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ABSTRACT

We focus on learning robot objective functions from human guid-
ance: specifically, from physical corrections provided by the per-
son while the robot is acting. Objective functions are typically
parametrized in terms of features, which capture aspects of the task
that might be important. When the person intervenes to correct
the robot’s behavior, the robot should update its understanding of
which features matter, how much, and in what way. Unfortunately,
real users do not provide optimal corrections that isolate exactly
what the robot was doing wrong. Thus, when receiving a correction,
it is difficult for the robot to determine which features the person
meant to correct, and which features were changed unintentionally.
In this paper, we propose to improve the efficiency of robot learning
during physical interactions by reducing unintended learning. Our
approach allows the human-robot team to focus on learning one
feature at a time, unlike state-of-the-art techniques that update all
features at once. We derive an online method for identifying the
single feature which the human is trying to change during phys-
ical interaction, and experimentally compare this one-at-a-time
approach to the all-at-once baseline in a user study. Our results
suggest that users teaching one-at-a-time perform better, especially
in tasks that require changing multiple features.
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1 INTRODUCTION

Consider a household situation in which a robot and a human work
in close physical proximity. While performing its task, the robot
does something wrong, and the human intervenes to physically
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Figure 1: Participant pushes on the robot to teach it to go closer to the table. In the
process of giving this correction, the human changes both the robot’s distance from
table and — inadvertently — the orientation of a cup which the robot is grasping (blue
arrows). Typically, the robot would learn about both cup and table features from this
one correction (top right). We propose that robots interacting with humans should
learn about only one feature at a time (bottom right).

correct the robot as it is moving. For example, the robot is moving a
fragile cup from a cabinet to the table, and a nearby human notices
that the robot is carrying the cup too high above the table: if the
cup were to drop from that height, it would likely break!

To correct the robot’s behavior, the human intuitively pushes
the robot’s end-effector towards the table to signal their motion
preference. Ideally, the human’s correction will only affect the cup’s
distance from the table; in practice, however, human actions are
noisy and imperfect [7, 19, 20, 24], especially when kinesthetically
maneuvering robotic manipulators while trying to carefully or-
chestrate their multiple degrees of freedom [1]. As a consequence,
when the person pushes down on the end-effector, they accidentally
change not only the robot’s distance from the table, but also the
orientation of the cup (see Fig. 1).

This single human interaction has therefore adjusted two task
features: the cup’s distance from the table and the cup’s orientation.
From the robot’s perspective, it is not immediately clear what the
person actually intends: do they (a) want the robot to carry the cup
closer to the table, or do they (b) additionally want the robot to
carry the cup at a new orientation?

State-of-the-art algorithms default to the latter interpretation.
Prior work has built on Inverse Reinforcement Learning (IRL)
[13, 16-18, 24] to formalize learning from physical human cor-
rections as an estimation problem: the robot estimates the objective
function that it should optimize during the task by treating human

corrections as evidence about the objective function’s parameters!.

1Similar to prior IRL work, we will assume that the correct features for the task have
been identified a priori, and are known to both the human and the robot.
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Under the ideal objective function parameters, the corrected be-
havior has to have a lower cost than the robot’s current behavior
[3, 11]. Therefore, when the person’s correction changes multiple
features — however slightly — a rich hypothesis space will lead to
the robot updating its understanding about the importance of all
of these features (top right in Fig. 1).

This traditional approach works well with perfect or near-perfect
corrections; however, with real people come aspects of corrections
that are not always intended. These unintended corrections lead to
unintended learning. In other words, the robot attempts to learn from
and alter its behavior based on all the inputs, even those that are
superfluous. Returning to our previous example, if all features were
updated the robot would learn (correctly) that the cup should be
lower, and (incorrectly) that the cup should be carried at a different
orientation. In general, because of the inherent physical difficulty
in simultaneously correcting many degrees of freedom of a robotic
arm, learning about all features at once may systematically cause
the robot to infer more from the human’s corrections than desired.

Our insight is that we can alleviate unintended robot learning by
focusing the learning on only one feature at a time.

