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Abstract: When humans and robots work in close proximity, physical interaction
is inevitable. Traditionally, robots treat physical interaction as a disturbance, and
resume their original behavior after the interaction ends. In contrast, we argue
that physical human interaction is informative: it is useful information about how
the robot should be doing its task. We formalize learning from such interactions
as a dynamical system in which the task objective has parameters that are part
of the hidden state, and physical human interactions are observations about these
parameters. We derive an online approximation of the robot’s optimal policy in
this system, and test it in a user study. The results suggest that learning from
physical interaction leads to better robot task performance with less human effort.
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1 Introduction
Imagine a robot performing a manipulation task next to a person, like moving the person’s coffee
mug from a cabinet to the table (Fig. 1). As the robot is moving, the person might notice that the
robot is carrying the mug too high above the table. Knowing that the mug would break if it were to
slip and fall from so far up, the person easily intervenes and starts pushing the robot’s end-effector
down to bring the mug closer to the table. In this work, we focus on how the robot should then
respond to such physical human-robot interaction (pHRI).
Several reactive control strategies have been developed to deal with pHRI [1, 2, 3]. For instance,
when a human applies a force on the robot, it can render a desired impedance or switch to gravity
compensation and allow the human to easily move the robot around. In these strategies, the moment
the human lets go of the robot, it resumes its original behavior—our robot from earlier would go
back to carrying the mug too high, requiring the person to continue intervening until it finished the
task (Fig. 1, left).
Although such control strategies guarantee fast reaction to unexpected forces, the robot’s return to
its original motion stems from a fundamental limitation of traditional pHRI strategies: they miss
the fact that human interventions are often intentional and occur because the robot is doing some-
thing wrong. While the robot’s original behavior may have been optimal with respect to the robot’s
pre-defined objective function, the fact that a human intervention was necessary implies that this
objective function was not quite right.
Our insight is that because pHRI is intentional, it is also informative—it provides observations
about the correct robot objective function, and the robot can leverage these observations to learn
that correct objective.
Returning to our example, if the person is applying forces to push the robot’s end-effector closer to
the table, then the robot should change its objective function to reflect this preference, and complete
the rest of the current task accordingly, keeping the mug lower (Fig. 1, right). Ultimately, hu-
man interactions should not be thought of as disturbances, which perturb the robot from its desired
behavior, but rather as corrections, which teach the robot its desired behavior.
In this paper, we make the following contributions:
Formalism. We formalize reacting to pHRI as the problem of acting in a dynamical system to
optimize an objective function, with two caveats: 1) the objective function has unknown parameters
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Figure 1: A person interacts with a robot that treats interactions as disturbances (left), and a robot that learns
from interactions (right). When humans are treated as disturbances, force plots reveal that people have to
continuously interact since the robot returns to its original, incorrect trajectory. In contrast, a robot that learns
from interactions requires minimal human feedback to understand how to behave (i.e., go closer to the table).
θ, and 2) human interventions serve as observations about these unknown parameters: we model
human behavior as approximately optimal with respect to the true objective. As stated, this problem
is an instance of a Partially Observable Markov Decision Process (POMDP). Although we cannot
solve it in real-time using POMDP solvers, this formalism is crucial to converting the problem of
reacting to pHRI into a clearly defined optimization problem. In addition, our formalism enables
pHRI approaches to be justified and compared in terms of this optimization criterion.
Online Solution. We introduce a solution that adapts learning from demonstration approaches to
our online pHRI setting [4, 5], but derive it as an approximate solution to the problem above. This
enables the robot to adapt to pHRI in real-time, as the current task is unfolding. Key to this ap-
proximation is simplifying the observation model: rather than interpreting instantaneous forces as
noisy-optimal with respect to the value function given θ, we interpret them as implicitly inducing
a noisy-optimal desired trajectory. Reasoning in trajectory space enables an efficient approximate
online gradient approach to estimating θ.
User Study. We conduct a user study with the JACO2 7-DoF robotic arm to assess how online
learning from physical interactions during a task affects the robot’s objective performance, as well
as subjective participant perceptions.
Overall, our work is a first step towards learning robot objectives online from pHRI.

