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Enabling Robots to Infer How End-Users Teach and
Learn Through Human-Robot Interaction

Dylan P. Losey , Student Member, IEEE, and Marcia K. O’Malley , Senior Member, IEEE

Abstract—During human-robot interaction, we want the robot
to understand us, and we want to intuitively understand the robot.
In order to communicate with and understand the robot, we can
leverage interactions, where the human and robot observe each
other’s behavior. However, it is not always clear how the human
and robot should interpret these actions: a given interaction might
mean several different things. Within today’s state of the art, the
robot assigns a single interaction strategy to the human, and learns
from or teaches the human according to this fixed strategy. In-
stead, we here recognize that different users interact in different
ways, and so one size does not fit all. Therefore, we argue that the
robot should maintain a distribution over the possible human in-
teraction strategies, and then infer how each individual end-user
interacts during the task. We formally define learning and teaching
when the robot is uncertain about the human’s interaction strategy,
and derive solutions to both problems using Bayesian inference. In
examples and a benchmark simulation, we show that our person-
alized approach outperforms standard methods that maintain a
fixed interaction strategy.

Index Terms—Cognitive Human-Robot Interaction, Learning
from Demonstration, Human Factors and Human-in-the-Loop.

I. INTRODUCTION

HUMAN-ROBOT interaction (HRI) provides an opportu-
nity for the human and robot to exchange information.

The robot can learn from the human by observing their be-
havior [1], or teach the human through its own actions [2].
In applications such as autonomous cars, personal robots, and
collaborative assembly, fluent human-robot communication is
often necessary.

In order to learn from and teach with interactions, however,
the human and robot must correctly interpret the meaning of
each other’s behavior. Consider an autonomous car following
behind a human driven car. If the human car slows down, what
should the robotic car infer: is the human teaching the robot to
also slow down, or signaling that the robot should pass? When
learning from an end-user, the robot needs a model of that end-
user’s teaching strategy, i.e., how the human’s actions relate to
the information that human wants to convey. Conversely, when
teaching the end-user, the robot must model that end-user’s
learning strategy, i.e., how the human interprets the robot’s
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actions. Together, we define the end-user’s teaching and learning
strategies as their interaction strategy.

In the state-of-the-art, the robot assigns a pre-programmed,
fixed interaction strategy to every human; each individual end-
user is assumed to teach or learn in the same way. Instead:

We here recognize that different users have different inter-
action strategies, and we should infer the current end-user’s
interaction strategy based on their actions.

Rather than a single fixed estimate of the human’s interaction
strategy, we argue that the robot should maintain a distribution
(i.e., belief) over the possible human interaction strategies, and
update this belief during the task. By reasoning over this belief,
the robot can adapt to everyday end-users, instead of requiring
each human to comply with its single pre-defined strategy.

Overall, we make the following contributions:
Learning and Teaching with Strategy Uncertainty. We in-

troduce and formulate two novel problems in human-robot in-
teraction, where the robot must optimally communicate with the
human, but the robot is unsure about how the current end-user
teaches or learns.

Solution with Bayesian Inference. We derive methods for
the robot to learn and teach under strategy uncertainty. We show
that—when the robot does not know the end-user’s interaction
strategy—optimal solutions infer and update a belief over that
interaction strategy, resulting in personalized interactions.

Simulated Comparison to Current Methods. Using didac-
tic examples and an inverse reinforcement learning simulation,
we compare our proposed approach to robots that reason over a
fixed interaction strategy. We also consider practical challenges
such as noisy and unmodeled interaction strategies.

II. RELATED WORK

When a human expert is using interactions to teach a robot,
the robot can leverage learning from demonstration (LfD) to
understand how it should behave [1]. Most similar to our set-
ting is inverse reinforcement learning (IRL), an instance of LfD
where the robot learns the correct reward function from human
demonstrations [3], [4]. Prior works on IRL generally assume
that every human has a single, fixed teaching strategy [5]: the
human teaches by providing optimal demonstrations, and any
sub-optimal human behavior is interpreted as noise [6]–[9]. Al-
ternatively, robots can also learn about the human while learning
from that human. In Nikolaidis et al. [10], for instance, the robot
learns about the end-user’s adaptability in addition to their re-
ward function. Building on these works, we will infer the end-
user’s teaching strategy, so that the robot can more accurately
learn from human interactions.
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Machine teaching—also known as algorithmic teaching—
identifies the best way for an expert robot to teach the novice
human [2]. In order to teach optimally, however, the robot must
know how the human learns. Recent machine teaching works
[11]–[13] have addressed this problem by using human feed-
back to resolve mismatches between the assumed human learn-
ing strategy and the user’s actual learning strategy. Most related
to our research is work by Huang et al. [14], which compares the
performance of different models of human learning. These au-
thors generated the optimal teaching examples for each proposed
learning strategy, and then used human feedback to identify the
single best teaching strategy across all users. Like Huang et al.
[14], we here reason over multiple learning strategies, but now
we want to infer each user’s specific learning strategy based on
their individual responses.