For tasks where the human is attempting to change the impor-
tance of just one feature, this insight helps the robot reject inadver-
tent adjustments on the other features (bottom right in Fig. 1). But
even for tasks in which the human wants to correct several features,
learning one feature at a time enables people to break down the
task and teach sequentially. Indeed, sequential teaching may come
more naturally to people collaborating with robots [21, 22], and
reduces the burden on users to coordinate all aspects of the task
simultaneously during each individual correction.

Based on our insight, we make the following contributions:

Online Feature Identification. As the robot is executing its task,
the human collaborator can intervene and provide physical correc-
tions. We formulate the problem of identifying which one feature
the person is trying to correct at each time step, derive a solution,
and justify a simple approximation for online performance. We hy-
pothesize that this approach will result in a better learning process,
with a more accurate objective function being inferred by the robot
at each time step, and a better final outcome.
User Study Testing One-at-a-Time Learning. After validating
our algorithm in 2-D simulations with an approximately optimal
human, we put our hypothesis to the test in a user study on a
7-DoF robotic manipulator. These experiments compare one-at-
a-time and all-at-once learning within a factorial design, across
tasks that need just one feature to be corrected, and tasks that
need multiple features to be corrected. We find that one-at-a-time
learning is especially helpful in the second case, where the person’s
teaching task is more complex. People also prefer it, finding that
the robot is better at understanding their corrections and requires
less reteaching.

Overall, our work provides a practical improvement for learning
objective functions online from physical human-robot interaction.

2 ONE-AT-A-TIME OBJECTIVE LEARNING
FROM PHYSICAL HUMAN INTERACTION

2.1 Why Learn from Physical Corrections?

When a human and robot are collaborating in close proximity,
physical interaction — in which the human touches, pushes, pulls,
or otherwise guides the robot — is almost inevitable. The way in

which a robot responds to such physical human-robot interaction
(pHRI) depends on how the robot interprets those corrections.

Traditionally, the human’s interactions are treated in one of three
ways [9]: as disturbances to be rejected [5, 12, 23], as collisions to
be detected and avoided [4], or as operator signals to be followed
by switching into a compliant mode [8, 10, 14]. In all cases, the
robot does not learn from the human’s actions; once the human
stops interacting, the robot resumes its original behavior.

In contrast, we argue that interactions are intentional, and there-
fore informative — the human interacts with the robot because it is
doing something wrong, and the human’s correction indicates how
the robot should behave. Furthermore, since the way in which the
robot chose its behavior was by optimizing an objective function, in-
teraction suggests that this objective function was incorrect. Thus,
rather than stubbornly continuing to optimize the same wrong
objective, the robot should instead leverage the human'’s feedback
in order to update its understanding of the objective function.

2.2 Learning Problem Statement

Assume the robot starts in some configuration ¢° at time ¢t = 0.
Let E be the space of trajectories beginning at ¢° and ending at
a feasible goal configuration, where each & € E is a sequence of
configurations. Next, let ® : £ — RF be a vector-valued function
mapping trajectories to feature values, with ®;(&) signifying the
value of the i-th feature.

Similar to prior IRL work [13, 16, 18, 24], the robot’s objective
function (here a cost function) is parametrized by 6 € RF, which
weights the importance of these features along the entire trajectory:

C(&) =0-2(¢) @

The robot starts off with an initial objective function ° at time
t = 0, and optimizes this objective function to produce its initial
trajectory:

£ = arg mEin 0° - &(¢) (2)

After identifying £°, the robot starts to execute this initial trajectory.

The person interacting with the robot has some desired objective
function that they want the robot to optimize, denoted as 6*. The
robot does not have access to these parameters — they are internal
to the person (and here assumed to be constant). However, at every
time step ¢, the person might intervene to move the robot away
from its current configuration by some Ag’. The robot should then
treat the human’s correction Aq’ as an observation about 6%, and
update its objective from 67 to §**1, such that this new objective
function is closer to 6*.

2.3 All-at-Once Learning

Following [3], we interpret the change in configuration Ag’ as an
indication of the corrected trajectory, Ct , that the human would

prefer for the robot to execute:
=+ MY0,..,Aqd",...0)T 3)

Here ¢! is the robot’s current trajectory — optimal under 8/ — and
M is a matrix that smoothly propagates the local correction Aq’
along the rest of the trajectory [6].