2 Related Work
We propose using pHRI to correct the robot’s objective function while the robot is performing its cur-
rent task. Prior research has focused on (a) control strategies for reacting to pHRI without updating
the robot’s objective function, or (b) learning the robot’s objectives—from offline demonstrations—
in a manner that generalizes to future tasks, but does not change the behavior during the current task.
An exception is shared autonomy work, which does correct the robot’s objective function online, but
only when the objective is parameterized by the human’s desired goal in free-space.
Control Strategies for Online Reactions to pHRI. A variety of control strategies have been de-
veloped to ensure safe and responsive pHRI. They largely fall into three categories [6]: impedance
control, collision handling, and shared manipulation control. Impedance control [1] relates devia-
tions from the robot’s planned trajectory to interaction torques. The robot renders a virtual stiffness,
damping, and/or inertia, allowing the person to push the robot away from its desired trajectory, but
the robot always returns to its original trajectory after the interaction ends. Collision handling meth-
ods [2] include stopping, switching to gravity compensation, or re-timing the planned trajectory if
a collision is detected. Finally, shared manipulation [3] refers to role allocation in situations where
the human and the robot are collaborating. These control strategies for pHRI work in real-time, and
enable the robot to safely adapt to the human’s actions; however, the robot fails to leverage these in-
terventions to update its understanding of the task—left alone, the robot would continue to perform
the task in the same way as it had planned before any human interactions. By contrast, we focus on
enabling robots to adjust how they perform the current task in real time.
Offline Learning of Robot Objective Functions. Inverse Reinforcement Learning (IRL) methods
focus explicitly on inferring an unknown objective function, but do it offline, after passively observ-
ing expert trajectory demonstrations [7]. These approaches can handle noisy demonstrations [8],
which become observations about the true objective [9], and can acquire demonstrations through
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physical kinesthetic teaching [10]. Most related to our work are approaches which learn from cor-
rections of the robot’s trajectory, rather than from demonstrations [4, 5, 11]. Our work, however,
has a different goal: while these approaches focus on the robot doing better the next time it performs
the task, we focus on the robot completing its current task correctly. Our solution is analogous to
online Maximum Margin Planning [4] and co-active learning [5] for this new setting, but one of our
contributions is to derive their update rule as an approximation to our pHRI problem.
Online Learning of Human Goals. While IRL can learn the robot’s objective function after one or
more demonstrations of a task, online inference is possible when the objective is simply to reach a
goal state, and the robot moves through free space [12, 13, 14]. We build on this work by considering
general objective parameters; this requires a more complex (non-analytic and difficult to compute)
observation model, along with additional approximations to achieve online performance.

3 Learning Robot Objectives Online from pHRI
3.1 Formalizing Reacting to pHRI
We consider settings where a robot is performing a day-to-day task next to a person, but is not doing
it correctly (e.g., is about to spill a glass of water), or not doing it in a way that matches the person’s
preferences (e.g., is getting too close to the person). Whenever the person physically intervenes and
corrects the robot’s motion, the robot should react accordingly; however, there are many strategies
the robot could use to react. Here, we formalize the problem as a dynamical system with a true ob-
jective function that is known by the person but not known by the robot. This formulation interprets
the human’s physical forces as intentional, and implicitly defines an optimal strategy for reacting.
Notation. Let x denote the robot’s state (its position and velocity) and uR the robot’s action (the
torque it applies at its joints). The human physically interacts with the robot by applying external
torque uH . The robot transitions to a next state defined by its dynamics, ẋ = f(x, uR +uH), where
both the human and robot can influence the robot’s motion.
POMDP Formulation. The robot optimizes a reward function r(x, uR, uH ; θ), which trades off
between correctly completing the task and minimizing human effort

r(x, uR, uH ; θ) = θTφ(x, uR, uH)− λ||uH ||2 (1)

Following prior IRL work [15, 4, 8], we parameterize the task-related part of this reward function as
a linear combination of features φ with weights θ. Note that we assume the relevant set of features
for each task are given, and we will not explore feature selection within this work.
Here θ encapsulates the true objective, such as moving the glass slowly, or keeping the robot’s end-
effector farther away from the person. Importantly, this parameter is not known by the robot—robots
will not always know the right way to perform a task, and certainly not the human-preferred way. If
the robot knew θ, this would simply become an MDP formulation, where the states are x, the actions
are uR, the reward is r, and the person would never need to intervene.
Uncertainty over θ, however, turns this into a POMDP formulation, where θ is a hidden part of the
state. Importantly, the human’s actions are observations about θ under some observation model
P (uH |x, uR; θ). These observations uH are atypical in two ways: (a) they affect the robot’s reward,
as in [13], and (b) they influence the robot’s state, but we don’t necessarily want to account for that
when planning – the robot should not rely on the human to move the robot; rather the robot should
consider uH only for its information value.
Observation Model. We model the human’s interventions as corrections which approximately max-
imize the robot’s reward. More specifically, we assume the noisy-rational human selects an action
uH that, when combined with the robot’s action uR, leads to a high Q-value (state-action value)
assuming the robot will behave optimally after the current step (i.e., assuming the robot knows θ)