III. PROBLEM STATEMENT

Consider a human who is interacting with a robot. In this
setting, both the human and the robot are agents. Let us assume
that one of these agents has a target model, θ∗ ∈ Θ, which they
want to teach to the other agent. Here Θ is the space of possible
target models, and θ∗ is particular behavior that the teacher
wants to convey to the learner. For example, the teacher may
want to show the learner a better way to complete the current
task, or communicate how it will interact in the future. We are
interested in how the robot should behave when it is (a) learning
θ∗ from or (b) teaching θ∗ to a human agent.

Let us denote the robot state as x. The human takes action u,
and the robot takes action a; these actions and the state x are
observed by both the robot and the human. We use a superscript
t to denote the current timestep, so that xt is the state at time
t, and x0:t is the sequence of states from the start of the task to
the current time t. In the context of supervised learning, we can
think of x as the input features, and u and a as the output labels
assigned by the human and robot, respectively [15]. Here Θ is
a hypothesis space, and θ∗ defines the correct mapping from
features to labels.

A. Learning from the Human

When the human is the expert—i.e., the human knows θ∗, but
the robot does not—the robot should learn from the human. The
human wants to teach the robot θ∗, and has a teaching strategy
φ∗, which determines what actions the human selects to convey
θ∗ to the robot. More formally, a teaching strategy φ ∈ Φ relates
the setting (x, θ) to the human action u:

π(u |x, θ, φ) (1)

Here π ∈ [0, 1] is the probability that the human will take ac-
tion u given x, θ, and φ. We point out that (1) is also the
human’s policy when teaching the robot, and that this policy is
parameterized byφ. In other words, if the robot knows the teach-
ing strategy φ∗, then it can leverage (1) to correctly interpret the
meaning behind the human’s actions.

In practice, however, the robot does not know what teaching
strategy an end-user will employ. Hence, we argue that the robot
should maintain a probability distribution overφ as it learns from
the human. We refer to this problem of learning from the end-
user when uncertain about their teaching strategy as learning
with strategy uncertainty:

Definition 1: (Learning with Strategy Uncertainty). Given a
discrete or continuous set of possible teaching strategies Φ and
target models Θ, infer an optimal estimate of θ∗ based on the
history of states x0:t and human actions u0:t .

B. Teaching the Human

Next we consider the opposite situation, where the robot is the
expert, and is trying to teach θ∗ to the human. Here the human
agent has some learning strategy ψ∗, which determines how the
human interprets the robot’s actions a. A learning strategy ψ ∈
Ψ expresses the relationship (from the human’s perspective)
between the setting (x, θ) and the robot action a:

π(a |x, θ, ψ) (2)

In the above, π is the human’s model of the robot’s policy—
not necessarily the robot’s actual policy—and this model is
parameterized by ψ. So now, if the robot knows the user’s true
learning strategyψ∗, the robot can leverage (2) to anticipate how
its actions will alter the human’s understanding of θ∗.

But, when teaching an actual end-user, the robot does not
know what learning strategy that specific user has. Similar to
before, we therefore argue that the robot should maintain a
distribution over the learning strategies ψ when teaching the
human. We refer to this problem, where the robot is teaching
a user but is unsure about that end-user’s learning strategy, as
teaching with strategy uncertainty:

Definition 2: (Teaching with Strategy Uncertainty). Given a
discrete or continuous set of possible learning strategies Ψ and
target models Θ, select the robot action at that optimally teaches
θ∗ based on the history of states x0:t , robot actions a0:t−1 , and
human actions u0:t .

C. Assumptions

Throughout this work, we will assume that the interaction
strategiesφ∗ andψ∗ for each individual user are constant, and are
not affected by the robot’s behavior. Put another way, the robot
cannot influence the human’s interaction strategy by selecting
different actions. This assumption is consistent with prior HRI
research [2], [5]: however, we can also extend our proposed ap-
proach to address cases where the human’s interaction strategy
does change by incorporating a forgetting factor or transition
model within the Bayesian inference.