Next, based on [11] and [18], we make the core assumption that
the corrected trajectory & is better than the current trajectory &*
with respect to the ground truth 6*. Recalling that our objective



function is a cost function, this implies:
0" - ®(E) < 0" - B(E") ()

To now find a 82*1 closer to 6%, we select a weight vector that is
both (a) near the current §* and (b) maximally makes (4) hold:

01 = argmin 0 (B(E) - ®(E") + -0 - 01 )

Note that a > 0. This optimization problem is a quadratic in 6, so
we will take the gradient of (5) and set it equal to 0:

Vo = B - B(E) + (0 - 0) =0 ©)
Rearranging (6), we finally obtain:
6" = 0" — a(®(&)) — ©(¢") )

Interestingly, (7) is the same update rule from co-active learning
[11] and online maximum margin planning [18], shown by [3] to be
an approximate solution to the partially observable Markov decision
process that treats 0* as the hidden state and optimizes the cost
parametrized by 6*. This update rule has an intuitive interpretation:
if a feature has a higher value in corrected trajectory than in the
current trajectory, (7) decreases corresponding weight — making
it lower-cost — and thus encourages the optimizer to generate
subsequent trajectories where that feature also has a higher value.

Under this method, the robot updates the weights on all features
that the person changed with their correction during the current
time step.

2.4 One-at-a-Time Learning

A natural solution for restricting the number of learned features
might be to switch the regularization term in (5) to the L; norm
[13, 15], which encourages sparsity of the weight update. However,
there is no guarantee that this will result in changing just one
weight; it may still update all the features that the human corrected,
including those that were accidentally changed.

In this work, to capture one-at-a-time learning, we now make
a different assumption about &/, the intended corrected trajectory.
While the actual corrected trajectory, ££, might change multiple
features, we assume that the human’s intended corrected trajectory,
&L, changes only a single feature.

We simplify the intended corrected trajectory into an intended
change in features, A®, and impose the constraint that A® can
only have one non-zero entry: this entry represents the feature
which the person wants to update. Note that our one-at-a-time
strategy does not mean that only one feature ever changes through-
out the task. Instead, at every time step ¢ there can be a different
intended feature change, and so the person can sequentially change
the weights to match their desired objective over multiple correc-
tions.

Without loss of generality, assume that the human is attempting
to change the i'" entry in 6!, the robot’s current feature weights.
If the human interacts to only update the weight on the i/ feature,
then their correction of the robot’s current trajectory, £, should
00(£7)

00!
words, given that the person is an optimal corrector and that their
interaction was meant to change just the weight on the ith feature,
then we would expect them to correct the trajectory such that they
produce a feature difference exactly in the direction J(6;).

. In other

change the feature count in the direction J(6;) =

Realistically, however, human corrections are noisy — even for
expert users [2] — and will not necessarily induce the optimal
feature difference during every correction. Despite these imperfec-
tions, we assume that the result of their correction will still noisily
optimize the distance (dot product) in the optimal direction. This
provides us with an observation model, from which we can find the
likelihood of observing a specific feature difference given the one
feature which the human is attempting to update:

P(ADi) o ¢/ (00)-A® (8)

Accordingly, for the observed feature difference A® = d(EL)—d(E7),
the feature which the human is most likely trying to change is:

i* = arg max P(®(£}) — ®(&1)|i)

= argmax J(6;) - (B(5) — 2(§")

Using (9), we can estimate which feature the person wanted
to update during their physical correction. Next, by leveraging i*
and the observed feature difference, we can reconstruct Atbé, the
human’s intended feature difference. Recall that — if the human
wanted to only update feature i* — their intended feature difference

would ideally be in the direction J(0;+) = aguéi‘)

choose A®L o J(6;+). In practice, however, we will simplify this
derivative by projecting the actual feature difference induced by
the human’s interaction onto the i*" axis, ADL = (0, .., D (£L) -
®;+(£%),..0)T. Thus, once we have identified which feature the
person most wants to change during their current interaction, i*,
we argue that the intended feature correction should only change
this one feature 2.