P (uH | x, uR; θ) ∝ eQ(x,uR+uH ;θ) (2)

Our choice of (2) stems from maximum entropy assumptions [8], as well as the Bolzmann distribu-
tions used in cognitive science models of human behavior [16].
Aside. We are not formulating this as a POMDP to solve it using standard POMDP solvers. Instead,
our goal is to clarify the underlying problem formulation and the existence of an optimal strategy.

3.2 Approximate Solution
Since POMDPs cannot be solved tractably for high-dimensional real-world problems, we make
several approximations to arrive at an online solution. We first separate estimation from finding the
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optimal policy, and approximate the policy by separating planning from control. We then simplify
the estimation model, and use maximum a posteriori estimate (MAP) instead the full belief over θ.
QMDP. Similar to [13], we approximate our POMDP using a QMDP by assuming the robot will
obtain full observability at the next time step [17]. Let b denote the robot’s current belief over θ.
The QMDP simplifies into two subproblems: (a) finding the robot’s optimal policy given b

Q(x, uR, b) =

∫
b(θ)Q(x, uR, θ)dθ (3)

where arg maxuR Q(x, uR, b) evaluated at every state yields the optimal policy, and (b) updating
our belief over θ given a new observation. Unlike the actual POMDP solution, here the robot will
not try to gather information.

From Belief to Estimator. Rather than planning with the belief b, we plan with only the MAP of θ̂.
From Policies to Trajectories (Action). ComputingQ in continuous state, action, and belief spaces
is still not tractable. We thus separate planning and control. At every time step t, we do two things.

First, given our current θ̂t, we replan a trajectory ξ = x0:T ∈ Ξ that optimizes the task-related
reward. Let θTΦ(ξ) be the cumulative reward, where Φ(ξ) is the total feature count along trajectory
ξ such that Φ(ξ) =

∑
xt∈ξ φ(xt). We use a trajectory optimizer [18] to replan the robot’s desired

trajectory ξtR
ξtR = arg max

ξ
θ̂t · Φ(ξ) (4)

Second, once ξtR has been planned, we control the robot to track this desired trajectory. We use
impedance control, which allows people to change the robot’s state by exerting torques, and provides
compliance for human safety [19, 6, 1]. After feedback linearization [20], the equation of motion
under impedance control becomes

MR(q̈t − q̈tR) +BR(q̇t − q̇tR) +KR(qt − qtR) = utH (5)

Here MR, BR, and KR are the desired inertia, damping, and stiffness, x = (q, q̇), where q is the
robot’s joint position, and qR ∈ ξR denotes the desired joint position. Within our experiments, we
implemented a simplified impedance controller without feedback linearization

utR = BR(q̇tR − q̇t) +KR(qt − qtR) (6)

Aside. When the robot is not updating its estimate θ̂, then ξtR = ξt−1
R , and our solution reduces to

using impedance control to track an unchanging trajectory [2, 19].
From Policies to Trajectories (Estimation). We still need to address the second QMDP subprob-
lem: updating θ̂ after each new observation. Unfortunately, evaluating the observation model (2) for
any given θ is difficult, because it requires computing the Q-value function for that θ. Hence, we
will again leverage a simplification from policies to trajectories in order to update our MAP of θ.
Instead of attempting to directly relate uH to θ, we propose an intermediate step; we interpret each
human action uH via a intended trajectory, ξH , that the human wants the robot to execute. To
compute the intended trajectory ξH from ξR and uH , we propagate the deformation caused by uH
along the robot’s current trajectory ξR

ξH = ξR + µA−1UH (7)

where µ > 0 scales the magnitude of the deformation, A defines a norm on the Hilbert space of
trajectories and dictates the deformation shape [21], UH = uH at the current time, and UH = 0 at
all other times. During experiments we here used a norm A based on acceleration [21], but we will
explore learning the choice of this norm in future work.
Importantly, our simplification from observing human action uH to implicitly observing the human’s
intended trajectory ξH means we no longer have to evaluate the Q-value of uR + uH given some
θ value. Instead, the observation model now depends on the total reward of the implicitly observed
trajectory:

P (ξH | ξR, θ) ∝ eθ
TΦ(ξH)−λ||uH ||2 ≈ eθ

TΦ(ξH)−λ||ξH−ξR||2 (8)
This is analogous to (2), but in trajectory space—a distribution over implied trajectories, given θ and
the current robot trajectory.
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Figure 2: Algorithm (left) and visualization (right) of one iteration of our online learning from pHRI method
in an environment with two obstacles O1, O2. The originally planned trajectory, ξtR (black dotted line), is
deformed by the human’s force into the human’s preferred trajectory, ξtH (solid black line). Given these two
trajectories, we compute an online update of θ and can replan a better trajectory ξt+1

R (orange dotted line).
3.3 Online Update of the θ Estimate

The probability distribution over θ at time step t is P (ξ0
H , .., ξ

t
H |θ, ξ0

R, .., ξ
t
R)P (θ). However, since

θ is continuous, and the observation model is not Gaussian, we opt not to track the full belief, but
rather to track the maximum a posteriori estimate (MAP). Our update rule for this estimate will
reduce to online Maximum Margin Planning [4] if we treat ξH as the demonstration, and to co-
adaptive learning [5], if we treat ξH as the original trajectory with one waypoint corrected. One of
our contributions, however, is to derive this update rule from our MaxEnt observation model in (8).
MAP. Assuming the observations are conditionally independent given θ, the MAP for time t+ 1 is

θ̂t+1 = arg max
θ
P (ξ0

H , .., ξ
t
H | ξ0

R, .., ξ
t
R, θ)P (θ) = arg max

θ

t∑
τ=0

logP (ξτH | ξτR, θ) + logP (θ)

(9)
Inspecting the right side of (9), we need to define both P (ξH |ξR, θ) and the prior P (θ). To ap-
proximate P (ξH |ξR, θ), we use (8) with Laplace’s method to compute the normalizer. Taking a
second-order Taylor series expansion of the objective function about ξR, the robot’s current best
guess at the optimal trajectory, we obtain a Gaussian integral that can be evaluated in closed form

P (ξH | ξR, θ) =
eθ
TΦ(ξH)−λ||ξH−ξR||2∫
eθTΦ(ξ)−λ||ξ−ξR||2 dξ

≈ eθ
T
(

Φ(ξH)−Φ(ξR)
)
−λ||ξH−ξR||2 (10)

Let θ̂0 be our initial estimate of θ. We propose the prior

P (θ) = e−
1
2α ||θ−θ̂

0||2 (11)

where α is a positive constant. Substituting (10) and (11) into (9), the MAP reduces to

θ̂t+1 ≈ arg max
θ

{
t∑

τ=0

θT
(
Φ(ξτH)− Φ(ξτR)

)
− 1

2α
||θ − θ̂0||2

}
(12)

Notice that the λ||ξH−ξR||2 terms drop out, because this penalty for human effort does not explicitly
depend on θ. Solving the optimization problem (12) by taking the gradient with respect to θ, and
then setting the result equal to zero, we finally arrive at

θ̂t+1 = θ̂0 + α

t∑
τ=0

(
Φ(ξτH)− Φ(ξτR)

)
= θ̂t + α

(
Φ(ξtH)− Φ(ξtR)

)
(13)

Interpretation. This update rule is actually the online gradient [22] of (9) under our Laplace ap-
proximation of the observation model. It has an intuitive interpretation: it shifts the weights in the
direction of the human’s intended feature count. For example, if ξH stays farther from the person
than ξR, the weights in θ associated with distance-to-person features will increase.
Relation to Prior Work. This update rule is analogous to two related works. First, it would be the
online version of Maximum Margin Planning (MMP) [4] if the trajectory ξtH were a new demon-
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(a) Task 1: Cup orientation (b) Task 2: Distance to table (c) Task 3: Laptop avoidance