IV. ROBOT LEARNING WITH STRATEGY UNCERTAINTY

Within this section we focus on learning from the human,
where the robot does not initially know the human’s teaching
strategy φ∗. Learning here is challenging, because the robot is
uncertain about how to interpret the human’s actions. First, we
demonstrate how the robot can learn from multiple models of
the human’s teaching strategy. Second, we enable the robot to
update its joint distribution over φ and θ, and simultaneously
learn both the human’s teaching strategy and target model. We
provide an example which compares learning this joint distri-
bution to learning with a single fixed estimate of φ∗.

A. Multiple Teaching Strategies

The robot starts with a prior b0(θ) over what θ∗ is, and updates
that belief at every timestep t based on the observed states and
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actions. The robot’s belief over target models is:

bt+1(θ) = P (θ |u0:t , x0:t) (3)

In other words, bt+1(θ) is the probability that θ = θ∗ given the
history of observed states and human actions up to timestep t.
Applying Bayes’ rule, and recalling from (1) that the human’s
actions u are conditionally independent, the robot’s Bayesian
belief update becomes [16]:

bt+1(θ) =
bt(θ) · P (ut |xt ; θ)

∫
Θ b

t(ξ) · P (ut |xt ; ξ) dξ (4)

We here used a semicolon to separate the observed variables
from the hidden variables. The denominator—which integrates
over all possible target models—is a normalizing constant.
Omitting this constant, we can more succinctly write (4) as:

bt+1(θ) ∝ bt(θ) · P (ut |xt ; θ) (5)

where P (u |x; θ) is the robot’s observation model, i.e., the like-
lihood that the human takes action u given x and θ.

To correctly learn from the end-user, the robot needs an ac-
curate observation model. We saw in Section III-A that the
most accurate observation model is the user’s policy π, which
is parameterized by the true teaching strategy φ∗. Within the
state-of-the-art, the robot often assumes that the user’s policy is
parameterized by φ0 , where φ0 is some estimate of φ∗ :

P (ut |xt ; θ) = π(ut |xt ; θ, φ0 ) (6)

Rather than a constant point estimate of the human’s teaching
strategy, we argue that the robot should maintain a belief over
multiple teaching strategies. In the simplest case, the robot has
a prior b0(φ) over what φ∗ is, but does not update this belief
between timesteps. Here the observation model becomes:

P (ut |xt ; θ) =
∫

Φ
π(ut |xt ; θ, φ) · b0(φ) dφ (7)

Note that (6) is a special case of (7) where b0(φ0 ) = 1. When
learning with (7), the robot does not interpret human actions
in the context of just one teaching strategy. Instead, the robot
considers what the action u implies for each possible teaching
strategy, and then learns across these strategies. We can think of
(7) as the best fixed learning strategy when b0 is known.

B. Inferring a Joint Belief

Now that we have introduced learning with multiple teach-
ing strategies, we can solve learning with strategy uncertainty
(Definition 1). Here we not only want to learn the target model
θ∗, but we also recognize that the robot is uncertain aboutφ∗. Let
us define the robot’s joint belief b(θ, φ) over the target models
θ ∈ Θ and teaching strategies φ ∈ Φ to be:

bt+1(θ, φ) = P (θ, φ |u0:t , x0:t) (8)

Again leveraging Bayes’ rule and conditional independence:

bt+1(θ, φ) ∝ bt(θ, φ) · P (ut |xt ; θ, φ) (9)

where P (u |x; θ, φ) is the conditional probability of human
action u given x, θ, and φ. But this is the same as (1), so that:

bt+1(θ, φ) ∝ bt(θ, φ) · π(ut |xt ; θ, φ) (10)

Fig. 1. A human and robot are interacting to sort screws of different lengths.
The human teacher indicates one screw that they consider short (highlighted),
and then the robot learner sorts the screws into the short and long boxes. The
robot does not know which screws are short a priori, and also does not know
the end-user’s teaching strategy. For instance, the human could be indicating a
short screw at random, or purposely selecting the longest of the short screws.

Using (10), we learn about both the human’s target model and
the human’s teaching strategy from x0:t and u0:t .