Evaluating J(6;) requires numerical differentiation, i.e., finding
an optimal trajectory at least F + 1 times at each time step (where F
is the number of features). To make this process run in real-time, we
approximate J(6;) as proportional to (0, .., 1,..0)T. In other words,
we assume that when the it” weight changes, it predominantly
causes a change in the i th feature along the corresponding opti-
mal trajectory. Substituting this simplification back into (2.4), we
have reduced our method for finding the feature which the human
intends to change into a simple, yet intuitive, heuristic: only the
feature that changed the most as a result of the human’s correction
should be updated. We note, however, that this heuristic has its
roots in the more principled approach that was detailed above. Our
update rule now becomes

0! = 9" — aAD. (10)

, and so we can

Overall, isolating a single feature at every time step is meant
to prevent unintended learning. If the person is trying to correct
multiple features, they can still do so: the robot will pick up on
what seems like the most dominant feature in the correction, adjust
that, and then give the person a chance to correct whatever remains
during the next time step. Due to the noisy nature of human cor-
rections, we hypothesize that this one-at-a-time update strategy
will lead to shorter trajectories through the learned weight space —
which reach the ideal weight more directly — when compared to a
strategy that tries to update everything at once. In what follows,

2To ensure that all features are equally sensitive, we normalized each feature by the
maximal attainable feature difference by computing optimal trajectories offline with a
range of 0 values.



we first show some simulation analysis with optimal and noisy
humans, and then test our hypothesis in a user study.

3 SIMULATIONS

In order to better validate and compare the all-at-once and one-
at-a-time learning methods described in Section 2, we conducted
human-robot interaction simulations. These simulations show that
updating one feature per interaction can help prevent unintended
learning, particularly when the human interacts sub-optimally.

Setting. We will consider a vertical planar environment, where
the y-axis corresponds to height above a table and the x-axis is
parallel to that table. The simulated robot is attempting to move
from a fixed start position, s, to a fixed goal position, g. The robot
is modeled as a single point, and the robot’s configuration is its
current (x, y) position. A simulated human is standing beside the
table near the start position, and physically interacts with the robot
to correct its behavior when necessary.

The robot does not know the true feature weights of the human’s
objective function, 8%, but the robot does know that there are three
different features which the human might care about: the length of
the robot’s trajectory (length), the robot’s height above the table
(table), and the robot’s distance from the human (human). Here the
table feature corresponds to the height along the y-axis, since the
table is a surface at y = 0, and the human feature corresponds to the
distance along the x-axis, since the human is standing at x = 0. The
weight of the length feature is fixed, and the robot learns the relative
weights associated with table and human features over the course of
the task. The human’s true reward parameter is 0* = [0.5, 0], where
0.5 is the true weight associated with table and 0 is the true weight
associated with human. Initially, the robot believes that 0% = [0, 0],
and so the robot is unaware that it should move closer to the table.

Simulated Human. We consider two different simulated humans:
(a) an optimal human, who corrects the robot to exactly follow their
desired trajectory and (b) a noisy human, who imperfectly corrects
the robot’s trajectory.

At the start of the task, the optimal human identifies a desired
trajectory: &5, = argming 6 - ®(§). During the task, the human
does not change &7, and interacts with the robot to make it follow
this desired trajectory. At each time step ¢ the human provides a
correction Ag’ that changes the robot’s current configuration to
the desired configuration, §;I(t) but the human only provides this
correction if the robot’s distance from &}, () is greater than some
acceptable margin of error.

In contrast, the noisy human takes actions sampled from a Gauss-
ian distribution: these actions are centered at the optimal human
action with a bias in the x-direction. This bias introduces a sys-
tematic error, where the noisy human accidentally pulls the robot
closer to their body when attempting to significantly correct the
vertical table feature. As a result of this noise and bias, the noisy
human may unintentionally correct the human feature.

Analysis. We performed two different simulations: one with the
optimal human (see Fig. 2), and one with the noisy human (see
Fig. 3). When the human optimally corrects the robot’s table feature
in Fig. 2, they never unintentionally affect the weight of the human
feature, and so all-at-once and one-at-a-time learning both yield
the exact same results for the optimal human.