Figure 3: Simulations depicting the robot trajectories for each of the three experimental tasks. The black path
represents the original trajectory and the blue path represents the human’s desired trajectory.
stration. Unlike MMP, our robot does not complete a trajectory, and only then get a full new demon-
stration; instead, our ξtH is an estimate of the human’s intended trajectory based on the force applied
during the robot’s execution of the current trajectory ξtR. Second, the update rule would be co-active
learning [5] if the trajectory ξtH were ξtR with one waypoint modified, as opposed to a propagation
of utH along the rest of ξtR. Unlike co-active learning, however, our robot receives corrections con-
tinually, and continually updates the current trajectory in order to complete the current task well.
Nonetheless, we are excited to see similar update rules emerge from different optimization criteria.
Summary. We formalized reacting to pHRI as a POMDP with the correct objective parameters as
a hidden state, and approximated the solution to enable online learning from physical interaction.
At every time step during the task where the human interacts with the robot, we first propagate uH
to implicitly observe the corrected trajectory ξH (simplification of the observation model), and then
update θ̂ via Equation (13) (MAP instead of belief). We replan with the new estimate (approximation
of the optimal policy), and use impedance control to track the resulting trajectory (separation of
planning from control). We summarize and visualize this process in Fig. 2.

4 User Study
We conducted an IRB-approved user study to investigate the benefits of in-task learning. We de-
signed tasks where the robot began with the wrong objective function, and participants phsyically
corrected the robot’s behavior1.

4.1 Experiment Design
Independent Variables. We manipulated the pHRI strategy with two levels: learning and
impedance. The robot either used our method (Algorithm 1) to react to physical corrections and
re-plan a new trajectory during the task; or used impedance control (our method without updating
θ̂) to react to physical interactions and then return to the originally planned trajectory.
Dependent Measures. We measured the robot’s performance with respect to the true objective,
along with several subjective measures. One challenge in designing our experiment was that each
person might have a different internal objective for any given task, depending on their experience
and preferences. Since we do not have direct access to every person’s internal preferences, we
defined the true objective ourselves, and conveyed the objectives to participants by demonstrating
the desired optimal robot behavior (see an example in Fig. 3(a), where the robot is supposed to keep
the cup upright). We instructed participants to get the robot to achieve this desired behavior with
minimal human physical intervention.
For each robot attempt at a task, we evaluated the task related and effort related parts of the ob-
jective: θTΦ(ξ) (a cost to be minimized and not a reward to be maximized in our experiment) and∑
t ||utH ||1. We also evaluate the total amount of time spent interacting physically with the robot.

For our subjective measures, we designed 4 multi-item scales shown in Table 1: did participants
think the robot understood how they wanted to task done, did they feel like they had to exert a lot
of effort to correct the robot, was it easy to anticipate the robot’s reactions, and how good of a
collaborator was the robot.
Hypotheses:
H1. Learning significantly decreases interaction time, effort, and cumulative trajectory cost.

1For video footage of the experiment, see: https://www.youtube.com/watch?v=1MkI6DH1mcw
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Figure 4: Learning from pHRI decreases human effort and interaction time across all experimental tasks (total
trajectory time was 15s). An asterisk (*) means p < 0.0001.
H2. Participants will believe the robot understood their preferences, feel less interaction effort, and
perceive the robot as more predictable and more collaborative in the learning condition.
Tasks. We designed three household manipulation tasks for the robot to perform in a shared
workspace (see Fig. 3), plus a familiarization task. As such, the robot’s objective function con-
sidered two features: velocity and a task-specific feature. For each task, the robot carried a cup
from a start to a goal pose with an initially incorrect objective, requiring participants to correct its
behavior during the task.
During the familiarization task, the robot’s original trajectory moved too close to the human. Partic-
ipants had to physically interact with the robot to get it to keep the cup further away from their body.
In Task 1, the robot would not care about tilting the cup mid-task, risking spilling if the cup was too
full. Participants had to get the robot to keep the cup upright. In Task 2, the robot would move the
cup too high in the air, risking breaking it if it were to slip, and participants had to get the robot to
keep it closer to the table. Finally, in Task 3, the robot would move the cup over a laptop to reach
it’s final goal pose, and participants had to get the robot to keep the cup away from the laptop.
Participants. We used a within-subjects design and counterbalanced the order of the pHRI strategy
conditions. In total, we recruited 10 participants (5 male, 5 female, aged 18-34) from the UC
Berkeley community, all of whom had technical backgrounds.
Procedure. For each pHRI strategy, participants performed the familiarization task, followed by
the three tasks, and then filled out our survey. They attempted each task twice with each strategy
for robustness, and we recorded the attempt number for our analysis. Since we artificially set the
true objective for participants to measure objective performance, we showed participants both the
original and desired robot trajectory before interaction (Fig. 3), so that they understood the objective.