Let us compare the observation model for this joint learning
rule to the observation models from (6) and (7). If we rewrite
(10) into the form of (5), we obtain the observation model:

P (ut |xt ; θ) =
∫

Φ
π(ut |xt ; θ, φ) · bt(φ | θ) dφ (11)

where the belief over teaching strategies given θ is:

bt(φ | θ) = P (φ |u0:t−1 , x0:t−1 ; θ) (12)

Intuitively, a robot implementing (11) and (12) reasons across
multiple teaching strategies when learning from the end-user,
and also updates its belief over these teaching strategies every
timestep. We find that the observation model (7) is a special
case of (11) when the robot never updates b0(φ | θ) = b0(φ),
i.e., if the robot’s belief over teaching strategies is constant.
Accordingly, (6) is a special case of (11) by extension. Our
analysis shows that inferring a joint belief over θ and φ both
generalizes prior work and is an optimal learning rule.

C. Learning Example

To demonstrate how the proposed observation models affect
the robot’s learning, we here provide an example simulation.
Consider the sorting task in Fig. 1, where the robot is attempt-
ing to learn the right threshold classifier from the human. At each
timestep t, the human action u indicates one screw that should
be classified as short; the robot then classifies the remaining
screws without additional guidance. Let θ∗ be the correct deci-
sion boundary, and let the robot’s reward equal the total number
of screws classified correctly. We can think of this example as an
instance of inverse reinforcement learning [4], where the robot
learns the true objective θ∗.

Importantly, we include two different teaching strategies φ ∈
Φ that the human might use. Within the first strategy, φ1 , the
human noisily indicates the short screw closest to θ∗, so that
π(φ1) ∝ exp{− 1

2 · |θ∗ − u|}. Within the second strategy, φ2 ,
the user indicates a short screw uniformly at random, so that
π(φ2) ∝ 0.9 if u ≤ θ∗ or π(φ2) ∝ 0.1 otherwise. Each end-
user leverages one of these two teaching strategies; however,
the robot does not know which.

Observation Models. We compare (6), (7), and (11). Let φ1
denote a robot that learns with (6), and assumes φ1 = φ∗ for
all users. Similarly, φ2 is a robot that assumes φ2 = φ∗. Prior
denotes a robot with observation model (7), and Joint leverages
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Fig. 2. Learning when uncertain about the human’s teaching strategy. Here
two teaching strategies are equally likely. Left: number of screws incorrectly
sorted after a single interaction. Right: number of screws incorrectly sorted after
t interactions. Maintaining a distribution over both teaching strategies results
in more optimal robot behavior than always assuming one strategy. Notice that
Prior and Joint are equal when t = 1. Error bars indicate SEM.

Fig. 3. Learning when one human teaching strategy is more likely. Left:
70% of humans use teaching strategy φ1 . Right: 90% of humans use φ1 , but
the robot incorrectly believes both strategies are equally likely a priori, i.e.,
b0 (φ1 ) = 0.5. Even when the robot’s prior is wrong, learning with strategy
uncertainty (Joint) leads to better performance over time than assuming φ1 .

our proposed approach (11). Finally, φ∗ is an ideal robot that
knows the teaching strategy for each individual user.

Simulation. At timestep t the robot observes the action ut

and updates its belief bt+1(θ) with (5). Next, the robot optimally
sorts 10 screws based on its current belief [8]. At timestep t+ 1
the task is repeated with the same end-user (who has a constant
θ∗ and φ∗). The results of these simulations averaged across 105

end-users are shown in Figs. 2 and 3.
Analysis. Using our proposed Joint observation model re-

sulted in fewer errors than learning under φ1 , φ2 , or Prior.
With Joint the robot was able to personalize its learning strat-
egy to the current end-user across multiple iterations, and more
accurately learn what the user was communicating (see Fig. 2).
As expected, Prior outperformed other fixed strategies when b0

was correct; however, if the robot did not have an accurate prior
over teaching strategies, the Prior observation model (7) was
less optimal than φ1 (see Fig. 3, right). We found that our pro-
posed approach was robust to this practical challenge: despite
having the wrong prior, Joint still caused the robot’s behavior
to converge to the ideal learner, φ∗.

V. ROBOT TEACHING WITH STRATEGY UNCERTAINTY

Within this section we consider the opposite problem, where
the expert robot is teaching the human about θ∗, but does not
know the end-user’s learning strategy ψ∗. Teaching here is chal-
lenging because the robot is not certain what the user will learn
from its actions. We first outline a specific instance of robot
teaching, where the human learns through Bayesian inference.
Next, we demonstrate how the robot can teach with multiple

models of the human’s learning strategy, and derive one solution
to teaching with strategy uncertainty. In a simulated example,
we compare these methods to robots that teach with a constant
point estimate of ψ∗. We also describe how the robot can trade-
off between teaching θ∗ to and learning ψ∗ from the human via
active teaching.