Human
7

Table

(a) Optimal human: Teaching the robot

02 Table
Human

Feature Weight

1 2 3 4 5 6 7 8 9 10
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(b) Optimal human: Learning weights

Figure 2: Simulation with optimal human. (a) Human corrects the robot during the
first few time steps, and the robot follows the human’s desired trajectory afterwards. (b)
The robot’s estimated feature weights converge to the human’s true feature weights.
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(b) Noisy human: Learning feature weights

Figure 3: Simulation with noisy human. (a) The human noisily corrects the robot’s
trajectory, where the ellipses show the robot’s states with 95% confidence over 100
simulations. (b) With all-at-once, the robot initially learns that the human feature
is important, and the person must undo that unintended learning. One-at-at-time
learning reduces the unintended effects of the human’s noisy corrections; this causes
the robot to converge towards the human’s desired trajectory more rapidly.
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(a) Task 1: Correct one feature, the distance to table

(b) Task 2: Correct two features, the cup orientation
and distance to table

Figure 4: Depictions of the robot trajectories for each of the two experimental tasks.
The black path represents the original trajectory and the blue path represents the
human’s desired trajectory.

By contrast, the noisy human unintentionally corrects the hu-
man features at the start of the task (when trying to correct the
table features), and, as such, we observed different behavior for
all-at-once and one-at-a-time learning in Fig. 3. Although the ro-
bot follows a similar mean trajectory for both learning methods,
and eventually converges to the correct feature weights in each
case, we observe that all-at-once had a longer learning process and
more persistent human interaction. In particular, the length of the
mean path in feature space from 6° to #7 was 0.57 for all-at-once
vs. 0.49 for one-at-a-time; the length of the mean path specifically
for the human feature weight was 0.23 for all-at-once vs. 0.001 for
one-at-a-time. Recall that the robot was constrained to reach its
goal position in 10 steps; we found that, in the all-at-once case, the
human interacted with the robot during an average of 5.24 steps,
and, in the one-at-a-time case, the human interacted with the robot
during an average of 3.56 steps.

These simulations showcase that, when the human interacts
sub-optimally, their corrections can lead to unintended learning
on the robot’s part, which the human must then exert additional
effort to undo. For the simulation we have described, updating
only one feature per time step helps to mitigate accidental learning,
demonstrating the potential benefits of our proposed one-at-a-time
learning method.

4 EXPERIMENTS

We conducted an IRB-approved user study to investigate the bene-
fits of one-at-a-time learning. During each experimental task, the

robot began with a number of incorrect weights in its objective,
and the participants intervened to physically correct the robot.

4.1 Independent Variables

We use a 2 by 2 factorial design. We manipulated the learning
strategy with two levels, all-at-once and one-at-a-time, as well
as the number of feature weights that need correction, one feature
weight and all the feature weights.

In the all-at-once learning strategy, the robot updated all the
feature weights from a given interaction with the gradient update
from Equation (7) and then replanned a new trajectory with the
updated weights. In the one-at-a-time condition, the robot chose
the feature that changed the most using Equation (2.4), updated
according to Equation (10), and then replanned a new trajectory
withe the updated 6.

4.2 Dependent Measures
4.2.1 Objective. To analyze the objective performance of the
two learning strategies, we split the objective measures into four
categories:
Final Learned Reward: These measure how closely the learned
reward matched the optimal reward by the end of the trajectory.
We measured the dot product between the optimal and final
reward vector, denoted DotFinal = 6* - 7. We also analyzed the
regret of the final learned reward, which is the weighted feature
difference between the ideal trajectory and the learned trajectory

RegretFinal = 0" - ®(&g+) — 07 - O(&gr)

and the individual feature differences between the ideal reward and
the trajectory induced by the final learned reward

TableDiffFinal = |15 (¢p+) — 1p(£p7 )]
CupDiffFinal = |2c(§g+) — Pc(Egr)]
Learning Process: Measures about the learning process, i.e. 6=
{00, p,.... 0T }, included the average dot product between the true
reward and the estimated reward over time: DotAvg = % ZLO 6.0t
We also measured the length of the 6 path through weight space
for both cup, 6c, and table, éTb weights. Finally, we computed the
number of times the cup and table weights were updated away
from the optimal 0* (denoted by CupAway and TableAway).

Executed Trajectory: For the actual executed trajectory, &40, We
measured the regret

Regret = 0% - D(£g+) — 0" - ®(Eqer)

and the individual table and cup feature differences between the
ideal and actual trajectory

TableDiff = |D7p(Eg-) — @rp(£ace)

CupDiff = |®c(&g+) — Pc(face)l
Interaction: Interaction measures on the forces applied by the
human, {u?{, u}{, . ,u};}, included the total interaction force, Iact-
Force = ZtT:O ||u;{||1 and total interaction time.