4.2 Results
Objective. We conducted a factorial repeated measures ANOVA with strategy (impedance or learn-
ing) and trial number (first attempt or second attempt) as factors, on total participant effort, inter-
action time, and cumulative true cost2 (see Figure 4 and Figure 5). Learning resulted in signifi-
cantly less interaction force (F (1, 116) = 86.29, p < 0.0001) and interaction time (F (1, 116) =
75.52, p < 0.0001), and significantly better task cost (F (1, 116) = 21.85, p < 0.0001). Interest-
ingly, while trial number did not significantly affect participant’s performance with either method,
attempting the task a second time yielded a marginal improvement for the impedance strategy, but
not for the learning strategy. This may suggest that it is easier to get used to the impedance strategy.
Overall, this supports H1, and aligns with the intuition that if humans are truly intentional actors,
then using interaction forces as information about the robot’s objective function enables robots to
better complete their tasks with less human effort compared to traditional pHRI methods.
Subjective. Table 1 shows the results of our participant survey. We tested the reliability of our 4
scales, and found the understanding, effort, and collaboration scales to be reliable, so we grouped
them each into a combined score. We ran a one-way repeated measures ANOVA on each resulting
score. We found that the robot using our method was perceived as significantly (p < 0.0001) more
understanding, less difficult to interact with, and more collaborative. However, we found no signif-
icant difference between our method and the baseline impedance method in terms of predictability.

2For simplicity, we only measured the value of the feature that needed to be modified in the task, and
computed the absolute difference from the feature value of the optimal trajectory.
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Figure 5: (left) Average cumulative cost for each task as compared to the desired total trajectory cost. An
asterisk (*) means p < 0.0001. (right) Plot of sample participant data from laptop task: desired trajectory is in
blue, trajectory with impedance condition is in gray, and learning condition trajectory is in orange.
Participant comments suggest that while the robot adapted quickly to their corrections when learn-
ing (e.g. “The robot seemed to quickly figure out what I cared about and kept doing it on its own”),
determining what the robot was doing during learning was less apparent (e.g. “If I pushed it hard
enough sometimes it would seem to fall into another mode and then do things correctly”).
Therefore, H2 was partially supported: although our learning algorithm was not perceived as more
predictable, participants believed that the robot understood their preferences more, took less effort
to interact with, and was a more collaborative partner.

Questions Cronbach’s α Imped LSM Learn LSM F(1,9) p-value

un
de

rs
ta

nd
in

g By the end, the robot understood how I wanted it to do the task.

0.94 1.70 5.10 118.56 <.0001
Even by the end, the robot still did not know how I wanted it to do the task.

The robot learned from my corrections.

The robot did not understand what I was trying to accomplish.

ef
fo

rt I had to keep correcting the robot.
0.98 1.25 5.10 85.25 <.0001

The robot required minimal correction.

pr
ed

ic
t

It was easy to anticipate how the robot will respond to my corrections. 0.8 4.90 4.70 0.06 0.82

The robot’s response to my corrections was surprising. 0.8 3.10 3.70 0.89 0.37

co
lla

b The robot worked with me to complete the task.
0.98 1.80 4.80 55.86 <.0001

The robot did not collaborate with me to complete the task.

Table 1: Results of ANOVA on subjective metrics collected from a 7-point Likert-scale survey.

5 Discussion

Summary. We propose that robots should not treat human interaction forces as disturbances, but
rather as informative actions. We show that this results in robots capable of in-task learning—
robots that update their understanding of the task which they are performing and then complete it
correctly, instead of relying on people to guide them until the task is done. We test this concept with
participants who not only teach the robot to finish its task according to their preferences, but also
subjectively appreciate the robot’s learning.
Limitations and Future Work. Ours is merely a step in exploring learning robot objectives from
pHRI. We opted for an approximation closest to the existing literature, but other possible better on-
line solutions are possible. In our user study, we assumed knowledge of the two relevant reward
features. In reality, reward functions will have larger feature sets and human interactions may only
give information about a certain subset of relevant weights. The robot will thus need to disambiguate
what the person is trying to correct, likely requiring active information gathering. Further, devel-
oping solutions that can handle dynamical aspects, like preferences about the timing of the motion,
would require a different approach to inferring the intended human trajectory, or going back the
space of policies altogether. Finally, while we focused on in-task learning, the question of how and
when to generalize learned objectives to new task instances remains open.
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