A. Teaching Bayesian Humans

Similar to previous works in machine teaching [14], [17] and
cognitive science [18], [19], we assume that the human learns
by performing Bayesian updates. Thus, the human’s belief over
the target models after robot action at becomes:

bt+1(θ) =
bt(θ) · π(at |xt ; θ;ψ∗)

Z(ψ∗)
(13)

where we use ; to denote that the human observes ψ∗ but not θ∗.
The denominator is again the normalizing constant:

Z(ψ) =
∫

Θ
bt(ξ) · π(at |xt ; ξ;ψ) dξ (14)

We point out that π in (13) and (14) is (2), the policy that the
human assigns to the robot. The human interprets the robot’s
actions—and updates its belief—based on this policy, which is
parameterized by the human’s true learning strategy ψ∗. Here bt

is also the state of the human at timestep t, and (13) defines the
state dynamics (i.e., the human’s transition function).

The robot should select actions so that this state transitions to
b(θ∗) = 1. Let us define the ideal robot action as:

at = arg max
a

bt+1(θ∗) (15)

where at will greedily maximize the human’s belief in θ∗ at
the subsequent timestep. The human takes an action ut based
on what they have previously learned; the human actions are
therefore observations on the human’s state, i.e.,ut = h(bt). For
example, the human’s action could be completing a test about
the target models, or performing the task themselves. Here we
consider the simplest case, where:

ut = h(bt) = bt (16)

Hence, the human feedback ut provides their actual belief over
the target models at the current timestep. The robot observes the
human state bt from (16), and selects action at with (15) to shift
the human towards the desired state bt+1 .

B. Multiple Learning Strategies

Consider cases where the robot is teaching this Bayesian hu-
man, but does not know the human’s learning strategyψ∗. When
ψ∗ (and therefore the future state bt+1) is unknown, teaching is
analogous to controlling an agent with unknown state dynam-
ics [20]. Define b̂ as the robot’s prediction of the human’s state
given the history of actions and world states:

b̂t+1(θ) = P (θ |u0:t , a0:t , x0:t) (17)

Since the human performs Bayesian inference (13), and recall-
ing that the robot observes bt(θ), we equivalently have:

b̂t+1(θ) =
∫

Ψ

ut(θ) · π(at |xt ; θ, ψ)
Z(ψ)

· bt(ψ) dψ (18)
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Within the above, b(ψ) is the robot’s belief over the human’s
learning strategies. For the state-of-the-art, the robot estimates
the human’s learning strategy as ψ0 , so that (18) reduces to:

b̂t+1(θ) =
ut(θ) · π(at |xt ; θ, ψ0)

Z(ψ0)
(19)

Instead, we here argue that the robot should teach with a belief
over multiple learning strategies. Let b0(ψ) be the prior over
what ψ∗ is. If the robot never updates this initial belief, then the
predicted human state after action at becomes:

b̂t+1(θ) =
∫

Ψ

ut(θ) · π(at |xt ; θ, ψ)
Z(ψ)

· b0(ψ) dψ (20)

Comparing (20) to (19), now the robot reasons about how its
actions are interpreted by each learning strategy. When selecting
the action at with (15)—where we replace bt+1 with prediction
b̂t+1—this robot teaches across multiple strategies.

C. Inferring the Learning Strategy

Because the robot is getting feedback from the user, how-
ever, we can also infer that specific user’s learning strategy, ψ∗.
Learning about ψ∗ provides a solution to teaching with strategy
uncertainty (Definition 2), and results in robots that adapt their
teaching to match the human. Let us formally define the robot’s
belief over learning strategies as:

bt(ψ) = P (ψ |u0:t , a0:t , x0:t) (21)

We use the subscript t instead of t+ 1 since bt(ψ) does not
actually depend on at , as we will show. Applying Bayes’ rule:

bt(ψ) ∝ P (u0:t | a0:t , x0:t ;ψ) · P (ψ | a0:t , x0:t) (22)

Recalling that the human’s learning strategy is not altered by the
robot, P (ψ | a0:t , x0:t) = P (ψ). Moreover, because the human
is a Bayesian learner, and ut = bt , here ut depends on ut−1 ,
at−1 , xt−1 , and ψ (13). Hence, (22) simplifies to:

bt(ψ) ∝ bt−1(ψ) · P
[

ut
∣
∣
∣
∣
ut−1 · π(at−1 |xt−1 ; θ, ψ)

Z(ψ)

]

(23)

Intuitively, (23) claims that the belief over learning strategies is
updated based on the differences between the human’s actual
state (left side of the likelihood function) and the predicted
human state given ψ (right side of the likelihood function)1.
By observing u, we can use (23) to infer the human’s learning
strategy. By then substituting (23) back into (18), the robot
learns about ψ∗ while teaching the human θ∗ : thus, using (18)
with (23) addresses teaching with strategy uncertainty.