4.2.2  Subjective. For each condition, we administered a 7-point
Likert scale survey about the participant’s interaction experience
(see Table 1 for questions). We separated our survey questions into
four scales: success in teaching the robot about the task, correctness
of update, needing to undo corrections because the robot learned
something wrong, and ease of undoing.
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Figure 5: The final learned weight vector with one-at-a-time is closer to the ideal weight vector for the task where two feature weights are incorrect (left). Looking at the individual
feature differences from ideal: while the final cup weight is closer to ideal for one-at-a-time for both tasks (center), the ideal table weight is actually significantly further away from
the ideal for the one-at-a-time strategy during the one-feature task (right). However, for the two feature task, the one-at-a-time method outperforms the all-at-once for final learned

cup and table weights.

4.3 Hypotheses

H1. Updating one feature at a time significantly increases the final
learned reward, enables a better learning process, results in lower
regret for the executed trajectory, and leads to less interaction effort
and time compared to all-at-once update.

H2. Participants will perceive the robot as more successful at accom-
plishing the task, correctly updating its knowledge of the task, less
likely to learn about extraneous aspects of the task, and be easier to
correct if it did learn something wrong in the one-at-a-time condition.

4.4 Tasks

We designed two experimental household manipulation tasks for
the robot to perform in a shared workspace (see Fig.4 for setup). For
each experimental task, the robot carried a cup from a start to end
pose with an initially incorrect objective. One of the tasks focused
on participants having to correct a single aspect of the incorrect
objective, while the other needed them to correct all parts of the
objective. Participants were instructed to physically intervene to
correct the robot’s behavior during the task. Similar to state-of-the-
art methods, all the features in the robot’s objective were chosen to
be intuitive to a human to ensure that participants could understand
how to correct the robot.

In Task 1, the robot’s objective had only one feature weight incor-
rect. The robot’s default trajectory took a cup from the participant
and put it down on the table, but carried the cup too far above
the table (top of Fig.4). In Task 2, all the feature weights started out
incorrect in the robot’s objective. The robot also took a cup from
the participant and put it down on the table, but this time it initially
grasped the cup at the wrong angle and was also carrying the cup
too high above the table (bottom of Fig.4).

4.5 Participants

We used a within-subjects design and counterbalanced the order
of the conditions during experiments. In total, we recruited 12
participants (7 female, 4 male, 1 non-binary trans-masculine, aged
18-30) from the campus community, 11 of which had technical
backgrounds and 1 of which did not. None of the participants had
experience interacting with the robot used in our experiments.

4.6 Procedure

Before beginning the experiment, participants performed a familiar-
ization task to become comfortable teaching the robot with physical
corrections. The robot’s original trajectory moved a cup from a
shelf to a table, but the robot did not initially care about tilting the
cup mid-task. The robot’s objective contained only one aspect of
the task (cup orientation) and participants had to correct only this
one aspect. Afterwards, for each experimental task, the participants
were shown the robot’s default trajectory as well as what their de-
sired trajectory looks like. They were also told what aspects of the
task the robot is always aware of (cup orientation and distance of
end-effector to table) as well as which learning strategy they were
interacting with. Participants were told the difference between the
two learning strategies in order to minimize in-task learning effects.
Note, however, that we did not tell participants to teach the robot
in any specific style (like one aspect as a time), only about how the
robot reasons about their corrections.

4.7 Analysis

4.7.1 Objective. Final Learned Reward. We ran a factorial
repeated-measures ANOVA with learning strategy and number of
features as factors, and user ID as a random effect, for each of the
measures capturing the quality of the final learning outcome. Fig.5
summarizes our findings about the final learned weights for each
learning strategy.

For the final dot product with the true reward, we found a
significant main effect of the learning strategy (F(1,81) = 29.86,
p < .0001), but also an interaction effect with the number of fea-
tures (F(1,81) = 13.07, p < .01). The post-hoc analysis with Tukey
HSD revealed that one-at-a-time led to a higher dot product on the
two feature task (p < .0001), but there was no significant difference
on the one-feature task (where one-at-a-time led to slightly higher
dot product).

