when work-
ing with the Opaque the robot would select the
same block regardless of the robot’s type θ. This
consistency may have helped participants predict
how the robot would behave and enabled users
to coordinate with the robot. By contrast, with
Transparent the robot selected different blocks
to add to the tower for each type θ. By changing
the block the robot communicated its type to the
human. But this change may have also made it
more difficult to anticipate what the robot would
do, resulting in an increased number of interac-
tions where the human was unsure how best to
coordinate with the robot partner.

Discussion. Our results across 13 in-person par-
ticipants suggest that robot arms in assembly
settings can achieve higher rewards when with-
holding latent information. To support this find-
ing, we checked whether learning effects may have
skewed our results. Because participants worked
with the robot a total of 8 times, it is possible
that users picked up on patterns over the course
of the experiment and then anticipated how the
robot would behave when assembling their final
towers. Using paired t-tests we compared the final
reward from the first four interactions and the last
four interactions. We found that the differences

13

https://youtu.be/u8q1Z7WHUuI


were not statistically significant with the Opaque
robot (t = 0.622, p = 0.54) or the Transpar-
ent robot (t = −1.33, p = 0.20). Hence, we
conclude that there was not a significant learning
effect during the experiment, and the towers that
users assembled where not affected by repeated
interactions.

For hypothesis H2, we again found that the
users did not have a clear preference for either
Transparent orOpaque robots. We suggest that
two factors may be at play here: (a) participants
may prefer the Opaque robot because it leads
to higher task reward, while simultaneously (b)
participants may prefer the Transparent robot
because it conveys its capabilities to the human.
Perhaps this trade-off between performance and
communication cancelled out, and users were left
with similar preferences for both algorithms.

7 Conclusion

We considered settings where a robot is collabo-
rating with a human, and both the human and
robot share the same objective. Although prior
work suggests that it is often optimal for col-
laborative robots to be transparent — and take
actions that convey their latent state — we have
introduced theoretical and experimental analysis
to demonstrate that there are situations where
transparency is not optimal. We built on related
works to formalize opaque robot behavior, and
then developed a modified version of Harsanyi-
Bellman ad hoc coordination to identify optimal
robot policies in stochastic Bayesian games. We
proved that this optimal policy can be either fully
or rationally opaque. Our simulations suggest that
opaque robot behavior is more likely to be optimal
in settings where the human and robot collaborate
across a short time horizon, or where the human
learns gradually from the robot’s actions. We find
experimental support for our analysis across two
user studies with 43 total users. Within these
experiments participants reached higher rewards
when collaborating with opaque robots, and users
did not perceive opaque robots as subjectively
worse than their transparent counterparts.

7.1 Limitations and Future Work

One limitation of our experiments is that we
focused on settings where there were two possible

latent states (i.e., N = 2). We designed our exper-
iments with this binary choice in mind so that we
could clearly explain the types to our participants:
psychological research suggests that too much
variability here can lead to random user choices
[12]. Similarly, prior work on using transparent
robot motion often communicates the robot’s goal
in settings where there are only two different
options [11, 10, 7]. By restricting our user studies
to N = 2, we were able to mitigate user confu-
sion and ensure that the experiments accurately
tested the transparent and opaque algorithms.
Moving forward we are interested in conducting
experiments with an increasing number of latent
states. We anticipate that — during these exper-
iments — we may need additional measures of
the human’s cognitive workload and attention to
understand whether opaque robot’s simplify the
human’s decision making.
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