D. Teaching Example

Here we provide an illustration of how reasoning over mul-
tiple learning models can improve teaching with uncertainty.
As shown in Fig. 4, the robot is moving towards goal position
θ∗, and wants to teach that goal to the nearby human. At each
timestep t, the robot’s action a is an incomplete trajectory (e.g.,
see the three trajectory segments in Fig. 4). After observing
this robot trajectory, the human updates their belief over θ∗ ;
specifically, the human applies Bayesian inference to determine

1We used Kullback-Leibler (KL) divergence [21] to define the likelihood of
ut given the right side of (23), but other options are possible.

Fig. 4. A robot is moving towards a goal position, and is trying to convey that
goal to the human. Here the robot teacher is moving to the plate, θ∗, but does
not know the human’s learning strategy, ψ∗. For example, the human may learn
best from goal-directed trajectories (solid) or exaggerated trajectories (dashed).
When the robot teacher reasons over each of these human learning strategies, it
selects an action that teaches both types of learners (highlighted).

Fig. 5. Teaching when uncertain about the human’s learning strategy. Left:
the human’s confidence that the robot’s goal is θ∗ after one interaction. When
using Prior or Learn, the robot selects a slightly exaggerated trajectory, which
teaches both groups of learners. Right: the human’s belief after t iterations.
When the robot reasons about a distribution over learning strategies, it teaches
θ∗ more quickly than when focusing on a single type of learner (ψ1 and ψ2 ).

whether the robot’s goal is the cup or the plate. The robot uses
(15) with prediction b̂t+1 to select the trajectory a which will
teach the human the most about θ∗.

We consider two possible learning strategies ψ ∈ Ψ for the
simulated end-users. Humans with ψ1 learn best from legible
(i.e., exaggerated) trajectories [22]: π(ψ1) = (0.1, 0.3, 0.45) if
the robot moves directly towards θ, slightly exaggerates, or fully
exaggerates, respectively. By contrast, under ψ2 the user learns
best from predictable (i.e., goal-directed) trajectories, such that
π(ψ2) = (0.35, 0.2, 0.15) if the robot moves directly towards
θ, slightly exaggerates, or exaggerates, respectively. The robot
does not know which strategy a given user selects.

Prediction Method. We compare (18), (19), and (20). Let
ψ1 denote a robot which predicts that every user learns with
(19), where ψ0 = ψ1 . Likewise, ψ2 is a robot that estimates
ψ0 = ψ2 . The Prior robot reasons over both learning strategies
using (20), and our proposed Learn robot solves teaching with
strategy uncertainty by leveraging (18) with (23).

Simulation. The robot observes the human action u—i.e., the
human’s current belief—and selects an action a using (15) and
its prediction method. The robot can select between 6 different
legible or goal-directed trajectory segments (3 for each goal θ).
The human is a Bayesian learner. Our results (averaged across
105 simulated users) are depicted in Figs. 5 and 6.

Analysis. Robots using our proposed Learn approach more
quickly taught θ∗ than with the fixed teaching methods ψ1 ,
ψ2 , or Prior. Reasoning over human learning strategies led to
better teaching during a single interaction (see Fig. 5). For mul-
tiple iterations, we tested practical scenarios where the robot
has the wrong prior: in every case, Learn yielded the fastest
convergence, and taught as well as the ideal teacher after ≈ 5
timesteps (see Fig. 6). Intuitively, the Learn robot gradually
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Fig. 6. Teaching when one learning strategy is more likely. Left: the robot
knows that 80% of users learn with ψ1 , and so the Prior robot greedily selects
legible actions (Prior = ψ1 ). Right: the robot initially thinks both strategies are
equally likely, but 70% of users have ψ2 . Learning about ψ∗ while teaching θ∗
(Learn) outperforms ψ2 over time, even with the wrong prior.