We next looked at the final regret, i.e. the difference between the
cost of the learned trajectory and that of the ideal trajectory. For
this metric we found an interaction effect, suggesting that one-at-
a-time led to lower regret for the two-feature task but not for the
one-feature task. Looking separately at the feature values for table
and cup, we found that one-at-a-time led to a significantly lower
difference for the cup feature across the board (F(1,81) = 11.30,
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(a) In the task with only one wrong feature weight, there is no significant
difference between the two methods in average dot product over time.
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(b) In contrast to (a), when two feature weights are wrong, the one-at-
a-time strategy outperforms the all-at-once strategy when it came to a
higher dot product over the duration of the trajectory.

Figure 6: The one-at-a-time strategy shows significantly more consistent alignment
between the estimated weight vector, 6%, and the ideal weight vector, 8, than the
all-at-once for the two feature task. This indicates that when multiple aspects of the
objective need changing, the one-at-a-time method enables more accurate learning.

p < .01, no interaction effect), but that one-at-a-time only improved
the difference for the table on the two feature task (p < .0001) — it
actually significantly increased the difference on the one feature
task (p < .001).

Overall, we see that one-at-a-time learns something significantly
better across the board for the two-feature task. When it comes to
the one feature task, the results are mixed: it led to a significantly
better result for the cup orientation, but significantly worse for the
table distance feature.

Learning Process. For the average dot product between the es-
timated and true reward over time, our analysis revealed almost

identical outcomes to before, when we were looking at the final
reward only (see Fig.6).

We also found that one-at-a-time resulted in significantly fewer
updates in the wrong direction for the cup weight across the board
(F(1,81) = 44.91, p < .0001) and for the table weight (F(1,81) =
22.02, p < .0001), with no interaction effect. Fig.7 highlights these
findings and their connection to the subjective metrics.

Looking at the length of the path through the space of weights,
we found a main effect of learning strategy (F(1,81) = 26.82, p <
.0001), but also an interaction effect (F(1,81) = 6.55, p = .01).
The posthoc analysis with Tukey HSD revealed that for the the
one-feature task, one-at-a-time resulted in significantly shorter
path traversed through weight space (p < .0001). The path was
shorter with the two-feature task as well, but the difference was not
significant. The effect was mainly due to the one-at-a-time method
resulting in a shorter path for the cup weight on the one-feature
task, as revealed by the posthoc analysis (p < .0001).

Overall, we see that the quality of the learning process was
significantly higher for the one-at-a-time strategy across both tasks.
When one aspect and all aspects of the objective were wrong, one-
at-a-time led to fewer wrong weight updates and resulted in the
learned reward across time being closer to the true reward.

The Executed Trajectory. We found no significant main effect
of the learning strategy on the regret of the executed trajectory:
the two strategies lead to relatively similar actual trajectories with
respect to regret. Both regret as well as the feature differences from
ideal for cup and table showed significant interaction effects.

Interaction Metrics. We found no significant effects on interac-
tion time or force.

Summary of Objective Metric Analysis. Taken together, these
results indicate that a one-at-a-time learning strategy leads to a
better learning process across the board. On the more complex
two-feature task, this strategy also leads to unquestionably better
learning outcomes. For the one-feature task, learning one feature
at a time enables users to better avoid the wrong perturbation of
the correct weight (on the cup feature), but is not as good as the
all-at-once method at enabling users to properly correct the wrong
weight (on the table feature). Thus, H1 was partially supported:
although updating one feature weight at a time does not improve
task performance when there is only one aspect of the objective
wrong, reasoning about one feature weight at a time leads to sig-
nificantly better learning and task performance when all aspects of
the objective are wrong.

4.7.2  Subjective. We ran a repeated measures ANOVA on the
results of our participant survey. After testing the reliability of our
4 scales, we found that the correct update and undoing scale were
significantly reliable, so we grouped these into a combined score
(see Chronbach’s « in Table 1). We analyzed success and undoing
ease separately as they were not reliable.

For the correct update scale, we found a significant effect of
learning strategy (F(1,33) = 5.09,p = 0.031), showing that partic-
ipants perceived the one-at-a-time strategy as better at updating
the robot’s objective according to their corrections. Additionally,
the undoing scale showed a significant effect of learning strategy
(F(1,33) = 10.35,p < 0.01), with the one-at-at-time strategy being
less likely to learn the wrong thing and cause the participants to
have to undo a correction. For ease of undoing, when analyzing Q9
and Q10 individually we found no significant effect of strategy.
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Figure 7: The one-at-a-time strategy results in significantly less weight updates that
are away from the optimum weight across all tasks (left top, left bottom). These
findings are consistent with the subjective likert data from the undoing scale, where
participants perceived the one-at-a-time method as less likely to learn the wrong thing
and need an additional undoing action.

Summary of Subjective Metric Analysis. The subjective data
echoes some of the objective data results. Participants perceived
that one-at-a-time better understood their corrections and required
less undoing due to unintended learning, partially supporting H2.

5 DISCUSSION

In this paper, we compared the performance of one-at-a-time and all-
at-once learning for two tasks: one that required correcting a single
feature, and another that required correcting multiple features of
a robot’s objective. For the multiple feature task, learning about
one feature at a time was objectively superior: it led to a better
final learning outcome (Fig.5), took a shorter path to the optimum,
and had fewer incorrect inferences and undoings along the way
(Fig.6). However, the results were not as clear for the single feature
task: the one-at-a-time method lessened unintended learning on
the weights that were initially correct, but it hindered learning for
the incorrect weights. However, participants subjectively preferred
the one-at-a-time strategy overall: they thought it was better at
learning the correct aspects of the task and required less undoing.

We hypothesize that the superior objective performance of the
one-at-a-time strategy in the second task is due to the increased
complexity of the teaching task. It appears that one-at-a-time learn-
ing is more useful as the teaching task becomes more complex and
requires fixing more aspects of the robot’s objective. However, with
simple teaching tasks that only require one aspect of the objective
to change, it is not yet clear whether one-at-a-time is a significantly
better learning strategy.

5.1 Limitations and Future Work

It is both a limitation and a strength that we chose the simplest
possible feature selection method for the one-at-a-time task. On
the one hand, this is an intuitive and computationally inexpensive
method to examine as a first exploration into teaching robot objec-
tives online via physical interaction. At the same time, our simple
learning strategy was not consistently superior in the simple task.
This opens the door for analyzing more sophisticated methods that
perform Bayesian inference on the intended feature, or low-pass
filtering to prevent high frequency changes in which features gets

Task 2: Table + Cup

Table 1: Likert scale questions were grouped into four categories: success in accom-
plishing the task, correctness of update (reliable), needing to undo corrections because
of unintended learning (reliable), and ease of undoing.

Likert Questions Cronbach’s a

Q1: I successfully taught the robot how
to do the task.

succ

Q2: The robot correctly updated its un-
derstanding about aspects of the task
that I did want to change.

Q3: The robot wrongly updated its un-
derstanding about aspects of the task I

did NOT want to change. 84

Q4: The robot understood which as-
pects of the task I wanted to change,
and how to change them.

correct update

Q5: The robot misinterpreted my cor-
rections.

Q6: T had to try to undo corrections that
I gave to the robot, because it learned
the wrong thing.

Q7: Sometimes my corrections were just
meant to fix the effect of previous cor- .93
rections I gave.

undoing

Q8: I had to re-teach the robot about
an aspect of the task that it started off
knowing well.

Q9: When the robot learned something
wrong, it was difficult for me to undo
that. 66

undo ease

Q10: It was easy to re-correct the robot
whenever it misunderstood a previous
correction of mine.

updated to improve overall learning and usability. Additionally,
while our method worked well with intuitive features like “distance
to table”, additional work is needed to investigate how well each
method works when the features are non-intuitive to the human.

Perhaps our largest limitation in this work is our demographics:
our study participants were primarily individuals with a technical
background (with one exception). Future work must consider a
more diverse user population to ensure external validity.

Not only do we need algorithms that can learn from humans, but
the methods must also reason about the difficulties humans experi-
ence when trying to kinesthetically teach a complex robotic system.
To simplify the teaching process, we propose that robots should
learn one aspect of the objective at a time from physical corrections.
While our user studies indicate the benefits of this method, it is
only a first step towards seamless human-robot interaction.
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