Fig. 7. Sample 8-by-8 gridworld labeled by two different simulated users.
Both users have the same reward parameters θ∗, and the grid cells are colored
based on this reward (lighter cells have higher reward). The optimal policy for
θ∗ is shown by the darker arrows. Left: the human leverages teaching strategy
φ∗ = −1, and teaches the robot by biasing their demonstration to highlight
low-reward states. Right: this user instead uses teaching strategy φ∗ = +1, and
favors states with locally higher reward. The robot attempts to learn θ∗ given a
demonstration (like the ones shown above), but does not know φ∗.

shifted to teaching with either legible or predictable trajecto-
ries, while the Prior robot continued to compromise between
both strategies instead of adapting to the specific user.

E. Active Teaching

Like we saw in the previous example, learning about the hu-
man’s learning strategy ψ∗ can improve the robot’s teaching.
Hence, we here focus on selecting robot actions which actively
gather information about ψ∗, so that the robot more quickly
adapts its teaching to the end-user. Let us formulate teaching
with strategy uncertainty as a partially observable Markov de-
cision process (POMDP) [16]: the state is

(
bt(θ), θ∗, ψ∗), the

action is (at , xt), the observation is ut , the state transitions with
(13)—where θ∗ and ψ∗ are constant—the observation model is
(23), and the reward is bt(θ∗). Solving this POMDP causes the
robot to optimally trade-off between exploring for more infor-
mation aboutψ∗ and exploiting that information to maximize the
human’s belief in θ∗. When solving this POMDP is intractable,
we can more simply perform active teaching by favoring actions
that gather information about ψ∗ [23]:

at = arg max
a

{
bt+1(θ∗) − λ ·H(bt+1(ψ))

}
(24)

In the above, λ ≥ 0, and H is the Shannon entropy. Comparing
(24) to (15), now the robot selects actions to disambiguate be-
tween the possible learning strategies (i.e., reduce the entropy
of the robot’s belief over ψ). Intuitively, we expect a robot that
is actively teaching with (24) to select actions, a, which cause
users with different learning strategies to respond in different
ways, allowing that robot to more easily infer ψ∗.

VI. ROBOT LEARNING SIMULATIONS

To compare our learning with strategy uncertainty against
the state-of-the-art in a realistic problem setting, we performed
a simulated user study. We here consider an instance of inverse
reinforcement learning (IRL): the human demonstrates a policy,
and the robot attempts to infer the human’s reward function
from that demonstrated policy [3]–[5]. Unlike the example in
Section IV-C, now θ∗ (the human’s reward parameters) and φ∗
(the human’s demonstration strategy) lie in continuous spaces.
We compared robots that learn θ∗ with a constant point estimate
of φ∗ to our proposed method, where the robot learns about
both θ∗ and φ∗ from the human. To test the robustness of our
method within more complex and challenging scenarios, we
also introduced noisy end-users, who did not follow any of the
modeled teaching strategies.

A. Setup and Simulated Users

Within each simulation the human and robot were given an
8-by-8 gridworld (64 states). The state reward, R(x, θ), is the
linear combination of state features f(x) weighted by θ, so
that R(x, θ) = θ · f(x). The human knows θ∗, and provides a
demonstration π(u |x, θ∗, φ∗). This demonstration is a policy,
where the human labels each state x with action u; actions
deterministically move in one of the four cardinal directions.
The discount factor—which defines the relative importance of
future and current rewards—was fixed at γ = 0.9.

Our setting is based upon previous IRL works [5], where
this problem is more formally introduced as a Markov decision
process (MDP). These prior works typically assume that the
human’s demonstrated policy approximately solves the MDP,
i.e., maximizes the expected sum of discounted rewards [8],
[9]. By contrast, we here considered users with a spectrum of
demonstration strategies. LetQ(x, u, θ) be the reward for taking
action u in state x, and then following the optimal policy for
reward parameters θ. We define the probability that the simulated
user takes action u given x, θ∗, and φ∗ as:

π ∝ exp
{
α
[
Q(x, u, θ∗) + φ∗

(
R(x′, θ∗) −R(x, θ∗)

)]}

(25)
where φ∗ ∈ [−1, 1], and x′ is the state reached after taking ac-
tion u in state x. When φ∗ = 0, (25) is the same as the observa-
tion model from [8], [9]. As φ∗ → +1, the human biases their
demonstration towards states that have locally higher rewards;
conversely, when φ∗ → −1, the human favors states with lower
rewards. Sample user demonstrations with different teaching
strategies are shown in Fig. 7.

B. Independent Variables

We compared four different approaches for learning θ∗ from
the user’s demonstration: φ∗, φ = −1, φ = +1, and Joint.
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Fig. 8. Learning the human’s teaching strategy in addition to learning the human’s reward parameters (Joint) reduces the robot’s Policy Loss. Left: α = 5.
Middle: α = 10. Right: α = 20. Recall that φ∗ is an ideal learner, and lower values of α indicate increasingly random users. Error bars denote SEM.

Fig. 9. The robot more accurately learns the human’s reward parameter θ∗ when maintaining a distribution over the teaching strategies. Left: α = 5. Middle:
α = 10. Right: α = 20. Note that φ = +1 outperformed φ = −1 because it could correctly interpret the demonstrations from a wider range of φ∗.

Under φ∗ the ideal robot knows the human’s true teaching strat-
egy, while φ = −1 and φ = +1 indicate robots which assume
that the human’s demonstration is biased towards low-reward or
high-reward states, respectively. Joint refers to a robot which at-
tempts to learn both φ∗ and θ∗ from the human’s demonstration,
as discussed in Section IV-B.

To see how these approaches scale with the length of the
feature vector, f ∈ F , we performed simulations with |F | =
4, 8, and 16 features. In practice, each state x was randomly
assigned a feature vector with |F | binary values, indicating
which features were present in that particular gridworld state.

Finally, to test how well the robot learned when the human
demonstrations were imperfect, we varied the value of α in
(25). Parameter α represents how close to optimal the human is:
as α→ 0, the human becomes increasingly random, while the
human always chooses the best action when α→ ∞.

We simulated 100 users for each combination of |F | and α,
where the users’ teaching strategies were uniformly distributed
in the continuous interval φ∗ ∈ [−1, 1]. The gridworld and θ∗
were randomly generated for each individual user.

C. Dependent Measures

For each simulation we measured the robot’s learning per-
formance in terms of Reward Error, Strategy Error, and Policy
Loss. Reward Error is the difference between the robot’s mean
estimate of θ∗ and the correct reward parameters: ‖θ∗ − θ̂‖1 .
Similarly, Strategy Error is the error between the robot’s
mean estimate of φ∗ and the user’s actual teaching strategy:
|φ∗ − φ̂|. Policy Loss measures how much reward is lost by
following the robot’s learned policy (which maximizes re-
ward under θ̂ ) as compared to the optimal policy for θ∗ [8].

The code for our examples and simulations can be found at
https://github.com/dylanplosey/iact_strategy_learning.

D. Results and Discussion

We performed a mixed ANOVA with the number of features
and value of α as between-subjects factors, and the learning
approach as a within-subjects factor, for both Policy Loss and
Reward Error (see Figs. 8 and 9). Since we found a statistically
significant interaction for both dependent measures (p < .05),
we next determined the simple main effects.

Simple main effects analysis showed that Joint resulted in
significantly less Policy Loss than either φ = −1 or φ = +1 for
each different combination of |F | and α (p < .05). We similarly
found that Joint resulted in significantly less Reward Error (p <
.001) for every case except |F | = 16, α = 5; here there was
no statistically significant difference between Joint and φ = +1
(p = .498). These results from Figs. 8 and 9 suggest that learning
while maintaining a distribution over φ results in objectively
better performance than learning with a fixed point estimate
of φ∗.

Next, we investigated how well the Joint method learned
the individual users’ teaching strategies. We performed a two-
way ANOVA to find the effects of |F | and α on the Joint
robot’s Strategy Error (see Fig. 10). We found that the number
of features (F (2, 891) = 23.813, p < .001) and the human’s α
(F (2, 891) = 22.679, p < .001) had a significant main effect.
Post-hoc analysis with Tukey HSD revealed that |F | = 16 and
α = 20 led to significantly higher Strategy Error than the other
values of |F | and α, respectively. As shown in Fig. 10, the robot
had larger Strategy Error for higher values of α because it was
unable to distinguish between teachers with φ∗ > 0; i.e., these
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Fig. 10. Error between the learned and true teaching strategies under Joint.
Left: Strategy Error for different numbers of features and values of α. Right:
Strategy Error (averaged across features) as a function of the user’s teaching
strategy. Teachers with φ∗ < 0 were easier to distinguish than with φ∗ > 0.

Fig. 11. Learning from users who provided demonstrations with unmodeled
noise. Left: Policy Loss for each learning approach as the noise ratio increased.
Right: Strategy Error (for Joint) as a function of the noise ratio. Although the
Joint robot’s Strategy Error increased in proportion to the noise ratio during the
user demonstrations, its Policy Loss was on par with the ideal learner, φ∗.

different tea